1
|
Singh P, Shaikh S, Gupta S, Gupta R. In-silico development of multi-epitope subunit vaccine against lymphatic filariasis. J Biomol Struct Dyn 2025; 43:3016-3030. [PMID: 38117103 DOI: 10.1080/07391102.2023.2294838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
The World Health Organization in 2022 reported that more than 863 million people in 50 countries are at risk of developing lymphatic filariasis (LF), a disease caused by parasitic infection. Immune responses to parasites suggest that the development of a prophylactic vaccine against LF is possible. Using a reverse vaccinology approach, the current study identified Trehalose-6-phosphatase (TPP) as a potential vaccine candidate among 15 reported vaccine antigens for B. malayi. High-ranking B and T-cell epitopes in the Trehalose-6-phosphatase (TPP) were shortlisted using online servers for subsequent analysis. We selected these peptides to construct a vaccine model using I-TASSER and GalaxyRefine server. The vaccine construct showed favorable physicochemical properties, high antigenicity, no allergenicity, no toxicity, and high stability. Structural validation using the Ramachandran plot showed that 98% of the residues were in favorable or mostly allowed regions. Molecular docking and simulation showed a strong binding affinity and stability of the subunit vaccine with toll-like receptor 4 (TLR4). Furthermore, the subunit vaccine showed a strong IgG/IgM response, with the disappearance of the antigen. We propose that our vaccine construct should be further evaluated using cellular and animal models to develop a vaccine that is safe and effective against LF.
Collapse
Affiliation(s)
- Pratik Singh
- Centre of Research for Development, Parul University, Vadodara, India
| | - Samir Shaikh
- Centre of Research for Development, Parul University, Vadodara, India
| | - Sakshi Gupta
- Centre of Research for Development, Parul University, Vadodara, India
| | - Reeshu Gupta
- Centre of Research for Development, Parul University, Vadodara, India
| |
Collapse
|
2
|
Goodarzi MM, Mosayebi G, Ganji A, Raoufi E, Sadelaji S, Babaei S, Abtahi H. HPV16 mutant E6/E7 construct is protective in mouse model. BMC Biotechnol 2024; 24:71. [PMID: 39350162 PMCID: PMC11443707 DOI: 10.1186/s12896-024-00893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Human papillomavirus type 16 (HPV-16) infection is strongly associated with considerable parts of cervical, neck, and head cancers. Performed investigations have had moderate clinical success, so research to reach an efficient vaccine has been of great interest. In the present study, the immunization potential of a newly designed HPV-16 construct was evaluated in a mouse model. RESULTS Initially, a construct containing HPV-16 mutant (m) E6/E7 fusion gene was designed and antigen produced in two platforms (i.e., DNA vaccine and recombinant protein). Subsequently, the immunogenicity of these platforms was investigated in five mice) C57BL/6 (groups based on several administration strategies. Three mice groups were immunized recombinant protein, DNA vaccine, and a combination of them, and two other groups were negative controls. The peripheral blood mononuclear cells (PBMCs) proliferation, Interleukin-5 (IL-5) and interferon-γ (IFN-γ) cytokines, IgG1 and IgG2a antibody levels were measured. After two weeks, TC-1 tumor cells were injected into all mice groups, and subsequently further analysis of tumor growth and metastasis and mice survival were performed according to the schedule. Overall, the results obtained from in vitro immunology and tumor cells challenging assays indicated the potential of the mE6/E7 construct as an HPV16 therapeutic vaccine candidate. The results demonstrated a significant increase in IFN-γ cytokine (P value < 0.05) in the Protein/Protein (D) and DNA/Protein (E) groups. This finding was in agreement with in vivo assays. Control groups show a 10.5-fold increase (P value < 0.001) and (C) DNA/DNA group shows a 2.5-fold increase (P value < 0.01) in tumor growth compared to D and E groups. Also, a significant increase in survival of D and E (P value < 0.001) and C (P value < 0.01) groups were observed. CONCLUSIONS So, according to the findings, the recombinant protein could induce stronger protection compared to the DNA vaccine form. Protein/Protein and DNA/Protein are promising administration strategies for presenting this construct to develop an HPV-16 therapeutic vaccine candidate.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ganji
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ehsan Raoufi
- Vaccine research center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sadelaji
- Department of Microbiology and Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Saeid Babaei
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
3
|
Lymphatic filariasis and visceral leishmaniasis coinfection: A review on their epidemiology, therapeutic, and immune responses. Acta Trop 2021; 224:106117. [PMID: 34464587 DOI: 10.1016/j.actatropica.2021.106117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Coinfection is less commonly observed in individuals around the world, yet it is more common than the single infection. Around 800 million people worldwide are infected with helminths as a result of various diseases. Lymphatic filariasis (LF) and visceral leishmaniasis (VL) are chronic, deadly, crippling, and debilitating neglected tropical diseases (NTDs) that are endemic in tropical and subtropical regions of the world. Due to poor hygienic conditions, poverty, and genetic predisposition, those living in endemic areas are more likely to develop both leishmaniasis and filariasis. One of the key challenges in the management of LF/VL coinfection is the development of an effective therapeutic strategy that not only treats the first episode of VL but also prevents LF. However, there is a scarcity of knowledge and data on the relationship between LF and VL coinfection. While reviewing it was apparent that only a few studies relevant to LF/VL coinfections have been reported from southeastern Spain, Sudan, and the Indian subcontinents, highlighting the need for greater research in the most affected areas. We also looked at LF and VL as a single disease and also as a coinfection. Some features of the immune response evolved in mammalian hosts against LF and VL alone or against coinfection are also discussed, including epidemiology, therapeutic regimens, and vaccines. In addition to being potentially useful in clinical research, our findings imply the need for improved diagnostic methodology and therapeutics, which could accelerate the deployment of more specific and effective diagnosis for treatments to lessen the impact of VL/LF coinfections in the population.
Collapse
|
4
|
Kwarteng A, Asiedu E, Koranteng KK, Asiedu SO. Highlighting the Relevance of CD8 + T Cells in Filarial Infections. Front Immunol 2021; 12:714052. [PMID: 34603287 PMCID: PMC8481813 DOI: 10.3389/fimmu.2021.714052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023] Open
Abstract
The T cell immune responses in filarial infections are primarily mediated by CD4+ T cells and type 2-associated cytokines. Emerging evidence indicates that CD8+ T cell responses are important for anti-filarial immunity, however, could be suppressed in co-infections. This review summarizes what we know so far about the activities of CD8+ T cell responses in filarial infections, co-infections, and the associations with the development of filarial pathologies.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Kelvin Kwaku Koranteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel Opoku Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
5
|
Safavi A, Kefayat A, Mahdevar E, Abiri A, Ghahremani F. Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine 2020; 38:7612-7628. [PMID: 33082015 PMCID: PMC7546226 DOI: 10.1016/j.vaccine.2020.10.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 causes a severe respiratory disease called COVID-19. Currently, global health is facing its devastating outbreak. However, there is no vaccine available against this virus up to now. In this study, a novel multi-epitope vaccine against SARS-CoV-2 was designed to provoke both innate and adaptive immune responses. The immunodominant regions of six non-structural proteins (nsp7, nsp8, nsp9, nsp10, nsp12 and nsp14) of SARS-CoV-2 were selected by multiple immunoinformatic tools to provoke T cell immune response. Also, immunodominant fragment of the functional region of SARS-CoV-2 spike (400-510 residues) protein was selected for inducing neutralizing antibodies production. The selected regions' sequences were connected to each other by furin-sensitive linker (RVRR). Moreover, the functional region of β-defensin as a well-known agonist for the TLR-4/MD complex was added at the N-terminus of the vaccine using (EAAAK)3 linker. Also, a CD4 + T-helper epitope, PADRE, was used at the C-terminal of the vaccine by GPGPG and A(EAAAK)2A linkers to form the final vaccine construct. The physicochemical properties, allergenicity, antigenicity, functionality and population coverage of the final vaccine construct were analyzed. The final vaccine construct was an immunogenic, non-allergen and unfunctional protein which contained multiple CD8 + and CD4 + overlapping epitopes, IFN-γ inducing epitopes, linear and conformational B cell epitopes. It could form stable and significant interactions with TLR-4/MD according to molecular docking and dynamics simulations. Global population coverage of the vaccine for HLA-I and II were estimated 96.2% and 97.1%, respectively. At last, the final vaccine construct was reverse translated to design the DNA vaccine. Although the designed vaccine exhibited high efficacy in silico, further experimental validation is necessary.
Collapse
Affiliation(s)
- Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Mahdevar
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, Arak School of Paramedicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
6
|
Buffoni L, Piva MM, Baska P, Januszkiewicz K, Norbury LJ, Prior KC, Dezen D, Silva AS, Wedrychowicz H, Mendes RE. Immunization with the recombinant myosin regulatory light chain (FhrMRLC) in Adjuplex® adjuvant elicits a Th1-biased immune response and a reduction of parasite burden in Fasciola hepatica infected rats. Parasitol Int 2019; 75:102037. [PMID: 31841659 DOI: 10.1016/j.parint.2019.102037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 01/22/2023]
Abstract
The aim of this study was to assess the immune response and the protective efficacy elicited by the vaccination with the recombinant Fasciola hepatica myosin regulatory light chain (FhrMRLC) in Adjuplex® adjuvant against the infection with F. hepatica in rats. Four groups of 15 animals each were used for the study, one group was immunized with the recombinant F. hepatica MRLC in Adjuplex® adjuvant and the other groups remained as adjuvant, positive and negative control groups. The parasitological study showed that a statistically significant reduction of 65.1% and 82.1% in fluke burden and fecal egg count, respectively, was detected in vaccinated animals. In addition, vaccination with FhrMRLC induced a well-defined humoral and cellular immune response characterized by a significant production of specific IgG and IL-2, IL-12, TNF-α and IFN-γ; which confirms the immunogenic capacity of the FhrMRLC.
Collapse
Affiliation(s)
- L Buffoni
- Department of Animal Health, Faculty of Veterinary, University of Cordoba, Campus de Rabanales, Ctra. Madrid-Cádiz km 376, 14014 Córdoba, Spain.
| | - M M Piva
- Laboratory of Veterinary Pathology, Federal Institute of Santa Catarina (IFC), Rod. SC 283, km 08, CP 58, Concórdia, SC 89703-720, Brazil
| | - P Baska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 8 Ciszewkiego, 02-786 Warsaw, Poland
| | - K Januszkiewicz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - L J Norbury
- School of Science, RMIT University, Bundoora 3083, Victoria, Australia
| | - K C Prior
- Laboratory of Veterinary Microbiology, Federal Institute of Santa Catarina (IFC), Rod. SC 283, km 08, CP 58, Concórdia, SC 89703-720, Brazil
| | - D Dezen
- Laboratory of Veterinary Microbiology, Federal Institute of Santa Catarina (IFC), Rod. SC 283, km 08, CP 58, Concórdia, SC 89703-720, Brazil
| | - A S Silva
- Department of Animal Science, Santa Catarina State University (UDESC), Sete de Setembro 77D, Chapecó, SC 89806-152, Brazil
| | - H Wedrychowicz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - R E Mendes
- Laboratory of Veterinary Pathology, Federal Institute of Santa Catarina (IFC), Rod. SC 283, km 08, CP 58, Concórdia, SC 89703-720, Brazil
| |
Collapse
|
7
|
CpG enhances the immunogenicity of heterologous DNA-prime/protein-boost vaccination with the heavy chain myosin of Brugia malayi in BALB/c mice. Parasitol Res 2019; 118:1943-1952. [PMID: 31069533 DOI: 10.1007/s00436-019-06318-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
The recombinant heavy chain myosin of Brugia malayi (Bm-Myo) has earlier been reported as a potent vaccine candidate in our lab. Subsequently, we further enhanced its efficacy employing heterologous DNA prime/protein boost (Myo-pcD+Bm-Myo) immunization approach that produced superior immune-protection than protein or DNA vaccination. In the present study, we evaluated the efficacy of heterologous prime boost vaccination in combination with CpG, synthetic oligodeoxynucleotides (ODN) adjuvant in BALB/c mice. The results showed that CpG/Myo-pcD+Bm-Myo conferred 84.5 ± 0.62% protection against B. malayi infective larval challenge which was considerably higher than Myo-pcD+Bm-Myo (75.6 ± 1.10%) following immunization. Although, both the formulations of immunization elicited robust production of specific IgG antibody and their isotypes (IgG1, IgG2a, IgG2b, and IgG3); however, CpG/Myo-pcD+Bm-Myo predominantly enhanced the level of IgG2a suggesting Th1 biased immune response in presence of CpG. Furthermore, spleen isolated from mice that immunized with CpG/Myo-pcD+Bm-Myo had greater accumulation of CD4+, CD8+, and CD19+ B cells and there was an augmented expression of co-stimulatory molecules CD40, CD86 on host dendritic cells (DCs). In contrast to Myo-pcD+Bm-Myo group, the splenocytes of CpG/Myo-pcD+Bm-Myo immunized mice developed comparatively higher pro-inflammatory cytokines IL-2 and IFN-γ leaving anti-inflammatory cytokine levels unchanged. Moreover, CpG formulation also upregulated the RNA expression of IL-12 and TNF-α in spleenocytes. The current findings suggest that the use of CpG would be more advantageous as an adjuvant predominantly in DNA/protein prime boost vaccine against Bm-Myo and presumably also for filarial infection.
Collapse
|
8
|
Kushwaha V, Tewari P, Mandal P, Tripathi A, Murthy PK. Troponin 1 of human filarial parasite Brugia malayi: cDNA cloning, expression, purification, and its immunoprophylactic potential. Parasitol Res 2019; 118:1849-1863. [PMID: 31055672 DOI: 10.1007/s00436-019-06316-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
In the search for immunoprophylactics for the control of human lymphatic filariasis, we recently identified troponin 1 (Tn1) in Brugia malayi adult worms. The present study reports the cloning and expression of the B. malayi Tn1 (Tn1bm), its immunoprophylactic efficacy against B. malayi infection, and the immunological responses of the host. The Tn1bm gene was cloned (Acc no. JF912447) and expressed, and the purified recombinant Tn1bm (rTn1bm) presented a single ~ 27 kDa band. Parasite load in rTn1bm-immunized BALB/c mice challenged with B. malayi infective larvae (L3) was assessed. In rTn1bm-immunized animals, IgE, IgG, and IgG subclasses in the serum, cell proliferative response, Th1 and Th2 cytokine secretion (from splenocytes), and NO release (from peritoneal macrophages) were determined. Antibody-dependent cell-mediated cytotoxicity (ADCC) to L3 was assayed using rTn1bm-immune serum. The innate immune response markers MHC class-I, MHC class-II, TLR2, TLR4, and TLR6 expression in peritoneal macrophages and CD3+, CD4+, CD8+, and CD19+ in the splenocyte population were determined in Tn1bm-exposed cells from naïve mice. rTn1bm-immunized L3-challenged animals showed a 60% reduction in parasite burden. Immunization upregulated cellular proliferation, cytokine (IFN-γ, TNF-α, IL-1β, IL-4, IL-6, and IL-10) secretion, NO release, and antigen-specific IgG, IgG1, and IgG2b antibody levels. rTn1bm-immune serum killed > 65% of L3 in the ADCC assay. Increased MHC class-II, TLR2, and TLR6 expression and the relative CD4+ and CD19+ cell populations of naïve animal cells indicated the ability of rTn1bm to mobilize innate immune responses. This is the first report of the immunoprophylactic potential of rTn1bm against B. malayi.
Collapse
Affiliation(s)
- Vikas Kushwaha
- Department of Zoology, University of Lucknow, University Road, Lucknow, Uttar Pradesh, 226007, India.,Postdoctoral Fellow, Zoology Department, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prachi Tewari
- Department of Zoology, University of Lucknow, University Road, Lucknow, Uttar Pradesh, 226007, India
| | - Payal Mandal
- Food Toxicology Lab, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Anurag Tripathi
- Food Toxicology Lab, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - P Kalpana Murthy
- Department of Zoology, University of Lucknow, University Road, Lucknow, Uttar Pradesh, 226007, India.
| |
Collapse
|
9
|
Gangwar M, Jha R, Goyal M, Srivastava M. Immunogenicity and protective efficacy of Recombinase A from Wolbachia endosymbiont of filarial nematode Brugia malayi (wBmRecA). Vaccine 2019; 37:571-580. [DOI: 10.1016/j.vaccine.2018.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/13/2018] [Indexed: 01/20/2023]
|
10
|
Stachyra A, Pietrzak M, Macioła A, Protasiuk A, Olszewska M, Śmietanka K, Minta Z, Góra-Sochacka A, Kopera E, Sirko A. A prime/boost vaccination with HA DNA and Pichia-produced HA protein elicits a strong humoral response in chickens against H5N1. Virus Res 2017; 232:41-47. [PMID: 28159612 DOI: 10.1016/j.virusres.2017.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/23/2017] [Accepted: 01/28/2017] [Indexed: 10/20/2022]
Abstract
Highly pathogenic avian influenza viruses cause severe disease and huge economic losses in domestic poultry and might pose a serious threat to people because of the high mortality rates in case of an accidental transmission to humans. The main goal of this work was to evaluate the immune responses and hemagglutination inhibition potential elicited by a combined DNA/recombinant protein prime/boost vaccination compared to DNA/DNA and protein/protein regimens in chickens. A plasmid encoding hemagglutinin (HA) from the A/swan/Poland/305-135V08/2006 (H5N1) virus, or the recombinant HA protein produced in Pichia pastoris system, both induced H5 HA-specific humoral immune responses in chickens. In two independent experiments, anti-HA antibodies were detected in sera collected two weeks after the first dose and the response was enhanced by the second dose of a vaccine, regardless of the type of subunit vaccine (DNA or recombinant protein) administered. The serum collected from chickens two weeks after the second dose was characterized by three types of assays: indirect ELISA, hemagglutination inhibition (HI) and a diagnostic test based on H5 antibody competition. Although the indirect ELISA failed to detect superiority of any of the three vaccine regimens, the other two tests clearly indicated that priming of chickens with the DNA vaccine significantly enhanced the protective potential of the recombinant protein vaccine produced in P. pastoris.
Collapse
Affiliation(s)
- Anna Stachyra
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Maria Pietrzak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Agnieszka Macioła
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Anna Protasiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Monika Olszewska
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Zenon Minta
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Edyta Kopera
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
11
|
Gupta J, Misra S, Misra-Bhattacharya S. Immunization with Brugia malayi Myosin as Heterologous DNA Prime Protein Boost Induces Protective Immunity against B. malayi Infection in Mastomys coucha. PLoS One 2016; 11:e0164991. [PMID: 27828973 PMCID: PMC5102438 DOI: 10.1371/journal.pone.0164991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
The current control strategies employing chemotherapy with diethylcarbamazine, ivermectin and albendazole have reduced transmission in some filaria-endemic areas, there is growing interest for complementary approaches, such as vaccines especially in light of threat of parasite developing resistance to mainstay drugs. We earlier demonstrated recombinant heavy chain myosin of B. malayi (Bm-Myo) as a potent vaccine candidate whose efficacy was enhanced by heterologous DNA prime/protein boost (Myo-pcD+Bm-Myo) vaccination in BALB/c mice. BALB/c mouse though does not support the full developmental cycle of B. malayi, however, the degree of protection may be studied in terms of transformation of challenged infective larvae (L3) to next stage (L4) with an ease of delineating the generated immunological response of host. In the current investigation, DNA vaccination with Bm-Myo was therefore undertaken in susceptible rodent host, Mastomys coucha (M. coucha) which sustains the challenged L3 and facilitates their further development to sexually mature adult parasites with patent microfilaraemia. Immunization schedule consisted of Myo-pcD and Myo-pcD+Bm-Myo followed by B. malayi L3 challenge and the degree of protection was evaluated by observing microfilaraemia as well as adult worm establishment. Myo-pcD+Bm-Myo immunized animals not only developed 78.5% reduced blood microfilarial density but also decreased adult worm establishment by 75.3%. In addition, 75.4% of the recovered live females revealed sterilization over those of respective control animals. Myo-pcD+Bm-Myo triggered higher production of specific IgG and its isotypes which induced marked cellular adhesion and cytotoxicity (ADCC) to microfilariae (mf) and L3 in vitro. Both Th1 and Th2 cytokines were significantly up-regulated displaying a mixed immune response conferring considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges as a potential vaccination method against LF.
Collapse
Affiliation(s)
- Jyoti Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sweta Misra
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Shailja Misra-Bhattacharya
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, India
- Academy of Scientific and Innovative Research, New Delhi, India
- * E-mail: ;
| |
Collapse
|