1
|
Rondot A, Darveau CA. Metabolic Rate Suppression and Maintenance of Flight Muscle Metabolic Capacity during Diapause in Bumble Bee ( Bombus impatiens) Queens. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:144-156. [PMID: 38875138 DOI: 10.1086/730587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
AbstractThe common eastern bumble bee (Bombus impatiens) queens endure cold winter months by entering a diapause state. During this overwintering period, these animals use stored energy reserves while maintaining a low metabolic rate. This study investigates changes in the metabolic rate of bumble bee queens during diapause-like laboratory conditions and the potential reorganization of the flight muscle metabolic properties during this period. We first confirmed the hypometabolic state of queens during diapause in the laboratory, which lowered their resting metabolic rate to less than 5% of normal resting values. Body mass decreased during diapause, body composition changed where carbohydrates decreased initially, and later protein declined, with a similar trend for lipid content. Using cellular respirometry, we determined the capacity of the flight muscle cells of bumble bee queens to use various metabolic fuels and whether this capacity changes during the progression of diapause to favor stored lipid-derived substrates. Queens showed a low capacity to oxidize the amino acid proline, compared with workers, and their capacity to oxidize all metabolic substrates did not change during a 4-mo diapause period in the laboratory. We also show no detectable ability to oxidize fatty acid by flight muscle mitochondria in this species. The metabolic properties of flight muscle tissue were further characterized using metabolic enzyme activity profiles showing little change during diapause, indicating that profound metabolic suppression is induced without major changes in muscle metabolic phenotypes. Overall, B. impatiens queens undergo diapause while maintaining flight muscle capacity under the conditions used.
Collapse
|
2
|
Shi M, Dong K, Wu J, Huang J. Effects of Low-Temperature Acclimation on Nutrients of Bumble Bee Bombus terrestris Queens during Prediapause and Diapause. INSECTS 2023; 14:336. [PMID: 37103151 PMCID: PMC10145411 DOI: 10.3390/insects14040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A queen's diapause is a key period of the bumble bee life cycle that enables them to survive under unfavorable conditions. During diapause, queens fast, and nutritional reserves depend on the accumulation of nutrients during the prediapause period. Temperature is one of the most important factors affecting queens' nutrient accumulation during prediapause and nutrient consumption during diapause. Here, we used a 6-day-old mated queen of the bumble bee Bombus terrestris to evaluate the effect of temperature (10, 15, and 25 °C) and time (3, 6, and 9 days) on free water, protein, lipids, and total sugars during prediapause and at the end of 3 months of diapause. Stepwise regression analysis revealed that total sugars, free water, and lipids were much more affected by temperature than protein (p < 0.05). Lower temperature acclimation significantly increased (p < 0.05) free water and lipid accumulation by queens during prediapause. In contrast, higher temperature acclimation significantly increased (p < 0.05) protein and total sugar accumulation by queens during prediapause. The effect of temperature acclimation on the queen survival rate was not significantly different (p > 0.05) after 3 months of diapause. Moreover, lower temperature acclimation reduced protein, lipid, and total sugar consumption by queens during diapause. In conclusion, low-temperature acclimation increases queens' lipid accumulation during prediapause and reduces the nutritional consumption of queens during diapause. Low-temperature acclimation during prediapause could benefit queens by improving cold resistance and increasing reserves of major nutrient lipids during diapause.
Collapse
Affiliation(s)
- Mengnan Shi
- State Key Laboratory of Resource Insects of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kun Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jie Wu
- State Key Laboratory of Resource Insects of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
3
|
Barie K, Levin E, Amsalem E. CO 2 narcosis induces a metabolic shift mediated via juvenile hormone in Bombus impatiens gynes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103831. [PMID: 36058439 DOI: 10.1016/j.ibmb.2022.103831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Carbon dioxide (CO2) has pleiotropic effects on insect physiology and behavior. Although diverse, many impacts are related to changes in metabolism and reallocation of macronutrients. Here we examined the metabolic shift induced by CO2 and its regulation using Bombus impatiens. CO2 applied to bumble bee gynes induces bypass of diapause and transition into reproduction. We analyzed ovary activation and macronutrient amounts in four tissues/body parts (fat body, thorax, ovaries, and crop) at three timepoints following CO2 administration. To tease apart the effects of CO2 on reproduction and metabolism, we monitored the metabolic changes in gynes following ovary removal and CO2 narcosis. We also explored the role of juvenile hormone in mediating CO2 impact by feeding queens with a JH antagonist (Precocene). Gynes ovary activation was increased following CO2 treatment. Additionally, CO2-treated gynes showed lower lipid amount in the fat body and higher glycogen and protein amount in the ovary ten days after the treatment. CO2 treatment following ovary removal also resulted in decreased fat body lipids, suggesting that CO2 operates by inducing a metabolic shift independent of reproduction. Lastly, gynes fed with precocence did not show a metabolic shift following CO2, suggesting CO2 impact is mediated via juvenile hormone. Overall, these data suggest that CO2 induces transfer of macronutrients and utilization of stored reserved by accelerating metabolism. The proposed mechanism of CO2 may explain many of the pleiotropic effects of CO2 across species and can aid in understanding how this common anastatic influences insect physiology.
Collapse
Affiliation(s)
- Katherine Barie
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Eran Levin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Keaveny EC, Waybright SA, Rusch TW, Dillon ME. Supercooling points of freeze-avoiding bumble bees vary with caste and queen life stage. J Therm Biol 2022; 104:103196. [PMID: 35180973 DOI: 10.1016/j.jtherbio.2022.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 11/27/2022]
Abstract
Bumble bees thrive in cold climates including high latitude and high altitude regions around the world, yet cold tolerance strategies are largely unknown for most species. To determine bumble bee cold tolerance strategy, we exposed bumble bees to a range of low temperatures and measured survival 72 h post-exposure. All bees that froze died within 72 h while only one bee died without freezing, suggesting that bumble bees are generally freeze-avoiding insects and may be slightly chill susceptible. We then assessed whether temperatures that cause internal ice formation (supercooling points, SCP) varied among bumble bee castes (drones, workers, and queens), or across queen life stages, collection elevation, species, or season. Males froze at significantly lower temperatures than workers or queens. Queens in pre-overwintering or overwintering states froze at significantly lower temperatures than queens stimulated to initiate ovary development by CO2 narcosis (i.e., "spring" queens). We also tested whether the presence of water (i.e., wet or dry) or ramping rate affected SCP. As expected, queens inoculated with water froze at significantly higher temperatures than dry queens. SCP tended to be lower, but not significantly so, at faster ramping rates (0.5 °C/min vs 0.25 °C/min). We also found no differences in SCP between queen bumble bees collected in spring and fall, between queens collected at two sites differing in elevation by 1100 m, or between three field-caught bumble bee species. Bumble bees appear to have relatively high, invariable SCPs, likely making them highly susceptible to freezing across all seasons. As bumble bees are not freeze-tolerant and appear to lack the ability to prevent freezing at temperatures much below 0 °C, they may rely on season- and caste-specific micro-habitat selection to thrive in cold climates.
Collapse
Affiliation(s)
- Ellen C Keaveny
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA.
| | - Sarah A Waybright
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA.
| | - Travis W Rusch
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
5
|
Tian Y, Qu Y, Dong K, He S, Jie W, Huang J. Characterization and Developmental Expression Patterns of Four Hexamerin Genes in the Bumble Bee, Bombus terrestris (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6391129. [PMID: 34636890 PMCID: PMC8507971 DOI: 10.1093/jisesa/ieab078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 06/13/2023]
Abstract
Hexamerins are members of the hemocyanin superfamily and play essential roles in providing amino acids and energy for the nonfeeding stages of insects. In this study, we cloned and analyzed the expression patterns of four hexamerin genes (hex 70a, hex 70b, hex 70c, and hex 110) at different worker development stages and queen diapause statuses in the bumble bee, Bombus terrestris. The results of this study showed that hex 110 has the longest open reading frame (ORF; 3,297 bp) compared to the ORFs of hex 70a (2,034 bp), hex 70b (2,067 bp), and hex 70c (2,055 bp). The putative translation product of Hex 70a, Hex 70b, Hex70c, and Hex 110 has 677, 688, 684, and 1,098aa with predicted molecular mass of 81.13, 79.69, 81.58, and 119 kDa. In the development stages of workers, the expression levels of hex 70a, hex 70b, and hex 70c increased gradually from the larval stage and exhibited high expression levels at the pink eyed and brown eyed pupae stage, whereas hex 110 exhibited the highest expression level at the larval period. Four hexamerin genes were highly expressed at the prediapause status of queen (P < 0.05), and compared to the eclosion queen, the lowest upregulation was 3.7-fold, and the highest upregulation was 1,742-fold. The expression levels of hex 70b, hex 70c, and hex 110 at diapause were significantly higher than those at postdiapause (P < 0.05). In conclusion, hexamerins may play important roles in queen diapause and metamorphosis of larval and pupal stages.
Collapse
Affiliation(s)
- Yakai Tian
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Yingping Qu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Kun Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Shaoyu He
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Wu Jie
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
6
|
Watrous KM, Costa CP, Diaz YR, Woodard SH. Flexibility in the Critical Period of Nutrient Sequestration in Bumble Bee Queens. Integr Org Biol 2021; 3:obab009. [PMID: 34104874 PMCID: PMC8179628 DOI: 10.1093/iob/obab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Synopsis Bumble bee queens undergo a nutrient storage period prior to entering diapause wherein they sequester glycogen and lipids that are metabolized during overwintering. In the laboratory under optimal food availability conditions, the majority of nutrients are sequestered during the first few days of adulthood. However, if food resources are scarce during this narrow window of time, wild queen bumble bees might be limited in their ability to obtain adequate food resources for overwintering. Here we used a laboratory experiment to examine whether queen bumble bees exhibit flexibility in the timing of pre-overwintering nutrient sequestration, by limiting their access to either nectar (artificial) or pollen, the two primary foods for bumble bees, for varying periods of time. In response to these treatments, we quantified queen survival, changes in weight, and glycogen and lipids levels. We found evidence that queens are able to recuperate almost entirely from food resource limitation, with respect to nutrient storage, especially when it is experienced for shorter durations (up to 6 days). This study sheds light on how bumble bee queens are impacted by food resource availability at a critical life stage. Portuguese As abelhas rainhas do gênero Bombus armazenam nutrientes antes de entrarem em diapausa, sequestrando o glicogênio e os lipídios que serão metabolizados durante o inverno. Em condições ideais de disponibilidade de alimento no laboratório, a maioria dos nutrientes é sequestrada nos primeiros dias de vida adulta. No entanto, em condições de escassez de alimento na natureza, as rainhas podem sofrer limitações em sua capacidade de obter recursos para o inverno. Nesse contexto, em condições controladas, examinamos se as rainhas exibem variações no sequestro de nutrientes, limitando o acesso ao néctar (artificial) ou pólen, seus principais alimentos, em diferentes intervalos de tempo. Em resposta a esses tratamentos, quantificamos a taxa de sobrevivência das rainhas, as mudanças no peso e os níveis de glicogênio e lipídios. Encontramos evidências de que as rainhas são capazes de recuperar a capacidade de armazenar nutrientes quase inteiramente, especialmente em períodos mais curtos de escassez de alimento (até 6 dias). Este estudo lança luz sobre como as rainhas são afetadas pela variação na disponibilidade de recursos alimentares em um estágio crítico da vida. Spanish Las abejas reinas de generó Bombus, mejor conocidas como reinas de abejorro se someten a un período de almacenamiento de nutrientes antes de entrar en diapausa, en el cual secuestran glucógeno y lípidos que se metabolizan durante el invierno. En el laboratorio, en condiciones óptimas de disponibilidad de alimentos, la mayoría de los nutrientes se secuestran durante los primeros días de la edad adulta. Sin embargo, si los recursos alimenticios son escasos durante esta estrecha ventana de tiempo, las abejas reinas silvestres podrían verse limitadas en su capacidad para obtener recursos alimenticios adecuados para pasar el invierno. Aquí utilizamos un experimento de laboratorio para examinar si las abejas reinas exhiben flexibilidad en el momento del secuestro de nutrientes antes de la hibernación, al limitar su acceso al néctar (artificial) o al polen, los dos alimentos principales de los abejorros, durante períodos variables. En respuesta a estos tratamientos, cuantificamos la supervivencia de la reina, los cambios de peso y los niveles de glucógeno y lípidos. Encontramos evidencia de que las reinas pueden recuperarse casi por completo de la limitación de los recursos alimenticios, con respecto al almacenamiento de nutrientes, especialmente cuando se experimenta por períodos más cortos (hasta 6 días). Este estudio arroja luz sobre cómo las abejas reinas se ven afectadas por la disponibilidad de recursos alimenticios en una etapa crítica de la vida.
Collapse
Affiliation(s)
- Kristal M Watrous
- Department of Entomology, The University of California, Riverside, CA 92521, USA
| | - Claudinéia P Costa
- Department of Entomology, The University of California, Riverside, CA 92521, USA
| | - Yadira R Diaz
- Department of Entomology, The University of California, Riverside, CA 92521, USA
| | - S Hollis Woodard
- Department of Entomology, The University of California, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Costa CP, Duennes MA, Fisher K, Der JP, Watrous KM, Okamoto N, Yamanaka N, Woodard SH. Transcriptome analysis reveals nutrition‐ and age‐related patterns of gene expression in the fat body of pre‐overwintering bumble bee queens. Mol Ecol 2020; 29:720-737. [DOI: 10.1111/mec.15361] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Kaleigh Fisher
- Department of Entomology University of California Riverside CA USA
| | - Joshua P. Der
- Department of Biological Science California State University Fullerton CA USA
| | | | - Naoki Okamoto
- Department of Entomology University of California Riverside CA USA
| | - Naoki Yamanaka
- Department of Entomology University of California Riverside CA USA
| | | |
Collapse
|
8
|
Treanore E, Amsalem E. The effect of intrinsic physiological traits on diapause survival and their underlying mechanisms in an annual bee species Bombus impatiens. CONSERVATION PHYSIOLOGY 2020; 8:coaa103. [PMID: 33304588 PMCID: PMC7720083 DOI: 10.1093/conphys/coaa103] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 05/12/2023]
Abstract
In the face of insect declines, identifying phases of the life cycle when insects are particularly vulnerable to mortality is critical to conservation efforts. For numerous annual insect groups, diapause is both a key adaptation that allows survival of inhospitable conditions and a physiologically demanding life stage that can result in high rates of mortality. As bees continue to garner attention as a group experiencing high rates of decline, improving our understanding of how annual bees prepare for diapause and identifying factors that reduce survival is imperative. Here, we studied factors affecting diapause survival length and their underlying mechanisms using an economically and ecologically important annual bee species, Bombus impatiens. We examined how age and mass upon diapause onset correlate with diapause survival length, and the mechanistic role of nutrient acquisition and oxidative stress post pupal eclosion in mediating these effects. Our findings show that both age and mass were strong predictors of diapause survival length. Heavier queens or queens in the age range of ~6-17 days survived longer in diapause. Mass gain was attributed to increases in lipid, protein and glycerol amounts following pupal eclosion, and the ability to deal with oxidative stress was significantly compromised in older pre-diapause queens. Our results demonstrate that age-related shifts in bee physiology and timing of nutrient acquisition may both be critical factors driving diapause survival.
Collapse
Affiliation(s)
- Erin Treanore
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Corresponding author:
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Abstract
Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members. Bumble bees are important pollinators in natural and agricultural ecosystems. Their social colonies are founded by individual queens, which, as the predominant reproductive females of colonies, contribute to colony function through worker production and fitness through male and new queen production. Therefore, queen health is paramount, but even though there has been an increasing emphasis on the role of gut microbiota for animal health, there is limited information on the gut microbial dynamics of bumble bee queens. Employing 16S rRNA amplicon sequencing and quantitative PCR, we investigate how the adult life stage and physiological state influence a queen’s gut bacterial community diversity and composition in unmated, mated, and ovipositing queens of Bombus lantschouensis. We found significant shifts in total gut microbe abundance and microbiota composition across queen states. There are specific compositional signatures associated with different stages, with unmated and ovipositing queens showing the greatest similarity in composition and mated queens being distinct. The bacterial genera Gilliamella, Snodgrassella, and Lactobacillus were relatively dominant in unmated and ovipositing queens, with Bifidobacterium dominant in ovipositing queens only. Bacillus, Lactococcus, and Pseudomonas increased following queen mating. Intriguingly, however, further analysis of unmated queens matching the mated queens in age showed that changes are independent of the act of mating. Our study is the first to explore the gut microbiome of bumble bee queens across key life stages from adult eclosion to egg laying and provides useful information for future studies of the function of gut bacteria in queen development and colony performance. IMPORTANCE Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members.
Collapse
|
10
|
Koubová J, Jehlík T, Kodrík D, Sábová M, Šima P, Sehadová H, Závodská R, Frydrychová RČ. Telomerase activity is upregulated in the fat bodies of pre-diapause bumblebee queens (Bombus terrestris). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 115:103241. [PMID: 31536769 DOI: 10.1016/j.ibmb.2019.103241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
The attrition of telomeres, the ends of eukaryote chromosomes, and activity of telomerase, the enzyme that restores telomere length, play a role in the ageing process and act as indicators of biological age. A notable feature of advanced eusocial insects is the longevity of reproductive individuals (queens and kings) compared to those from non-reproductive castes (workers and soldiers) within a given species, with a proposed link towards upregulation of telomerase activity in the somatic tissues of reproductive individuals. Given this, eusocial insects provide excellent model systems for research into ageing. We tested telomerase activity and measured telomere length in Bombus terrestris, which is a primitively eusocial insect species with several distinct features compared to advanced social insects. In somatic tissues, telomerase activity was upregulated only in the fat bodies of pre-diapause queens, and this upregulation was linked to heightened DNA synthesis. Telomere length was shorter in old queens compared to that in younger queens or workers. We speculate that (1) the upregulation of telomerase activity, together with DNA synthesis, is the essential step for intensifying metabolic activity in the fat body to build up a sufficient energy reserve prior to diapause, and that (2) the lifespan differences between B. terrestris workers and queens are related to the long diapause period of the queen. A possible relationship between telomere length regulation and TOR, FOXO, and InR as cell signaling components, was tested.
Collapse
Affiliation(s)
- Justina Koubová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Tomáš Jehlík
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Michala Sábová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Peter Šima
- Koppert s.r.o., Komárňanská cesta 13, 940 01, Nové Zámky, Slovakia
| | - Hana Sehadová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Radka Závodská
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Pedagogy, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Radmila Čapková Frydrychová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
11
|
Galvani GL, Soto EM, Canavoso LE, Settembrini BP. Fat body morphology, but not body size, changes in forager bees of Scaptotrigona jujuyensis (Apidae: Meliponini) during foraging season. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Kamińska K, Lipovšek S, Kaszuba F, Rost-Roszkowska M. Ultrastructure of the fat body in the soil centipedes Lithobius forficatus (Lithobiidae) and Geophilus flavus (Geophilidae) according to their seasonal rhythms. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Woodard SH, Duennes MA, Watrous KM, Jha S. Diet and nutritional status during early adult life have immediate and persistent effects on queen bumble bees. CONSERVATION PHYSIOLOGY 2019; 7:coz048. [PMID: 32802333 PMCID: PMC6694593 DOI: 10.1093/conphys/coz048] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/02/2019] [Accepted: 06/26/2019] [Indexed: 05/12/2023]
Abstract
Many insects sequester nutrients during developmentally programmed periods, which they metabolize during subsequent life history stages. During these periods, failure to store adequate nutrients can have persistent effects on fitness. Here, we examined a critical but under-studied nutrient storage period in queen bumble bees: the first days of adult life, which are followed by a diapause period typically coinciding with winter. We experimentally manipulated availability of pollen (the primary dietary source of lipids and protein) and the sugar concentration of artificial nectar (the primary source of carbohydrates) for laboratory-reared queens during this period and examined three nutritional phenomena: (i) diet impacts on nutritional status, (ii) the timescale upon which nutrient sequestration occurs and (iii) the fitness consequences of nutrient sequestration, specifically related to survival across the life cycle. We found evidence that pollen and nectar starvation negatively impact lipid storage, whereas nectar sugar concentration impacts stored carbohydrates. The majority of nutrients were stored during the first ~ 3 days of adult life. Nutrients derived from pollen during this period appear to be more critical for surviving earlier life stages, whereas nutrients sequestered from nectar become more important for surviving the diapause and post-diapause periods. Negative impacts of a poor diet during early life persisted in our experiment, even when pollen and a relatively high (50%) nectar sugar concentration were provided post-diapause. Based on these findings, we posit that the nutritional environment during the early adult life of queens has both immediate and persistent impacts on fitness. These findings underscore the importance of examining effects of stage-specific nutritional limitations on physiology and life history traits in this social insect group. Moreover, the findings may shed light on how declining food resources are contributing to the decline of wild bumble bee populations.
Collapse
Affiliation(s)
- S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
- Corresponding author: Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA. Tel.: 1-951-827-5761.
| | | | - Kristal M Watrous
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Shalene Jha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
14
|
Woodard SH. Bumble bee ecophysiology: integrating the changing environment and the organism. CURRENT OPINION IN INSECT SCIENCE 2017; 22:101-108. [PMID: 28805631 DOI: 10.1016/j.cois.2017.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
Bumble bees are among the most ecologically and economically important pollinators worldwide, yet many of their populations are being threatened by a suite of interrelated, human-mediated environmental changes. Here, I discuss recent progress in our understanding of bumble bee ecophysiology, including advances related to thermal biology in light of global warming; nutritional biology in the context of declining food resources; and the capacity for bumble bees to exhibit physiological plasticity or adaptations to novel or extreme environments, with reference to their evolutionary history and current biogeography.
Collapse
Affiliation(s)
- S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|