1
|
Huang B, Chen A, Sun Y, He Q. The Role of Aging in Intracerebral Hemorrhage. Brain Sci 2024; 14:613. [PMID: 38928613 PMCID: PMC11201415 DOI: 10.3390/brainsci14060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is the cerebrovascular disease with the highest disability and mortality rates, causing severe damage to the health of patients and imposing a significant socioeconomic burden. Aging stands as a foremost risk factor for ICH, with a significant escalation in ICH incidence within the elderly demographic, highlighting a close association between ICH and aging. In recent years, with the acceleration of the "aging society" trend, exploring the intricate relationship between aging and ICH has become increasingly urgent and worthy of in-depth attention. We have summarized the characteristics of ICH in the elderly, reviewing how aging influences the onset and development of ICH by examining its etiology and the mechanisms of damage via ICH. Additionally, we explored the potential impacts of ICH on accelerated aging, including its effects on cognitive abilities, quality of life, and lifespan. This review aims to reveal the connection between aging and ICH, providing new ideas and insights for future ICH research.
Collapse
Affiliation(s)
| | | | | | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Ma Y, Hu X, Shen S, Pan D. Geniposide ameliorates brain injury in mice with intracerebral hemorrhage by inhibiting NF-κB signaling. Neurol Res 2024; 46:346-355. [PMID: 38402902 DOI: 10.1080/01616412.2024.2321014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Neuroinflammation and oxidative stress are critical players in intracerebral hemorrhage (ICH). Geniposide is an active component of Gardenia that has anti-inflammatory effects. This study focused on the roles and mechanisms of geniposide in ICH. METHODS ICH was established by injecting collagenase IV into C57BL/6 mice. To determine the functions of geniposide and NF-κB inhibition in ICH model mice, geniposide (1, 25, or 50 mg/kg) or PDTC (a NF-κB inhibitor) was administered. Neurological functions were assessed with the modified neurological severity score (mNSS) test. Hematoxylin and eosin staining were performed to identify pathological changes. IL-1β and TNF-α levels were estimated with ELISA kits. NF-κB p65 localization was determined by immunofluorescence staining. Oxidative stress was analyzed by measuring ROS levels. RESULTS Geniposide alleviated cerebral edema and neurological deficits. Geniposide inhibited neuroinflammation and oxidative stress after ICH, and the inhibitory effects were enhanced by NF-κB inhibition. Additionally, geniposide inhibited NF-κB signaling. CONCLUSION Geniposide alleviates brain injury by suppressing inflammation and oxidative stress damage in experimental ICH models by inhibiting NF-κB signaling.
Collapse
Affiliation(s)
- Yinghui Ma
- Department of Neurosurgery, Huang Shi Central Hospital, HuangShi, China
| | - Xiao Hu
- Department of Neurosurgery, Huang Shi Central Hospital, HuangShi, China
| | - Songbo Shen
- Department of Neurosurgery, Huang Shi Central Hospital, HuangShi, China
| | - Dongmei Pan
- Department of Geriatrics, Huang Shi Central Hospital, HuangShi, China
| |
Collapse
|
3
|
Ekkert A, Šliachtenko A, Utkus A, Jatužis D. Intracerebral Hemorrhage Genetics. Genes (Basel) 2022; 13:genes13071250. [PMID: 35886033 PMCID: PMC9322856 DOI: 10.3390/genes13071250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating type of stroke, frequently resulting in unfavorable functional outcomes. Up to 15% of stroke patients experience ICH and approximately half of those have a lethal outcome within a year. Considering the huge burden of ICH, timely prevention and optimized treatment strategies are particularly relevant. Nevertheless, ICH management options are quite limited, despite thorough research. More and more trials highlight the importance of the genetic component in the pathogenesis of ICH. Apart from distinct monogenic disorders of familial character, mostly occurring in younger subjects, there are numerous polygenic risk factors, such as hypertension, neurovascular inflammation, disorders of lipid metabolism and coagulation cascade, and small vessel disease. In this paper we describe gene-related ICH types and underlying mechanisms. We also briefly discuss the emerging treatment options and possible clinical relevance of the genetic findings in ICH management. Although existing data seems of more theoretical and scientific value so far, a growing body of evidence, combined with rapidly evolving experimental research, will probably serve clinicians in the future.
Collapse
Affiliation(s)
- Aleksandra Ekkert
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
- Correspondence:
| | | | - Algirdas Utkus
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| | - Dalius Jatužis
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| |
Collapse
|
4
|
Guo H, You M, Wu J, Chen A, Wan Y, Gu X, Tan S, Xu Y, He Q, Hu B. Genetics of Spontaneous Intracerebral Hemorrhage: Risk and Outcome. Front Neurosci 2022; 16:874962. [PMID: 35478846 PMCID: PMC9036087 DOI: 10.3389/fnins.2022.874962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a common fatal event without an effective therapy. Of note, some familial aggregation and inherited tendency is found in ICH and heritability estimates indicate that genetic variations contribute substantially to ICH risk and outcome. Thus, identification of genetic variants that affect the occurrence and outcome may be helpful for ICH prevention and therapy. There are several reviews summarizing numerous genetic variants associated with the occurrence of ICH before, but genetic variants contributing to location distribution and outcome have rarely been introduced. Here, we summarize the current knowledge of genetic variants and pay special attention to location distribution and outcome. So far, investigations have reveled variations in APOE, GPX1, CR1, ITGAV, PRKCH, and 12q21.1 are associated with lobar ICH (LICH), while ACE, COL4A2, 1q22, TIMP1, TIMP2, MMP2, MMP9, and TNF are associated with deep ICH (DICH). Moreover, variations in APOE, VWF, 17p12, HP, CFH, IL6ST, and COL4A1 are possible genetic contributors to ICH outcome. Furthermore, the prospects for ICH related genetic studies from the bench to the bed were discussed.
Collapse
Affiliation(s)
- Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinmei Gu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yating Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Genetic risk of Spontaneous intracerebral hemorrhage: Systematic review and future directions. J Neurol Sci 2019; 407:116526. [PMID: 31669726 DOI: 10.1016/j.jns.2019.116526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/18/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although highly heritable, few genes have been linked to spontaneous intracerebral hemorrhage (SICH), which does not currently have any evidence-based disease-modifying therapy. Individuals of African ancestry are especially susceptible to SICH, even more so for indigenous Africans. We systematically reviewed the genetic variants associated with SICH and examined opportunities for rapidly advancing SICH genomic research for precision medicine. METHOD We searched the National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-EBI) Genome Wide Association Study (GWAS) catalog and PubMed for original research articles on genetic variants associated with SICH as of 15 June 2019 using the PRISMA guideline. RESULTS Eight hundred and sixty-four articles were identified using pre-specified search criteria, of which 64 met the study inclusion criteria. Among eligible articles, only 9 utilized GWAS approach while the rest were candidate gene studies. Thirty-eight genetic loci were found to be variously associated with the risk of SICH, hematoma volume, functional outcome and mortality, out of which 8 were from GWAS including APOE, CR1, KCNK17, 1q22, CETP, STYK1, COL4A2 and 17p12. None of the studies included indigenous Africans. CONCLUSION Given this limited information on the genetic contributors to SICH, more genomic studies are needed to provide additional insights into the pathophysiology of SICH, and develop targeted preventive and therapeutic strategies. This call for additional investigation of the pathogenesis of SICH is likely to yield more discoveries in the unexplored indigenous African populations which also have a greater predilection.
Collapse
|
6
|
Montaner J, Ramiro L, Simats A, Hernández-Guillamon M, Delgado P, Bustamante A, Rosell A. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 2019; 76:3117-3140. [PMID: 31165904 PMCID: PMC11105215 DOI: 10.1007/s00018-019-03175-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. However, after years of in-depth research, the pathophysiology of stroke is still not fully understood. Increasing evidence shows that matrix metalloproteinases (MMPs) and "a disintegrin and metalloproteinase" (ADAMs) participate in the neuro-inflammatory cascade that is triggered during stroke but also in recovery phases of the disease. This review covers the involvement of these proteins in brain injury following cerebral ischemia which has been widely studied in recent years, with efforts to modulate this group of proteins in neuroprotective therapies, together with their implication in neurorepair mechanisms. Moreover, the review also discusses the role of these proteins in specific forms of neurovascular disease, such as small vessel diseases and intracerebral hemorrhage. Finally, the potential use of MMPs and ADAMs as guiding biomarkers of brain injury and repair for decision-making in cases of stroke is also discussed.
Collapse
Affiliation(s)
- Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
7
|
Habel AF, Ghali RM, Bouaziz H, Daldoul A, Hadj-Ahmed M, Mokrani A, Zaied S, Hechiche M, Rahal K, Yacoubi-Loueslati B, Almawi WY. Common matrix metalloproteinase-2 gene variants and altered susceptibility to breast cancer and associated features in Tunisian women. Tumour Biol 2019; 41:1010428319845749. [DOI: 10.1177/1010428319845749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A role for matrix metalloproteinase polymorphisms in breast cancer development and progression was proposed, but with inconclusive results. We assessed the relation of matrix metalloproteinase-2 variants with breast cancer and related phenotypes in Tunisians. This case-control retrospective study involved 430 women with breast cancer and 498 healthy controls. Genotyping of matrix metalloproteinase-2 rs243866, rs243865, rs243864, and rs2285053 was analyzed by allelic exclusion. The minor allele frequency of rs2285053 was significantly lower in women with breast cancer cases as compared to control women; minor allele frequencies of the remaining single-nucleotide polymorphisms were similar between cases and control women. The distribution of rs243865 and rs2285053 genotypes was significantly different between breast cancer patients and control subjects. This persisted when key covariates were controlled for. None of the matrix metalloproteinase-2 variants were associated with estrogen receptor positivity, progesterone receptor positivity, or with double estrogen receptor–progesterone receptor positivity in breast cancer patients. Matrix metalloproteinase-2 rs243866, rs243865, and rs243864 were positively associated with menstrual irregularity and histological type, while rs243866 and rs2285053 were negatively associated with menarche and nodal status. In addition, rs2285053 was negatively associated with triple negativity, tumor size, distance metastasis, molecular type, and chemotherapy. Haploview analysis revealed high linkage disequilibrium between matrix metalloproteinase-2 variants. Four-locus Haploview analysis identified haplotypes GCTT and GTTC to be negatively associated with breast cancer, which remained statistically after controlling for key covariates. Matrix metalloproteinase-2 alleles and genotypes, along with four-locus haplotypes, are related to reduced susceptibility to breast cancer in Tunisian women, suggesting a protective effect.
Collapse
Affiliation(s)
- Azza F Habel
- Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Rabeb M Ghali
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Hanen Bouaziz
- Department of Carcinological Surgery, Salah Azaiez Institute, Tunis, Tunisia
| | - Amira Daldoul
- Department of Clinical Oncology, CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Mariem Hadj-Ahmed
- Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Amina Mokrani
- Department of Medical Oncology, Salah Azaiez Institute, Tunis, Tunisia
| | - Sonia Zaied
- Department of Clinical Oncology, CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Monia Hechiche
- Department of Carcinological Surgery, Salah Azaiez Institute, Tunis, Tunisia
| | - Khaled Rahal
- Department of Carcinological Surgery, Salah Azaiez Institute, Tunis, Tunisia
| | - Besma Yacoubi-Loueslati
- Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Wassim Y Almawi
- Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
8
|
Chen B, Sun H, Zhao Y, Lun P, Feng Y. An 85-Gene Coexpression Module for Progression of Hypertension-Induced Spontaneous Intracerebral Hemorrhage. DNA Cell Biol 2019; 38:449-456. [PMID: 30839233 DOI: 10.1089/dna.2018.4425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) represents the most lethal form of stroke. We sought to identify potential genes that might contribute to progression of hypertension-induced spontaneous ICH (HIS-ICH). RNA-sequencing data set of cerebral vessel samples from HIS-ICH mice and normal mice was obtained from the Gene Expression Omnibus. Differential expression genes in HIS-ICH samples were obtained compared with normal samples followed by functional enrichment analysis. What is more, we explored the potential gene coexpression module (GCM) for HIS-ICH progression by using weighted gene coexpression network analysis. We further conducted protein-protein interaction network analysis for genes contained in GCM that was closely correlated with HIS-ICH to disclose their biological interactions. As a result, 554 genes were found to aberrantly express in HIS-ICH mice compared with normal mice, which were mainly associated with cancer-related pathways in addition to some well-known ICH-related pathways. A total of 28 GCMs were obtained, and darkturquoise module that contained 85 genes, which were closely associated with mitochondrion and hydrolase activity, was significantly correlated with HIS-ICH progression. Besides, we identified dense biological interactions among some genes in darkturquoise, such as Psma gene family and Hsp90a gene family. This study should shed new light on HIS-ICH progression and its treatment.
Collapse
Affiliation(s)
- Bing Chen
- 1 Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hu Sun
- 1 Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,2 Department of Neurosurgery, Zibo Central Hospital, Zibo, Shandong, China
| | - Yan Zhao
- 1 Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Lun
- 1 Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yugong Feng
- 1 Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Zhang X, Gu Y, Li P, Jiang A, Sheng X, Jin X, Shi Y, Li G. Matrix Metalloproteases-Mediated Cleavage on β-Dystroglycan May Play a Key Role in the Blood-Brain Barrier After Intracerebral Hemorrhage in Rats. Med Sci Monit 2019; 25:794-800. [PMID: 30686819 PMCID: PMC6362757 DOI: 10.12659/msm.908500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND It is well documented that the Blood-Brain barrier (BBB) can be damaged by matrix metalloproteases (MMPs) after intracerebral hemorrhage (ICH), but little is known about the mechanism of this effect. MATERIAL AND METHODS We established an ICH model in rats by injecting collagenase VII into the striatum. Afterwards, intraperitoneal injection of these rats with 40 mg/kg GM6001 (a MMPs inhibitor). The effects of GM6001 on ICH were investigated by neurological severity score, brain water content, Evans blue staining, hematoxylin-eosin staining, immunohistochemical staining, and Western blot assays. RESULTS We demonstrated that the neurological damage caused by ICH was relieved at 5 and 7 days following administration of GM6001. The impaired BBB induced by ICH was improved in response to GM6001 treatment at around 3 days, as evidenced by alleviated cerebral edema, decreased Evans blue extravasation, and a reduction in inflammatory cellular infiltration. Mechanism analysis revealed that ICH induced the generation of β-dystroglycan cleavage, which could be suppressed by GM6001 treatment. Furthermore, we found that recombinant MMP2 and MMP9 triggered the cleavage of β-dystroglycan in vitro, and this action could be inhibited by GM6001 administration. CONCLUSIONS Taken together, our results suggest that MMPs-mediated cleavage on β-dystroglycan may play an important role in BBB after ICH.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yunhe Gu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Peitong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Anqi Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Xiaomeng Sheng
- Department of Neurology, Harbin Fourth Hospital, Harbin, Heilongjiang, China (mainland)
| | - Xin Jin
- Department of Neurology, Jixi People's Hospital, Jixi, Heilongjiang, China (mainland)
| | - Yue Shi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
10
|
Chen YC, Chang KH, Chen CM. Genetic Polymorphisms Associated with Spontaneous Intracerebral Hemorrhage. Int J Mol Sci 2018; 19:ijms19123879. [PMID: 30518145 PMCID: PMC6321144 DOI: 10.3390/ijms19123879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 01/14/2023] Open
Abstract
Differences in the incidence of spontaneous intracerebral hemorrhage (ICH) between ethnicities exist, with an estimated 42% of the variance explained by ethnicity itself. Caucasians have a higher proportion of lobar ICH (LICH, 15.4% of all ICH) than do Asians (3.4%). Alterations in the causal factor exposure between countries justify part of the ethnic variance in ICH incidence. One third of ICH risk can be explained by genetic variation; therefore, genetic differences between populations can partly explain the difference in ICH incidence. In this paper, we review the current knowledge of genetic variants associated with ICH in multiple ethnicities. Candidate gene variants reportedly associated with ICH were involved in the potential pathways of hypertension, vessel wall integrity, lipid metabolism, endothelial dysfunction, inflammation, platelet function, and coagulopathy. Furthermore, variations in APOE (in multiple ethnicities), PMF1/SLC25A44 (in European), ACE (in Asian), MTHFR (in multiple ethnicities), TRHDE (in European), and COL4A2 (in European) were the most convincingly associated with ICH. The majority of the associated genes provide small contributions to ICH risk, with few of them being replicated in multiple ethnicities.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, No.5, Fuxing St., Guishan Township, Taoyuan County 333, Taiwan.
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, No.5, Fuxing St., Guishan Township, Taoyuan County 333, Taiwan.
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, No.5, Fuxing St., Guishan Township, Taoyuan County 333, Taiwan.
| |
Collapse
|
11
|
Tsuei YS, Chou YE, Chen WH, Luo CB, Yang SF. Polymorphism in dural arteriovenous fistula: matrix metalloproteinase-2-1306 C/T as a potential risk factor for sinus thrombosis. J Thromb Haemost 2018; 16:802-808. [PMID: 29431912 DOI: 10.1111/jth.13973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 11/28/2022]
Abstract
Essentials Sinus thrombosis may play a crucial role in development of dural arteriovenous fistula (DAVF). Little is known about the association between gene polymorphism and the development of DAVF. MMP-2-1306 C/T showed a higher prevalence rate in DAVF cases with sinus thrombosis. MMP-2-1306C/T polymorphism is likely a potential risk factor for sinus thrombosis in DAVF. SUMMARY Background Dural arteriovenous fistula (DAVF) is a rare but important cerebrovascular disorder in adults. Little is known about the molecular genetic pathogenesis underlying DAVF development. Objectives To investigate the associations of gene polymorphisms and DAVF. Materials and Methods By the use of real-time PCR genotyping, seven single-nucleotide polymorphisms (SNPs) of angiogenesis-related genes were analyzed in 72 DAVF patients. Pertinent clinical and imaging data were subgrouped on the basis of location (cavernous sinus versus lateral sinus), lesions (single versus multiple), cerebral venous reflux (CVR) grading (Borden I versus Borden II/III), and sinus thrombosis (with versus without). Results We found that individuals carrying the polymorphic allele of matrix metalloproteinase (MMP)-2-1306 C/T (rs243865) had a significantly increased risk of sinus thrombosis in DAVF (odds ratio 6.2; 95% confidence interval 1.7-22.9). There was a weak difference in associations of tissue inhibitor of metalloproteinase (TIMP)-2 (rs2277698) gene polymorphism and DAVF patients subgrouped by CVR grading. Conclusions These preliminary results indicate that MMP-2-1306 C/T, but not MMP-9, TIMP-1, TIMP-2, and vascular endothelial growth factor A SNP variants, is a risk factor for the development of sinus thrombosis in DAVF patients.
Collapse
Affiliation(s)
- Y-S Tsuei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Neurosurgery, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Y-E Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - W-H Chen
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - C-B Luo
- Institute of Biomedical Engineering, Yuanpei University, Hsinchu, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Radiology, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - S-F Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|