1
|
Foote MB, White JR, Chatila WK, Argiles G, Lu S, Rousseau B, Artz O, Johannet P, Walch H, Patel M, Lamendola-Essel MF, Casadevall D, Abdelfattah S, Patel S, Yaeger R, Cercek A, Montagut C, Berger M, Schultz N, Diaz LA. Analysis of Shared Variants between Cancer Biospecimens. Clin Cancer Res 2025; 31:376-386. [PMID: 39561276 PMCID: PMC11747808 DOI: 10.1158/1078-0432.ccr-24-1583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/14/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE Mutational data from multiple solid and liquid biospecimens of a single patient are often integrated to track cancer evolution. However, there is no accepted framework to resolve if individual samples from the same individual share variants due to common identity versus coincidence. EXPERIMENTAL DESIGN Utilizing 8,000 patient tumors from The Cancer Genome Atlas across 33 cancer types, we estimated the background rates of co-occurrence of mutations between discrete pairs of samples across cancers and by cancer type. We developed a mutational profile similarity (MPS) score that uses a large background database to produce confidence estimates that two tumors share a unique, related molecular profile. The MPS algorithm was applied to randomly paired tumor profiles, including patients who underwent repeat solid tumor biopsies sequenced with Memorial Sloan Kettering-IMPACT (n = 53,113). We also evaluated the MPS in sample pairs from single patients with multiple cancers (n = 2,012), as well as patients with plasma and solid tumor variant profiles (n = 884 patients). RESULTS In unrelated tumors, nucleotide-specific variants are shared in 1.3% (cancer-type agnostic) and in 10% to 13% (cancer-type specific) of cases. The MPS method contextualized shared variants to specify whether patients had a single cancer versus multiple distinct cancers. When multiple tumors were compared from the same patient and an initial clinicopathologic diagnosis was discordant with molecular findings, the MPS anticipated future diagnosis changes in 28% of examined cases. CONCLUSIONS The use of a novel shared variant framework can provide information to clarify the molecular relationship between compared biospecimens with minimal required input.
Collapse
Affiliation(s)
- Michael B Foote
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
| | - James Robert White
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
- Resphera Biosciences, Baltimore, MD 21231, USA
| | - Walid K. Chatila
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Guillem Argiles
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
| | - Steve Lu
- Department of Medicine, Memorial Sloan Kettering, New York, NY, 10065
| | - Benoit Rousseau
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
| | - Oliver Artz
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
| | - Paul Johannet
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
| | - Henry Walch
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Miteshkumar Patel
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
| | | | - David Casadevall
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Somer Abdelfattah
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
| | - Shrey Patel
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
| | - Rona Yaeger
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
| | - Andrea Cercek
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
| | - Clara Montagut
- Department of Medicine, Memorial Sloan Kettering, New York, NY, 10065
| | - Michael Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Luis A. Diaz
- Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, NY, 10065
| |
Collapse
|
2
|
Perea J, Corchete L, García JL, Urioste M, González-Sarmiento R. Commentary: Genomic Analysis Reveals Heterogeneity Between Lesions in Synchronous Primary Right-Sided and Left-Sided Colon Cancer. Front Mol Biosci 2022; 8:803707. [PMID: 35127822 PMCID: PMC8814572 DOI: 10.3389/fmolb.2021.803707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- José Perea
- Surgery Department, Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Fundación Jiménez Díaz Research Institute, Madrid, Spain
| | - Luis Corchete
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Center (CiC-IBMCC, CSIC/USAL), Center for Biomedical Research in Network of Cancer (CIBERONC), University Hospital of Salamanca, Salamanca, Spain
| | - Juan L. García
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Center (CiC-IBMCC, CSIC/USAL), Center for Biomedical Research in Network of Cancer (CIBERONC), University Hospital of Salamanca, Salamanca, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Biomedical Research Institute of Salamanca (IBSAL), Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-USAL-CSIC, Salamanca, Spain
| |
Collapse
|
3
|
Liu S, Nyström NN, Kelly JJ, Hamilton AM, Fu Y, Ronald JA. Molecular Imaging Reveals a High Degree of Cross-Seeding of Spontaneous Metastases in a Novel Mouse Model of Synchronous Bilateral Breast Cancer. Mol Imaging Biol 2021; 24:104-114. [PMID: 34312806 PMCID: PMC8760205 DOI: 10.1007/s11307-021-01630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
Purpose Synchronous bilateral breast cancer (SBBC) patients present with cancer in both breasts at the time of diagnosis or within a short time interval. They show higher rates of metastasis and lower overall survival compared to women with unilateral breast cancer. Here we established the first preclinical SBBC model and used molecular imaging to visualize the patterns of metastasis from each primary tumor. Procedures We engineered human breast cancer cells to express either Akaluc or Antares2 for bioluminescence imaging (BLI) and tdTomato or zsGreen for ex vivo fluorescence microscopy. Both cell populations were implanted into contralateral mammary fat pads of mice (n=10), and dual-BLI was performed weekly for up to day 29 (n=3), 38 (n=4), or 42 (n=3). Primary tumors and lungs were fixed, and ex vivo fluorescence microscopy was used to analyze the cellular makeup of micrometastases. Results Signal from both Antares2 and Akaluc was first detected in the lungs on day 28 and was present in 9 of 10 mice at endpoint. Ex vivo fluorescence microscopy of the lungs revealed that for mice sacrificed on day 38, a significant percentage of micrometastases were composed of cancer cells from both primary tumors (mean 37%; range 27 to 45%), while two mice sacrificed on day 42 showed percentages of 51% and 70%. Conclusions A high degree of metastatic cross-seeding of cancer cells derived from bilateral tumors may contribute to faster metastatic growth and intratumoral heterogeneity. We posit that our work will help understand treatment resistance and optimal planning of SBBC treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01630-z.
Collapse
Affiliation(s)
- Shirley Liu
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Nivin N Nyström
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John J Kelly
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Amanda M Hamilton
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Yanghao Fu
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John A Ronald
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
4
|
Girolimetti G, Marchio L, De Leo A, Mangiarelli M, Amato LB, Zanotti S, Taffurelli M, Santini D, Gasparre G, Ceccarelli C. Mitochondrial DNA analysis efficiently contributes to the identification of metastatic contralateral breast cancers. J Cancer Res Clin Oncol 2020; 147:507-516. [PMID: 33236215 PMCID: PMC7817585 DOI: 10.1007/s00432-020-03459-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023]
Abstract
Purpose In daily practice, a contralateral breast cancer (CBC) is usually considered as a new independent tumor despite the indications of several studies showing that the second neoplasia may be a metastatic spread of the primary tumor. Recognition of clonal masses in the context of multiple synchronous or metachronous tumors is crucial for correct prognosis, therapeutic choice, and patient management. Mitochondrial DNA (mtDNA) sequencing shows high informative potential in the diagnosis of synchronous neoplasms, based on the fact that somatic mtDNA mutations are non-recurrent events, whereas tumors sharing them have a common origin. We here applied this technique to reveal clonality of the CBC with respect to the first tumor. Methods We analyzed 30 sample pairs of primary breast cancers and synchronous or metachronous CBCs with detailed clinical information available and compared standard clinico-pathological criteria with mtDNA sequencing to reveal the metastatic nature of CBCs. Results MtDNA analysis was informative in 23% of the cases, for which it confirmed a clonal origin of the second tumor. In addition, it allowed to solve two ambiguous cases where histopathological criteria had failed to be conclusive and to suggest a clonal origin for two additional cases that had been classified as independent by pathologists. Conclusion Overall, the mtDNA-based classification showed a more accurate predictive power than standard histopathology in identifying cases of metastatic rather than bilateral breast cancers in our cohort, suggesting that mtDNA sequencing may be a more precise and easy-to-use method to be introduced in daily routine to support and improve histopathological diagnoses.
Collapse
Affiliation(s)
- Giulia Girolimetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, 40138, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, University of Bologna, 40138, Bologna, Italy.,Unit of Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University Hospital S.Orsola-Malpighi, Via G. Massarenti, 9, 40138, Bologna, BO, Italy
| | - Lorena Marchio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, 40138, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, University of Bologna, 40138, Bologna, Italy.,Unit of Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University Hospital S.Orsola-Malpighi, Via G. Massarenti, 9, 40138, Bologna, BO, Italy
| | - Antonio De Leo
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, University of Bologna, 40138, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Miriam Mangiarelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.,Unit of Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University Hospital S.Orsola-Malpighi, Via G. Massarenti, 9, 40138, Bologna, BO, Italy
| | - Laura Benedetta Amato
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, 40138, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, University of Bologna, 40138, Bologna, Italy.,Unit of Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University Hospital S.Orsola-Malpighi, Via G. Massarenti, 9, 40138, Bologna, BO, Italy
| | - Simone Zanotti
- Breast Unit, Department of Woman, Child and Urological Diseases, Sant'Orsola Hospital, University of Bologna, 40138, Bologna, Italy
| | - Mario Taffurelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.,Breast Unit, Department of Woman, Child and Urological Diseases, Sant'Orsola Hospital, University of Bologna, 40138, Bologna, Italy
| | - Donatella Santini
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, University of Bologna, 40138, Bologna, Italy.,Operative Unit of Pathology, Sant'Orsola Hospital, 40138, Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy. .,Center for Applied Biomedical Research (CRBA), University of Bologna, 40138, Bologna, Italy. .,Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, University of Bologna, 40138, Bologna, Italy. .,Unit of Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University Hospital S.Orsola-Malpighi, Via G. Massarenti, 9, 40138, Bologna, BO, Italy.
| | - Claudio Ceccarelli
- Centro di Studio e Ricerca sulle Neoplasie Ginecologiche, University of Bologna, 40138, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| |
Collapse
|
5
|
Nakamura K, Aimono E, Tanishima S, Imai M, Nagatsuma AK, Hayashi H, Yoshimura Y, Nakayama K, Kyo S, Nishihara H. Intratumoral Genomic Heterogeneity May Hinder Precision Medicine Strategies in Patients with Serous Ovarian Carcinoma. Diagnostics (Basel) 2020; 10:diagnostics10040200. [PMID: 32260152 PMCID: PMC7235797 DOI: 10.3390/diagnostics10040200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Precision medicine, which includes comprehensive genome sequencing, is a potential therapeutic option for treating high-grade serous carcinoma (HGSC). However, HGSC is a heterogeneous tumor at the architectural, cellular, and molecular levels. Intratumoral molecular heterogeneity currently limits the precision of medical strategies based on the gene mutation status. This study was carried out to analyze the presence of 160 cancer-related genetic alterations in three tissue regions with different pathological features in a patient with HGSC. The patient exhibited histological heterogeneous features with different degrees of large atypical cells and desmoplastic reactions. TP53 mutation, ERBB2 and KRAS amplification, and WT1, CDH1, and KDM6A loss were detected as actionable gene alterations. Interestingly, the ERBB2 and KRAS amplification status gradually changed according to the region examined. The difference was consistent with the differences in pathological features. Our results demonstrate the need for sampling of the appropriate tissue region showing progression of pathological features for molecular analysis to solve issues related to tumor heterogeneity prior to developing precision oncology strategies.
Collapse
Affiliation(s)
- Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan; (E.A.); (M.I.); (A.K.N.); (H.H.); (H.N.)
- Department of Obstetrics and Gynecology, Kumagaya General Hospital, Saitama 360-8657, Japan
- Correspondence: ; Tel.: +81-3-3353-1211; Fax: +81-3-5315-4374
| | - Eriko Aimono
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan; (E.A.); (M.I.); (A.K.N.); (H.H.); (H.N.)
| | - Shigeki Tanishima
- Department of Biomedical Informatics, Kansai Division, Mitsubishi Space Software Co., Ltd, Tokyo 661-0001, Japan;
| | - Mitsuho Imai
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan; (E.A.); (M.I.); (A.K.N.); (H.H.); (H.N.)
| | - Akiko Kawano Nagatsuma
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan; (E.A.); (M.I.); (A.K.N.); (H.H.); (H.N.)
| | - Hideyuki Hayashi
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan; (E.A.); (M.I.); (A.K.N.); (H.H.); (H.N.)
| | - Yuki Yoshimura
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Enyacho 89-1, Izumo 693-8501, Japan; (Y.Y.); (K.N.); (S.K.)
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Enyacho 89-1, Izumo 693-8501, Japan; (Y.Y.); (K.N.); (S.K.)
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Enyacho 89-1, Izumo 693-8501, Japan; (Y.Y.); (K.N.); (S.K.)
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan; (E.A.); (M.I.); (A.K.N.); (H.H.); (H.N.)
| |
Collapse
|
6
|
Ostrovnaya I, Mauguen A, Seshan VE, Begg CB. Testing tumors from different anatomic sites for clonal relatedness using somatic mutation data. Biometrics 2020; 77:283-292. [PMID: 32135575 DOI: 10.1111/biom.13256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/13/2019] [Accepted: 02/18/2020] [Indexed: 11/27/2022]
Abstract
A common task for the cancer pathologist is to determine, in a patient suffering from cancer, whether a new tumor in a distinct anatomic site from the primary is an independent occurrence of cancer or a metastasis. As mutational profiling of tumors becomes more widespread in routine clinical practice, this diagnostic task can be greatly enhanced by comparing mutational profiles of the tumors to determine if they are sufficiently similar to conclude that the tumors are clonally related, that is, one is a metastasis of the other. We present here a likelihood ratio test for clonal relatedness in this setting and provide evidence of its validity. The test is unusual in that there are two possible alternative hypotheses, representing the two anatomic sites from which the single clonal cell could have initially emerged. Although evidence for clonal relatedness is largely provided by the presence of exact mutational matches in the two tumors, we show that it is possible to observe data where the test is statistically significant even when no matches are observed. This can occur when the mutational profile of one of the tumors is closely aligned with the anatomic site of the other tumor, suggesting indirectly that the tumor originated in that other site. We exhibit examples of this phenomenon and recommend a strategy for interpreting the results of these tests in practice.
Collapse
Affiliation(s)
- Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Colin B Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
7
|
Genetic heterogeneity and evolutionary history of high-grade ovarian carcinoma and matched distant metastases. Br J Cancer 2020; 122:1219-1230. [PMID: 32099096 PMCID: PMC7156387 DOI: 10.1038/s41416-020-0763-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High-grade serous ovarian carcinoma (HGSOC) is the most frequent type of ovarian carcinoma, associated with poor clinical outcome and metastatic disease. Although metastatic processes are becoming more understandable, the genomic landscape and metastatic progression in HGSOC has not been elucidated. METHODS Multi-region whole-exome sequencing was performed on HGSOC primary tumours and their metastases (n = 33 tumour regions) from six patients. The resulting somatic variants were analysed to delineate tumour evolution and metastatic dissemination, and to compare the repertoire of events between primary HGSOC and metastasis. RESULTS All cases presented branching evolution patterns in primary HGSOC, with three cases further showing parallel evolution in which different mutations on separate branches of a phylogenetic tree converge on the same gene. Furthermore, linear metastatic progression was observed in 67% of cases with late dissemination, in which the metastatic tumour mostly acquires the same mutational process active in primary tumour, and parallel metastatic progression, with early dissemination in the remaining 33.3% of cases. Metastatic-specific SNVs were further confirmed as late dissemination events. We also found the involvement of metastatic-specific driver events in the Wnt/β-catenin pathway, and identified potential clinically actionable events in individual patients of the metastatic HGSOC cohort. CONCLUSIONS This study provides deeper insights into clonal evolution and mutational processes that can pave the way to new therapeutic targets.
Collapse
|
8
|
Imyanitov EN, Kuligina ES. Systemic investigations into the molecular features of bilateral breast cancer for diagnostic purposes. Expert Rev Mol Diagn 2019; 20:41-47. [PMID: 31835926 DOI: 10.1080/14737159.2020.1705157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Many breast cancer (BC) patients develop the disease bilaterally. The emergence of two tumors in the same host is unlikely to be a random co-incidence: bilateral BC (biBC) patients are enriched by women who are susceptible to this disease due to genetic or non-genetic factors.Areas covered: Data on molecular pathogenesis and translational aspects of biBC research are summarized.Expert opinion: Studies on concordant and discordant molecular events occurring in paired tumors resemble twin studies, as they help to reveal core components of BC pathogenesis and to analyze interactions between host factors and tumor phenotype. Mutation profiling of biBC pairs suggested that most biBCs are clonally independent malignancies, although some instances of presumably contralateral metastatic spread were shown as well. Many biBCs, especially synchronous ones, demonstrate the similarity of essential tumor characteristics, which can be explained by sharing of genetic background, hormonal milieu, metabolic environment, and external exposures. biBC is strongly associated with BC-predisposing germline mutations; therefore, clinical management of biBC patients must include comprehensive genetic testing. Some contralateral metachronous BCs demonstrate high-level microsatellite instability (MSI-H). MSI-H is sometimes observed in radiation- and chemotherapy-induced tumors; therefore, it is possible that some second BCs are causally related to the therapy applied for the first cancer. MSI-H tumors are responsive to immune checkpoint blockade; hence, MSI-H analysis is advisable for biBC molecular testing. Systematic cataloging of biBC molecular portraits is likely to provide valuable information on fundamental aspects of cancer pathogenesis.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumour Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.,Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia.,Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, Russia
| | - Ekatherina Sh Kuligina
- Department of Tumour Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| |
Collapse
|
9
|
Mauguen A, Seshan VE, Ostrovnaya I, Begg CB. An EM algorithm to improve the estimation of the probability of clonal relatedness of pairs of tumors in cancer patients. BMC Bioinformatics 2019; 20:555. [PMID: 31703552 PMCID: PMC6839069 DOI: 10.1186/s12859-019-3148-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/03/2019] [Indexed: 01/12/2023] Open
Abstract
Background We previously introduced a random-effects model to analyze a set of patients, each of which has two distinct tumors. The goal is to estimate the proportion of patients for which one of the tumors is a metastasis of the other, i.e. where the tumors are clonally related. Matches of mutations within a tumor pair provide the evidence for clonal relatedness. In this article, using simulations, we compare two estimation approaches that we considered for our model: use of a constrained quasi-Newton algorithm to maximize the likelihood conditional on the random effect, and an Expectation-Maximization algorithm where we further condition the random-effect distribution on the data. Results In some specific settings, especially with sparse information, the estimation of the parameter of interest is at the boundary a non-negligible number of times using the first approach, while the EM algorithm gives more satisfactory estimates. This is of considerable importance for our application, since an estimate of either 0 or 1 for the proportion of cases that are clonal leads to individual probabilities being 0 or 1 in settings where the evidence is clearly not sufficient for such definitive probability estimates. Conclusions The EM algorithm is a preferable approach for our clonality random-effect model. It is now the method implemented in our R package Clonality, making available an easy and fast way to estimate this model on a range of applications.
Collapse
Affiliation(s)
- Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Ave, 2nd floor, New York, NY, 10017, USA.
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Ave, 2nd floor, New York, NY, 10017, USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Ave, 2nd floor, New York, NY, 10017, USA
| | - Colin B Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Ave, 2nd floor, New York, NY, 10017, USA
| |
Collapse
|
10
|
Wang JJ, Huang YQ, Song W, Li YF, Wang H, Wang WJ, Huang M. Comprehensive analysis of the lncRNA‑associated competing endogenous RNA network in breast cancer. Oncol Rep 2019; 42:2572-2582. [PMID: 31638237 PMCID: PMC6826329 DOI: 10.3892/or.2019.7374] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed to be potential prognostic markers in a variety of cancers and to interact with microRNAs (miRNAs) as competing endogenous RNAs (ceRNAs) to regulate target gene expression. However, the role of lncRNA‑mediated ceRNAs in breast cancer (BC) remains unclear. In the present study, a ceRNA network was generated to explore their role in BC. The expression profiles of mRNAs, miRNAs and lncRNAs in 1,109 BC tissues and 113 normal breast tissues were obtained from The Cancer Genome Atlas database (TCGA). A total of 3,198 differentially expressed (DE) mRNAs, 150 differentially DEmiRNAs and 1,043 DElncRNAs were identified between BC and normal tissues. A lncRNA‑miRNA‑mRNA network associated with BC was successfully constructed based on the combined data obtained from RNA databases, and comprised 97 lncRNA nodes, 24 miRNA nodes and 74 mRNA nodes. The biological functions of the 74 DEmRNAs were further investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The results demonstrated that the DEmRNAs were significantly enriched in two GO biological process categories; the main biological process enriched term was 'positive regulation of GTPase activity'. By KEGG analysis, four key enriched pathways were obtained, including the 'MAPK signaling pathway', the 'Ras signaling pathway', 'prostate cancer', and the 'FoxO signaling pathway'. Kaplan‑Meier survival analysis revealed that six DElncRNAs (INC AC112721.1, LINC00536, MIR7‑3HG, ADAMTS9‑AS1, AL356479.1 and LINC00466), nine DEmRNAs (KPNA2, RACGAP1, SHCBP1, ZNF367, NTRK2, ORS1, PTGS2, RASGRP1 and SFRP1) and two DEmiRNAs (hsa‑miR‑301b and hsa‑miR‑204) had significant effects on overall survival in BC. The present results demonstrated the aberrant expression of INC AC112721.1, AL356479.1, LINC00466 and MIR7‑3HG in BC, indicating their potential prognostic role in patients with BC.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Yue-Qing Huang
- Department of General Practice, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Wei Song
- Department of Intervention and Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Yi-Fan Li
- Department of Oncology, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Han Wang
- Department of Oncology, Jining Cancer Hospital, Jining, Shandong 272000, P.R. China
| | - Wen-Jie Wang
- Department of Radio‑Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Min Huang
- Department of General Practice, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
11
|
Kim JK, Lee H, Oh JJ, Lee S, Hong SK, Lee SE, Byun SS. Synchronous Bilateral RCC Is Associated With Poor Recurrence-Free Survival Compared With Unilateral RCC: A Single-Center Study With Propensity Score Matching Analysis. Clin Genitourin Cancer 2019; 17:e570-e580. [PMID: 30922860 DOI: 10.1016/j.clgc.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Understanding the tumorigenesis of bilateral cancers occurring in paired organs is essential for treatment planning and follow-up strategies. To the best of our knowledge, only a few studies compared the survival outcomes in patients with unilateral and bilateral renal cell carcinoma (RCC). We aimed to evaluate the survival outcomes of these patients after surgery and perform a further comparison of synchronous and metachronous bilateral RCCs. MATERIALS AND METHODS We analyzed clinical data from a total of 2169 patients (98.0%) diagnosed with unilateral RCC and 44 patients (2.0%) diagnosed with bilateral RCC including 22 (50.0%) with synchronous (diagnosed concomitantly or within 3 months of the former tumor) and 22 (50.0%) with metachronous RCC at our institution. Comparative analysis of unilateral and bilateral RCC groups was conducted using propensity score matching analysis. Subgroup analysis of bilateral RCC including synchronous and metachronous RCCs was also performed. RESULTS Kaplan-Meier survival analysis showed a significantly decreased 5-year recurrence-free survival (RFS; 82.6% vs. 94.3%; log rank test, P = .045) in the bilateral RCC group compared with the unilateral group. In subgroup analysis, the metachronous RCC group showed significantly smaller mean pathologic tumor size (P = .011), and more favorable pathologic T stage (P = .036) compared with the synchronous RCC group. Kaplan-Meier survival analysis showed significantly decreased 5-year RFS in synchronous RCC compared with metachronous RCC (74.7% vs. 92.9%; log rank test, P = .028). CONCLUSION The bilateral RCC group showed significantly decreased 5-year RFS compared with the unilateral RCC group. Importantly, the synchronous RCC group manifested more adverse features than the metachronous group.
Collapse
Affiliation(s)
- Jung Kwon Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hakmin Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong Jin Oh
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang Eun Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
12
|
Begg CB, Ostrovnaya I, Geyer FC, Papanastasiou AD, Ng CKY, Sakr R, Bernstein JL, Burke KA, King TA, Piscuoglio S, Mauguen A, Orlow I, Weigelt B, Seshan VE, Morrow M, Reis-Filho JS. Contralateral breast cancers: Independent cancers or metastases? Int J Cancer 2018; 142:347-356. [PMID: 28921573 PMCID: PMC5749409 DOI: 10.1002/ijc.31051] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 12/24/2022]
Abstract
A cancer in the contralateral breast in a woman with a previous or synchronous breast cancer is typically considered to be an independent primary tumor. Emerging evidence suggests that in a small subset of these cases the second tumor represents a metastasis. We sought to investigate the issue using massively parallel sequencing targeting 254 genes recurrently mutated in breast cancer. We examined the tumor archives at Memorial Sloan Kettering Cancer Center for the period 1995-2006 to identify cases of contralateral breast cancer where surgery for both tumors was performed at the Center. We report results from 49 patients successfully analyzed by a targeted massively parallel sequencing assay. Somatic mutations and copy number alterations were defined by state-of-the-art algorithms. Clonal relatedness was evaluated by statistical tests specifically designed for this purpose. We found evidence that the tumors in contralateral breasts were clonally related in three cases (6%) on the basis of matching mutations at codons where somatic mutations are rare. Clinical data and the presence of similar patterns of gene copy number alterations were consistent with metastasis for all three cases. In three additional cases, there was a solitary matching mutation at a common PIK3CA locus. The results suggest that a subset of contralateral breast cancers represent metastases rather than independent primary tumors. Massively parallel sequencing analysis can provide important evidence to clarify the diagnosis. However, given the inter-tumor mutational heterogeneity in breast cancer, sufficiently large gene panels need to be employed to define clonality convincingly in all cases.
Collapse
Affiliation(s)
- Colin B Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anastasios D Papanastasiou
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Metaxa Cancer Hospital/University of Patras, Patras, Greece
| | - Charlotte KY Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute of Pathology, University Hospital Basel, Switzerland
| | - Rita Sakr
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathleen A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- IBM Watson Health, Cambridge, MA USA
| | - Tari A King
- Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston, MA USA
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute of Pathology, University Hospital Basel, Switzerland
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica Morrow
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
13
|
Dissecting Time- from Tumor-Related Gene Expression Variability in Bilateral Breast Cancer. Int J Mol Sci 2018; 19:ijms19010196. [PMID: 29315233 PMCID: PMC5796145 DOI: 10.3390/ijms19010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 01/05/2018] [Indexed: 12/04/2022] Open
Abstract
Metachronous (MBC) and synchronous bilateral breast tumors (SBC) are mostly distinct primaries, whereas paired primaries and their local recurrences (LRC) share a common origin. Intra-pair gene expression variability in MBC, SBC, and LRC derives from time/tumor microenvironment-related and tumor genetic background-related factors and pairs represents an ideal model for trying to dissect tumor-related from microenvironment-related variability. Pairs of tumors derived from women with SBC (n = 18), MBC (n = 11), and LRC (n = 10) undergoing local-regional treatment were profiled for gene expression; similarity between pairs was measured using an intraclass correlation coefficient (ICC) computed for each gene and compared using analysis of variance (ANOVA). When considering biologically unselected genes, the highest correlations were found for primaries and paired LRC, and the lowest for MBC pairs. By instead limiting the analysis to the breast cancer intrinsic genes, correlations between primaries and paired LRC were enhanced, while lower similarities were observed for SBC and MBC. Focusing on stromal-related genes, the ICC values decreased for MBC and were significantly different from SBC. These findings indicate that it is possible to dissect intra-pair gene expression variability into components that are associated with genetic origin or with time and microenvironment by using specific gene subsets.
Collapse
|
14
|
Rausch V, Krieg A, Camps J, Behrens B, Beier M, Wangsa D, Heselmeyer-Haddad K, Baldus SE, Knoefel WT, Ried T, Stoecklein NH. Array comparative genomic hybridization of 18 pancreatic ductal adenocarcinomas and their autologous metastases. BMC Res Notes 2017; 10:560. [PMID: 29110683 PMCID: PMC5674747 DOI: 10.1186/s13104-017-2886-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 10/31/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mortality rates of pancreatic cancer remain high, which is mainly due to advanced disease and metastasis. We hypothesized that genomic copy number alterations are enriched in metastatic cells compared to autologous primary tumors, which may inform on cancer-related pathways possibly serving as potential targets for specific therapies. We investigated 18 pancreatic ductal adenocarcinomas, including 39 lymph node and 5 distant metastases after surgical resection. Analysis was performed with array-based comparative genomic hybridization (aCGH). RESULTS Metastases acquire a higher frequency of copy number alterations with the highest in distant metastasis (median = 42, lymph node metastases: median = 23, primary tumors: median = 17). In lymph node metastases, gains were prevalent on chromosome bands 8q11.23-q24.3, 12q14.1, 17p12.1, 21q22.12, and losses on 3p21.31, 4p14, 8p23.3-p11.21,17p12-11.2. Genes on amplified regions are involved in cancer-related pathways such as WNT-signaling, also involved in metastasis. CONCLUSIONS Pancreatic cancers show a high degree of intratumor heterogeneity, which could lead to resistance of chemotherapy and worse outcome. ACGH analysis reveals regions preferentially gained or lost in synchronous metastases encoding for genes involved in cancer-related pathways, which could lead to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Valentin Rausch
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Andreas Krieg
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Jordi Camps
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
- Present Address: Gastrointestinal and Pancreatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Bianca Behrens
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Manfred Beier
- Institute of Human Genetics and Anthropology, Heinrich-Heine-University and University Hospital, Duesseldorf, Germany
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Kerstin Heselmeyer-Haddad
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Stephan E. Baldus
- Department of Pathology, Heinrich-Heine-University and University Hospital, Duesseldorf, Germany
| | - Wolfram T. Knoefel
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Thomas Ried
- Section of Cancer Genomics, Genetics Branch, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, MD USA
| | - Nikolas H. Stoecklein
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
15
|
Zeng JH, Liang L, He RQ, Tang RX, Cai XY, Chen JQ, Luo DZ, Chen G. Comprehensive investigation of a novel differentially expressed lncRNA expression profile signature to assess the survival of patients with colorectal adenocarcinoma. Oncotarget 2017; 8:16811-16828. [PMID: 28187432 PMCID: PMC5370003 DOI: 10.18632/oncotarget.15161] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
Growing evidence has shown that long non-coding RNAs (lncRNAs) can serve as prospective markers for survival in patients with colorectal adenocarcinoma. However, most studies have explored a limited number of lncRNAs in a small number of cases. The objective of this study is to identify a panel of lncRNA signature that could evaluate the prognosis in colorectal adenocarcinoma based on the data from The Cancer Genome Atlas (TCGA). Altogether, 371 colon adenocarcinoma (COAD) patients with complete clinical data were included in our study as the test cohort. A total of 578 differentially expressed lncRNAs (DELs) were observed, among which 20 lncRNAs closely related to overall survival (OS) in COAD patients were identified using a Cox proportional regression model. A risk score formula was developed to assess the prognostic value of the lncRNA signature in COAD with four lncRNAs (LINC01555, RP11-610P16.1, RP11-108K3.1 and LINC01207), which were identified to possess the most remarkable correlation with OS in COAD patients. COAD patients with a high-risk score had poorer OS than those with a low-risk score. The multivariate Cox regression analyses confirmed that the four-lncRNA signature could function as an independent prognostic indicator for COAD patients, which was largely mirrored in the validating cohort with rectal adenocarcinoma (READ) containing 158 cases. In addition, the correlative genes of LINC01555 and LINC01207 were enriched in the cAMP signaling and mucin type O-Glycan biosynthesis pathways. With further validation in the future, our study indicates that the four-lncRNA signature could serve as an independent biomarker for survival of colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Jiang-Hui Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West Branch), Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rui-Xue Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiao-Yong Cai
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West Branch), Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|