1
|
Gurdal M, Baysal K, Durak I, Selver OB. Limbal explant cultures on amniotic membrane: The effects of passaging the explants on cell phenotype. Exp Eye Res 2025; 255:110392. [PMID: 40250725 DOI: 10.1016/j.exer.2025.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
In vitro expansion of limbal epithelial stem cells (LESCs) while maintaining their characteristics has the potential to address the urgent need in ophthalmology clinics for the treatment of limbal stem cell deficiency (LSCD). Herein, we investigated the impact of explant passaging on the phenotype of LESCs cultured on human amniotic membrane (hAM). Following initial coverage of the hAM surface by cells (passage 0), the rabbit limbal explants underwent two additional passages. Expanded cells were then counted using a hemocytometer and examined by immunocytochemistry and RT-qPCR to assess markers associated with LESCs (ABCG2, P63, CK14, CXCR4, BMI-1, and vimentin) and differentiated LESCs (CK3 and connexin 43). The cell yield of passage 1 was the highest among all passages. Immunocytochemistry analysis revealed that the number of CK14-positive cells was similar across all passages; vimentin-positive cells were the lowest in passage 0, while vimentin-positive cells were the highest in passage 1; and CK3-positive cells were the highest in passage 0. RT-qPCR analysis revealed that CK3 and connexin 43 expression was significantly higher in passage 0 cells than in passage 2 cells; and CXCR4 and BMI-1 expressions were significantly higher in passage 1 cells than in passage 0 cells. Our data highlight that the passaging of limbal explant on hAM results in varying cell characteristics. The decrease in CK3 and increase in ABCG2 expression in cells obtained by passaging the limbal explant suggest that passaging could potentially enhance the stem cell population within the in vitro limbal explant culture on hAM.
Collapse
Affiliation(s)
- Mehmet Gurdal
- Dokuz Eylül University, Faculty of Medicine, Department of Medical Biochemistry, Izmir, Türkiye; Ege University, Faculty of Medicine, Ocular Surface Research Laboratory, Izmir, Türkiye; Limbustem R&D Medical Products Ltd., Ege University Technopark, Izmir, Türkiye.
| | - Kemal Baysal
- Dokuz Eylül University, Faculty of Medicine, Department of Medical Biochemistry, Izmir, Türkiye; Koc University, School of Medicine, Department of Biochemistry, Istanbul, Türkiye.
| | - Ismet Durak
- Dokuz Eylül University, Faculty of Medicine, Department of Ophthalmology, Izmir, Türkiye.
| | - Ozlem Barut Selver
- Ege University, Faculty of Medicine, Ocular Surface Research Laboratory, Izmir, Türkiye; Limbustem R&D Medical Products Ltd., Ege University Technopark, Izmir, Türkiye; Ege University, Faculty of Medicine, Department of Ophthalmology, Izmir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Ege University, Izmir, Türkiye; Institute of Health Sciences, Department of Stem Cell, Ege University, Izmir, Türkiye; Cord Blood Cell-Tissue Application and Research Center, Ege University, Izmir, Türkiye.
| |
Collapse
|
2
|
Bisevac J, Katta K, Petrovski G, Moe MC, Noer A. Wnt/β-Catenin Signaling Activation Induces Differentiation in Human Limbal Epithelial Stem Cells Cultured Ex Vivo. Biomedicines 2023; 11:1829. [PMID: 37509479 PMCID: PMC10377110 DOI: 10.3390/biomedicines11071829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Human limbal epithelial stem cells (hLESCs) continuously replenish lost or damaged human corneal epithelial cells. The percentage of stem/progenitor cells in autologous ex vivo expanded tissue is essential for the long-term success of transplantation in patients with limbal epithelial stem cell deficiency. However, the molecular processes governing the stemness and differentiation state of hLESCs remain uncertain. Therefore, we sought to explore the impact of canonical Wnt/β-catenin signaling activation on hLESCs by treating ex vivo expanded hLESC cultures with GSK-3 inhibitor LY2090314. Real-time qRT-PCR and microarray data reveal the downregulation of stemness (TP63), progenitor (SOX9), quiescence (CEBPD), and proliferation (MKI67, PCNA) genes and the upregulation of genes for differentiation (CX43, KRT3) in treated- compared to non-treated samples. The pathway activation was shown by AXIN2 upregulation and enhanced levels of accumulated β-catenin. Immunocytochemistry and Western blot confirmed the findings for most of the above-mentioned markers. The Wnt/β-catenin signaling profile demonstrated an upregulation of WNT1, WNT3, WNT5A, WNT6, and WNT11 gene expression and a downregulation for WNT7A and DKK1 in the treated samples. No significant differences were found for WNT2, WNT16B, WIF1, and DKK2 gene expression. Overall, our results demonstrate that activation of Wnt/β-catenin signaling in ex vivo expanded hLESCs governs the cells towards differentiation and reduces proliferation and stem cell maintenance capability.
Collapse
Affiliation(s)
- Jovana Bisevac
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Kirankumar Katta
- Department of Immunology, Oslo University Hospital, Hf Rikshospitalet, 0424 Oslo, Norway
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Morten Carstens Moe
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Agate Noer
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
3
|
A Novel Technique of Amniotic Membrane Preparation Mimicking Limbal Epithelial Crypts Enhances the Number of Progenitor Cells upon Expansion. Cells 2023; 12:cells12050738. [PMID: 36899873 PMCID: PMC10001367 DOI: 10.3390/cells12050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
We aimed to investigate whether a novel technique of human amniotic membrane (HAM) preparation that mimics the crypts in the limbus enhances the number of progenitor cells cultured ex vivo. The HAMs were sutured on polyester membrane (1) standardly, to obtain a flat HAM surface, or (2) loosely, achieving the radial folding to mimic crypts in the limbus. Immunohistochemistry was used to demonstrate a higher number of cells positive for progenitor markers p63α (37.56 ± 3.34% vs. 62.53 ± 3.32%, p = 0.01) and SOX9 (35.53 ± 0.96% vs. 43.23 ± 2.32%, p = 0.04), proliferation marker Ki-67 (8.43 ± 0.38 % vs. 22.38 ± 1.95 %, p = 0.002) in the crypt-like HAMs vs. flat HAMs, while no difference was found for the quiescence marker CEBPD (22.99 ± 2.96% vs. 30.49 ± 3.33 %, p = 0.17). Most of the cells stained negative for the corneal epithelial differentiation marker KRT3/12, and some were positive for N-cadherin in the crypt-like structures, but there was no difference in staining for E-cadherin and CX43 in crypt-like HAMs vs. flat HAMs. This novel HAM preparation method enhanced the number of progenitor cells expanded in the crypt-like HAM compared to cultures on the conventional flat HAM.
Collapse
|
4
|
Kafa G, Horani M, Musa F, Al-Husban A, Hegab M, Asir N. Marginal Corneal Infiltration Following Treatment for Metastatic Breast Cancer with Triple Chemotherapy of Trastuzumab, Pertuzumab & Docetaxel. Ocul Immunol Inflamm 2023; 31:431-436. [PMID: 35113748 DOI: 10.1080/09273948.2022.2027460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To report a case of bilateral marginal corneal infiltration upon treatment with trastuzumab, pertuzumab, and docetaxel via novel proposed mechanisms. CASE DESCRIPTION A patient, diagnosed with metastatic breast cancer and positive for human epidermal growth factor receptor 2 (HER2) with high Ki67, presented with bilateral severe marginal corneal infiltration upon undergoing first cycle of triple chemotherapy: trastuzumab, pertuzumab, and docetaxel. Treatment with topical corticosteroids and antibiotics was unsuccessful and was replaced by allogeneic serum eye drops (SED). The case improved significantly 10 days upon starting allogeneic SED. CONCLUSIONS We propose that trastuzumab, pertuzumab, and docetaxel suppress HER2 and Ki67 in the cornea and lacrimal gland. To the best of our knowledge, our report is the first to highlight the potential impact of this triple chemotherapy on the lacrimal gland and cornea and the first to highlight the proposed role of Ki67 suppression in damaging corneal integrity.
Collapse
Affiliation(s)
- Ghyath Kafa
- Rochdale Infirmary, Northern Care Alliance NHS Group, Manchester, UK
| | - Mania Horani
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Fayyaz Musa
- Rochdale Infirmary, Northern Care Alliance NHS Group, Manchester, UK
| | - Ahmad Al-Husban
- Rochdale Infirmary, Northern Care Alliance NHS Group, Manchester, UK
| | - Mohamed Hegab
- Rochdale Infirmary, Northern Care Alliance NHS Group, Manchester, UK
| | - Noor Asir
- Rochdale Infirmary, Northern Care Alliance NHS Group, Manchester, UK
| |
Collapse
|
5
|
Bains KK, Ashworth S, Koudouna E, Young RD, Hughes CE, Quantock AJ. Chondroitin Sulphate/Dermatan Sulphate Proteoglycans: Potential Regulators of Corneal Stem/Progenitor Cell Phenotype In Vitro. Int J Mol Sci 2023; 24:ijms24032095. [PMID: 36768414 PMCID: PMC9917298 DOI: 10.3390/ijms24032095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Chondroitin sulphate (CS) proteoglycans with variable sulphation-motifs along their glycosaminoglycan (GAG) chains are closely associated with the stem cell niche of articular cartilage, where they are believed to influence the characteristics of the resident stem cells. Here, we investigated the immunohistochemical distribution of hybrid CS/dermatan sulphate (DS) GAGs in the periphery of the adult chicken cornea, which is the location of the cornea's stem cell niche in a number of species, using a monoclonal antibody, 6C3, that recognises a sulphation motif-specific CS/DS GAG epitope. This revealed positive labelling that was restricted to the subepithelial corneal stroma, as well as nearby bony structures within the sclera, called ossicles. When cultivated on cell culture dishes coated with 6C3-rich CS/DS, corneal stromal cells (keratocytes) that had been isolated from embryonic chicken corneas formed circular colonies, which took several days to reach confluency. A flow cytometric analysis of these keratocytes revealed changes in their expression levels of the indicative stem cell markers, Connexin 43 (Cx43), Paired Box 6 (PAX6), B-lymphoma Moloney murine leukemia virus insertion region-1 (Bmi-1), and C-X-C Chemokine Receptor 4 (CXCR4) suggestive of a less-differentiated phenotype compared with expression levels in cells not exposed to CS/DS. These findings support the view that CS/DS promotes the retention of a stem cell phenotype in corneal cells, much as it has been proposed to do in other connective tissues.
Collapse
Affiliation(s)
- Kiranjit K. Bains
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Sean Ashworth
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Elena Koudouna
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Robert D. Young
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Clare E. Hughes
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Andrew J. Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- Correspondence:
| |
Collapse
|
6
|
Master A, Huang W, Huang L, Li W, Saglam S, Honkanen R, Rigas B. Simplified ex-vivo drug evaluation in ocular surface cells: Culture on cellulose filters of cells obtained by impression cytology. Exp Eye Res 2021; 213:108827. [PMID: 34742691 DOI: 10.1016/j.exer.2021.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Drug development, resource- and time-intensive, extensively employs cell-based assays to assess the efficacy and safety of candidate drugs. The widely used immortalized cell lines, experimentally convenient, have limited predictive value. In contrast, ex-vivo models more faithfully reproduce diseases but are technically challenging to establish. To address this need, we developed a simplified process for ex-vivo cell culture, demonstrating its feasibility in ocular surface cells. Conjunctival cells were harvested by impression cytology and grown on mixed cellulose ester membrane filters (MCFs). Human and rabbit conjunctival cells cultured on MCFs are 100% viable at 24 h, and 43% viable at 72 h. A gene expression study evaluating 84 genes involved in ocular inflammation demonstrated that ex-vivo culturing maintains intact the expression of two thirds of these genes in human cells. That these cells are suitable for the assessment of ocular drugs was demonstrated by studying the effect of phosphosulindac (PS), a small molecule under development for the treatment of dry eye disease, in both human and rabbit conjunctival cells. PS, for example, suppressed the expression of CXCL10, a cytokine participating in the pathogenesis of dry eye disease, in human and in rabbit conjunctival cells cultured ex-vivo by 32% and 70%, respectively. Conjunctival cells cultured ex-vivo can be transfected to evaluate mechanistic questions. We successfully transfected such cells with a plasmid expressing luciferase under the control of an IFN-γ-responsive promoter or its control plasmid. IFN-γ stimulated luciferase expression by 85% in cells with the responsive plasmid but not in controls; PS significantly suppressed this induction by 37% without affecting the control plasmid. These findings demonstrate that human and rabbit conjunctival cells cultured ex-vivo with our method are viable and maintain their biological integrity; respond to biological and pharmacological agents; and are transfectable with informative plasmids. The unique advantage of this method is to potentially accelerate the development of novel drugs for the treatment of ocular surface diseases, and to advance our understanding of ocular surface pathophysiology.
Collapse
Affiliation(s)
- Adam Master
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Wei Huang
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY, 11794, USA; Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liqun Huang
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY, 11794, USA; Medicon Pharmaceuticals, Inc., Setauket, NY, 11733, USA; Apis Therapeutics LLC, Setauket, NY, 11733, USA
| | - Wenyi Li
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sait Saglam
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Robert Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Basil Rigas
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY, 11794, USA; Department of Ophthalmology, Stony Brook University, Stony Brook, NY, 11794, USA; Medicon Pharmaceuticals, Inc., Setauket, NY, 11733, USA; Apis Therapeutics LLC, Setauket, NY, 11733, USA.
| |
Collapse
|
7
|
Amit C, Padmanabhan P, Narayanan J. Deciphering the mechanoresponsive role of β-catenin in keratoconus epithelium. Sci Rep 2020; 10:21382. [PMID: 33288782 PMCID: PMC7721701 DOI: 10.1038/s41598-020-77138-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
Keratoconus (KC) is a corneal dystrophy characterized by progressive ectasia that leads to severe visual impairment and remains one of the leading indications for corneal transplantation. The etiology is believed to be multifactorial and alterations have been documented in the biomechanical, biochemical and ultrastructural characteristics of the cornea. While the exact site of disease origin is still debated, changes in the corneal epithelium are believed to occur even before the disease is clinically manifested. In this study we investigate the possible role of β-catenin as mechanotransducer in KC corneal epithelium. The sheets of corneal epithelium removed from keratoconic eyes when they underwent collagen crosslinking as a therapeutic procedure were used for this study. The healthy corneal epithelium of patients undergoing Laser Refractive Surgery for the correction of their refractive error, served as controls. Immunoblotting and tissue immunofluorescence studies were performed on KC epithelium to analyse the expression and localization of β-catenin, E-cadherin, ZO1, α-catenin, Cyclin D1, α-actinin, RhoA, and Rac123. Co-immunoprecipitation of β-catenin followed by mass spectrometry of KC epithelium was performed to identify its interacting partners. This was further validated by using epithelial tissues grown on scaffolds of different stiffness. Histology data reported breaks in the Bowman’s layer in KC patients. We hypothesize that these breaks expose the epithelium to the keratoconic corneal stroma, which, is known to have a decreased elastic modulus and that β-catenin acts as a mechanotransducer that induces structural changes such as loss of polarity (Syntaxin3) and barrier function (ZO1) through membrane delocalization. The results of our study strongly suggest that β-catenin could be a putative mechanotransducer in KC epithelium, thus supporting our hypothesis.
Collapse
Affiliation(s)
- Chatterjee Amit
- Department of Nanobiotechnology, KNBIRVO Block, Vision Research Foundation, Sankara Nethralaya, 18/41, College Road Nungambakkam, Chennai, Tamil Nadu, India.,School of Chemical and Biotechnology, SASTRA, Deemed University, Tanjore, Tamil Nadu, India
| | - Prema Padmanabhan
- Department of Cornea, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Janakiraman Narayanan
- Department of Nanobiotechnology, KNBIRVO Block, Vision Research Foundation, Sankara Nethralaya, 18/41, College Road Nungambakkam, Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Hancox Z, Heidari Keshel S, Yousaf S, Saeinasab M, Shahbazi MA, Sefat F. The progress in corneal translational medicine. Biomater Sci 2020; 8:6469-6504. [PMID: 33174878 DOI: 10.1039/d0bm01209b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cornea tissue is in high demand by tissue donation centres globally, and thus tissue engineering cornea, which is the main topic of corneal translational medicine, can serve as a limitless alternative to a donated human cornea tissue. Tissue engineering aims to produce solutions to the challenges associated with conventional cornea tissue, including transplantation and use of human amniotic membrane (HAM), which have issues with storage and immune rejection in patients. Accordingly, by carefully selecting biomaterials and fabrication methods to produce these therapeutic tissues, the demand for cornea tissue can be met, with an improved healing outcome for recipients with less associated harmful risks. In this review paper, we aim to present the recent advancements in the research and clinical applications of cornea tissue, applications including biomaterial selection, fabrication methods, scaffold structure, cellular response to these scaffolds, and future advancements of these techniques.
Collapse
Affiliation(s)
- Zoe Hancox
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Isolation and Culture of Corneal Stromal Stem Cells. Methods Mol Biol 2020. [PMID: 32542596 DOI: 10.1007/978-1-0716-0599-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
An increasing body of evidence authenticates the benefit of corneal stroma-derived stem cells (CSSCs) in tissue engineering and regeneration oriented research, and potentially in the development of clinically relevant cellular therapies. Postmortem corneal tissue obtained from otherwise discarded material after keratoplasties is oftentimes the source of the cells for ex vivo research. Relatively easy to isolate and cultivate as well as inexpensive to culture, CSSCs now represent a well-described cell type with attributes of mesenchymal stem cells (MSCs). These include differentiation- and immunosuppressive potential, as well as a favorable capacity to expand in vitro. Here, we in detail describe two straightforward methods to isolate and establish CSSC cultures ex vivo.
Collapse
|
10
|
Adipose-derived stem cells undergo differentiation after co-culture with porcine limbal epithelial stem cells. Stem Cell Res 2019; 41:101609. [PMID: 31706096 DOI: 10.1016/j.scr.2019.101609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are objects of interest in regenerative medicine. They are used for various therapies such as for the regeneration of bone, chondrocytes and other tissues. Adipose derived stem cells (ADSCs) inter alia are particularly easy to access, they are relatively abundant in fat tissue. ADSCs could be differentiated into many types of cells. To date, it has been proven that ADSCs only differentiate into mesodermal cell lineages. In this study, we present the differentiation of ADSCs into the corneal epithelium. Human ADSCs were placed in a co-culture with porcine limbal epithelial stem cells (LESCs). After 14 days of cultivation, total RNA was extracted for the analysis of the molecular markers (expression of genes of interest). The gene expression was assessed by real-time RT-qPCR. The expression of the surface molecular markers of ADSCs is modulated after co-culturing. We have observed the decrease in CD73, CD90 and CD105 mRNA expression, while the expression of mRNA coding for CK3 and CK12 mRNA was increased in ADSCs co-cultured with porcine limbal epithelial stem cells as compared to the control. We conclude that the co-culture of LESCs and ADSCs changed ADSCs' molecular markers gene expression indicating initiation of differentiation towards limbal cells.
Collapse
|
11
|
Haderspeck JC, Chuchuy J, Kustermann S, Liebau S, Loskill P. Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling. Expert Opin Drug Discov 2018; 14:47-57. [DOI: 10.1080/17460441.2019.1551873] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jasmin C. Haderspeck
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Johanna Chuchuy
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Stefan Kustermann
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
12
|
Lorenzo Y, Haug Berg K, Ringvold A, Petrovski G, Moe MC, Collins A, Nicolaissen B. Levels of oxidative DNA damage are low in ex vivo engineered human limbal epithelial tissue. Acta Ophthalmol 2018; 96:834-840. [PMID: 30239138 PMCID: PMC6667899 DOI: 10.1111/aos.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 04/05/2018] [Indexed: 11/21/2022]
Abstract
PURPOSE To examine levels of oxidative DNA base damage and expression of selected genes and proteins related to DNA damage repair in human limbal epithelium engineered ex vivo. METHODS Cells were expanded from limbal tissue on cell culture-treated inserts in medium containing fetal bovine serum, recombinant growth factors, hormones and cholera toxin (COM) and in medium with human serum as the single growth-promoting additive (HS). Cells were analysed after two, three and four weeks in culture for DNA strand breaks and oxidized purine bases (Comet assay using the enzyme formamidopyrimidine DNA glycosylase, Fpg) and for expression of DNA repair enzymes APE1, OGG1 and Polβ by in situ hybridization (ISH) and by immunohistochemistry (IHC). RESULTS Levels of strand breaks were substantial while levels of net Fpg-sensitive sites (8-oxoguanine and ring-opened FaPy bases) were relatively low in cells engineered in COM and in HS. Both types of medium were found to support expression of base excision repair (BER) enzymes APE1, OGG1 and Polβ at the gene level. At the protein level, expression of APE1 and OGG1 was noticeable in both conditions while expression of Polβ was low. CONCLUSION Our findings indicate low levels of oxidative stress and/or efficient DNA purine base damage repair in human limbal epithelium engineered in a medium with human serum as the single growth-promoting additive as well as in traditional medium with xenobiotics.
Collapse
Affiliation(s)
- Yolanda Lorenzo
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
| | - Kristiane Haug Berg
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
| | - Amund Ringvold
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Goran Petrovski
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Morten C. Moe
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Andrew Collins
- Department of NutritionInstitute for Basic Medical SciencesUniversity of OsloOsloNorway
| | - Bjørn Nicolaissen
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| |
Collapse
|
13
|
Jung B, Hong S, Kim SC, Hwang C. In Vivo Observation of Endothelial Cell-Assisted Vascularization in Pancreatic Cancer Xenograft Engineering. Tissue Eng Regen Med 2018; 15:275-285. [PMID: 30603553 PMCID: PMC6171679 DOI: 10.1007/s13770-018-0113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, for better understanding of patient-derived xenograft (PDX) generation, angiogenic characteristics during PDX cancerous tissue generation was investigated with different initial cell seeding conditions in the hydrogel. We monitored the angiogenic changes during the formation of in vivo cancer cell line xenografts induced by endothelial cells. Our in vivo cancer tissue formation system was designed with the assistance of tissue engineering technology to mimic patient-derived xenograft formation. Endothelial cells and MIA PaCa-2 pancreatic carcinoma cells were encapsulated in fibrin gel at different mixing configurations and subcutaneously implanted into nude mice. To investigate the effect of the initial cancerous cell distribution in the fibrin gel, MIA PaCa-2 cells were encapsulated as a homogeneous cell distribution or as a cell aggregate, with endothelial cells homogeneously distributed in the fibrin gel. Histological observation of the explanted tissues after different implantation periods revealed three different stages: isolated vascular tubes, leaky blood vessels, and mature cancerous tissue formation. The in vivo engineered cancerous tissues had leaky blood vessels with low expression of the vascular tight junction marker CD31. Under our experimental conditions, complex cancer-like tissue formation was most successful when tumorous cells and endothelial cells were homogeneously mixed in the fibrin gel. The present study implies that tumorous xenograft tissue formation can be achieved with a low number of initial cells and that effective vascularization conditions can be attained with a limited volume of patient-derived cancer tissue. Endothelial cell-assisted vascularization can be a potent choice for the effective development of vascularized cancerous tissues for studying patient-derived xenografts, cancer angiogenesis, cancer metastasis, and anticancer drugs.
Collapse
Affiliation(s)
- Boyoung Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
- University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| | - Soyoung Hong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| | - Song Cheol Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
- University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| |
Collapse
|
14
|
Comparison of culture media indicates a role for autologous serum in enhancing phenotypic preservation of rabbit limbal stem cells in explant culture. Cytotechnology 2017; 70:687-700. [PMID: 29204944 DOI: 10.1007/s10616-017-0171-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/11/2017] [Indexed: 02/08/2023] Open
Abstract
In this study, we aimed to compare the effects of six different cell culture media and autologous serum (AS) on the phenotypic characteristics of rabbit limbal epithelial stem cells (LESC) cultivated on porous polyethylene terephthalate (PET) membranes. Limbal explants from rabbit corneas were grown on PET membrane inserts in five different media: DMEM-F12 with fetal bovine serum (FBS) (DMEM-F12-FBS), with pluripotin (DMEM-F12-pluripotin) and with autologous serum (DMEM-F12-AS), Epilife, Keratinocyte Serum Free Medium (KSFM) and Defined-Keratinocyte Serum Free Medium. The effects of different media were evaluated by total cell yield from explants, measuring the expression of proteins by immunofluorescence and gene expression by Real Time PCR. In all five media tested, most of the limbal epithelial cells (LEC) which proliferated from explants were positive for cytokeratin (CK) 14 (85-90%), indicating that all five media support the growth of LESC from explants. The expression of differentiation markers; CK 3 and 12 was highest in DMEM-F12-FBS (56%), was lower in Epilife and KSFM (26 and 19%, respectively), with the lowest values (13%) obtained in DMEM-F12-AS. Gene expression of limbal cultures on PET membrane inserts was compared to fresh limbal tissue. In DMEM-F12-FBS, DMEM-F12-pluripotin, and DMEM-F12-AS, expression of potential LESC markers CXCR4 and polycomb complex protein BMI-1 were similar to limbal tissue. DMEM-F12 with 10% AS maintained a higher percentage of potential stem cell marker genes and lower expression of genes involved in differentiation compared to Epilife or KSFM. Our study shows that rabbit LEC can be cultivated on PET inserts using DMEM-F12 with autologous serum without a requirement for amniotic membrane or feeder cells.
Collapse
|
15
|
Shirzadeh E, Heidari Keshel S, Ezzatizadeh V, Jabbehdari S, Baradaran-Rafii A. Unrestricted somatic stem cells, as a novel feeder layer: Ex vivo culture of human limbal stem cells. J Cell Biochem 2017; 119:2666-2678. [PMID: 29087592 DOI: 10.1002/jcb.26434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022]
Abstract
Ex vivo culture of limbal stem cells (LSCs) is a current promising approach for reconstruction of the ocular surface. In this context, 3T3 feeder layer cells (mouse embryo fibroblast) are generally utilized to maintain and expand LSCs. The aim of this study is to develop a novel culture method (animal-derived products free) to expand LSCs, using umbilical cord derived human unrestricted somatic stem cells (hUSSCs) instead of 3T3 cell with an emphasis on maintaining of the Stemness in LSCs. Using flow-cytometer, isolated hUSSCs were characterized for CD105, CD90, CD166, CD34, CD45, CD31 cell surface markers and their differentiation capability into adipogenic as well as osteogenic lineages were evaluated. In addition to colony-forming efficiency (CFE), epithelial lineage differentiation and karyotyping, LSC properties were evaluated for ABCG2, ΔNP63-α, CK19, CK3, and CK12 mRNA and protein expressions using quantitative RT-PCR (qRT-PCR) and immunocytochemistry, when these cells were co-cultured with hUSSCs (in comparison with 3T3 feeder layer). LSCs, co-cultured with hUSSCs, showed normal karyotype (46, XX), while they could efficiently form colony (86 ± 3) and display up-regulation of the genes associated with stemness and down-regulation of corneal epithelial differentiation genes. Consistent with 3T3 feeder cells, hUSSCs with spindle-shaped morphology and quick splitting up properties had ability to preserve the stem like-cell phenotype of LSCs. These findings were confirmed by qRT-PCR and flow-cytometer. Findings of present study suggest hUSSCs as a promising alternative method for 3T3 feeder layer cells, to preserve growth and stemness of LSCs ex vivo culture.
Collapse
Affiliation(s)
- Ebrahim Shirzadeh
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran.,Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Ezzatizadeh
- Department of Stem Cell and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Medical Genetics Department, Royesh Medical Laboratory Centre, Tehran, Iran
| | - Sayena Jabbehdari
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran
| |
Collapse
|
16
|
Josifovska N, Szabó DJ, Nagymihály R, Veréb Z, Facskó A, Eriksen K, Moe MC, Petrovski G. Cultivation and characterization of pterygium as an ex vivo study model for disease and therapy. Cont Lens Anterior Eye 2017; 40:283-292. [PMID: 28550976 DOI: 10.1016/j.clae.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/30/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Development of ex vivo model to study pathogenesis, inflammation and treatment modalities for pterygium. METHODS Pterygium obtained from surgery was cultivated (3 months). Gravitational attachment method using viscoelastic facilitated adherence of graft and outgrowing cells. Medium contained serum as the only growth supplement with no use of scaffolds. Surface profiling of the multi-layered cells for hematopoietic- and mesenchymal stem cell markers was performed. Examination of cells by immunohistochemistry using pluripotency, oxidative stress, stemness, migration and proliferation, epithelial and secretory markers was performed. The effect of anti-proliferative agent Mitomycin C upon secretion of pro-inflammatory cytokines IL-6 and IL-8 was assessed. RESULTS Cells showed high expression of migration- (CXCR4), secretory- (MUC1, MUC4) and oxidative damage- (8-OHdG) markers, and low expression of hypoxia- (HIF-1α) and proliferation- (Ki-67) markers. Moderate and low expression of the pluripotency markers (Vimentin and ΔNp63) was present, respectively, while the putative markers of stemness (Sox2, Oct4, ABCG-2) and epithelial cell markers- (CK19, CK8-18) were weak. The surface marker profile of the outgrowing cells revealed high expression of the hematopoietic marker CD47, mesenchymal markers CD90 and CD73, minor or less positivity for the hematopoietic marker CD34, mesenchymal marker CD105, progenitor marker CD117 and attachment protein markers while low levels of IL-6 and IL-8 secretion ex vivo, were inhibited upon Mitomycin C treatment. CONCLUSION Ex vivo tissue engineered pterygium consists of a mixture of cells of different lineage origin, suitable for use as a disease model for studying pathogenesis ex vivo, while opening possibilities for new treatment and prevention modalities.
Collapse
Affiliation(s)
- Natasha Josifovska
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Koranyi Fasor 10-11, 6720 Szeged, Hungary
| | - Dóra Júlia Szabó
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Koranyi Fasor 10-11, 6720 Szeged, Hungary
| | - Richárd Nagymihály
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Koranyi Fasor 10-11, 6720 Szeged, Hungary
| | - Zoltán Veréb
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Koranyi Fasor 10-11, 6720 Szeged, Hungary
| | - Andrea Facskó
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Koranyi Fasor 10-11, 6720 Szeged, Hungary
| | - Ketil Eriksen
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Kirkeveien 166, N-0407 Oslo, Norway
| | - Morten C Moe
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Kirkeveien 166, N-0407 Oslo, Norway
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Koranyi Fasor 10-11, 6720 Szeged, Hungary; Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Kirkeveien 166, N-0407 Oslo, Norway.
| |
Collapse
|
17
|
Parekh M, Ahmad S, Ruzza A, Ferrari S. Human Corneal Endothelial Cell Cultivation From Old Donor Corneas With Forced Attachment. Sci Rep 2017; 7:142. [PMID: 28273942 PMCID: PMC5428054 DOI: 10.1038/s41598-017-00209-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/14/2017] [Indexed: 02/05/2023] Open
Abstract
Human corneal endothelial cells (HCEnCs) are responsible for maintaining the transparency of the cornea. Damaged or diseased HCEnCs may cause blindness. Replacement of the diseased cells with a healthy donor endothelium is the only currently available treatment. Tissue-engineering can serve as an alternative to conventional donor corneal transplantation. Due to the global shortage of donor corneas, a wide interest in the development of cultured graft substitutes and artificial corneas has increased. Availability of the old donor corneas is higher especially for research. Although it can be proposed as a valuable source for cell culture, its less proliferative capability emerges a challenge for the researchers. This article describes the use of hyaluronic acid (HA) in combination with Rho-kinase inhibitor (ROCK) Y-27632 for the cultivation of HCEnCs from older donor corneas (age > 60 years). Four conditions including and excluding HA + ROCK and its effect on early attachment rates and proliferation was studied on forty-eight corneas. It was observed that HCEnCs reach confluence within 10–15 days when cultured with HA + ROCK. This approach improves the efficiency of cell adhesion due to force attachment. HCEnCs from old donor corneas can be cultured using this method which may further lead to cell-based therapy for treating corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Mohit Parekh
- International Center for Ocular Physiopathology, The Veneto Eye Bank Foundation, Venice, Italy. .,Department of Molecular Medicine, School of Biomedicine, University of Padova, Padova, Italy.
| | - Sajjad Ahmad
- Moorfields eye hospital, London, UK.,Institute of Ophthalmology, University College London, London, UK
| | - Alessandro Ruzza
- International Center for Ocular Physiopathology, The Veneto Eye Bank Foundation, Venice, Italy
| | - Stefano Ferrari
- International Center for Ocular Physiopathology, The Veneto Eye Bank Foundation, Venice, Italy
| |
Collapse
|
18
|
Lužnik Z, Hawlina M, Maličev E, Bertolin M, Kopitar AN, Ihan A, Ferrari S, Schollmayer P. Effect of Cryopreserved Amniotic Membrane Orientation on the Expression of Limbal Mesenchymal and Epithelial Stem Cell Markers in Prolonged Limbal Explant Cultures. PLoS One 2016; 11:e0164408. [PMID: 27723792 PMCID: PMC5056676 DOI: 10.1371/journal.pone.0164408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To evaluate the effect of prolonged limbal explants cultured without any scaffolds or on amniotic membrane (AM) on the viability, proliferation and differentiation potential of putative phenotypically defined cultured limbal mesenchymal (LMSC) and epithelial stem cells (LESC). METHODS Limbal explants were cultivated on cryopreserved intact AM or plastic plates using medium supplemented with only human serum. AM was positioned with either the epithelial or stromal side up. The outgrowing cells were immunophenotyped for the co-expression of mesenchymal stem cell markers (CD73/CD90/CD105 positive and CD45 negative), proliferation and putative progenitor markers (CXCR4, CD117), epithelial markers and antigen presenting cell markers (CD80, CD83, CD86) by flow cytometry. Immunohistochemistry on limbal cultures cultivated on AM was carried out with antibodies against pan-cytokeratin, p63, Ki67. RESULTS Morphological and immunostaining analyses revealed two distinct stem cell population types, which could be identified over prolonged culturing time periods. Expression of LMSC markers and CXCR4 was significantly higher (p < 0.05) in cultures cultivated without AM. However, no statistically significant difference was observed in CD117 expression. The cells cultivated on AM retained an epithelial cell structure, which was further confirmed by histology examination. Histology revealed limbal epithelial growth and p63, Ki67 positive cells on both sides of AM. CONCLUSION Limbal cells cultivated on AM exhibited a lower expression profile of LMSC and CXCR4 markers as limbal cells cultivated on plastic culture plates. However, CD117 expression was similar. Histology confirmed limbal epithelial cell growth on both sides of AM, with no morphological differences, or positivity of cells for p63 and Ki67.
Collapse
Affiliation(s)
- Zala Lužnik
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Elvira Maličev
- Blood Transfusion Centre of Slovenia, Ljubljana. Slovenia
| | - Marina Bertolin
- The Veneto Eye Bank Foundation (Fondazione Banca degli Occhi del Veneto), Zelarino-Venice, Italy
| | - Andreja Nataša Kopitar
- Medical Faculty Ljubljana, Institute of Microbiology and Immunology, Ljubljana, Slovenia
| | - Alojz Ihan
- Medical Faculty Ljubljana, Institute of Microbiology and Immunology, Ljubljana, Slovenia
| | - Stefano Ferrari
- The Veneto Eye Bank Foundation (Fondazione Banca degli Occhi del Veneto), Zelarino-Venice, Italy
| | | |
Collapse
|
19
|
Pathak M, Olstad OK, Drolsum L, Moe MC, Smorodinova N, Kalasova S, Jirsova K, Nicolaissen B, Noer A. The effect of culture medium and carrier on explant culture of human limbal epithelium: A comparison of ultrastructure, keratin profile and gene expression. Exp Eye Res 2016; 153:122-132. [PMID: 27702552 DOI: 10.1016/j.exer.2016.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023]
Abstract
Patients with limbal stem cell deficiency (LSCD) often experience pain and photophobia due to recurrent epithelial defects and chronic inflammation of the cornea. Successfully restoring a healthy corneal surface in these patients by transplantation of ex vivo expanded human limbal epithelial cells (LECs) may alleviate these symptoms and significantly improve their quality of life. The clinical outcome of transplantation is known to be influenced by the quality of transplanted cells. Presently, several different protocols for cultivation and transplantation of LECs are in use. However, no consensus on an optimal protocol exists. The aim of this study was to examine the effect of culture medium and carrier on the morphology, staining of selected keratins and global gene expression in ex vivo cultured LECs. Limbal biopsies from cadaveric donors were cultured for three weeks on human amniotic membrane (HAM) or on tissue culture coated plastic (PL) in either a complex medium (COM), containing recombinant growth factors, hormones, cholera toxin and fetal bovine serum, or in medium supplemented only with human serum (HS). The expanded LECs were examined by light microscopy (LM), transmission electron microscopy (TEM), immunohistochemistry (IHC) for keratins K3, K7, K8, K12, K13, K14, K15 and K19, as well as microarray and qRT-PCR analysis. The cultured LECs exhibited similar morphology and keratin staining on LM, TEM and IHC examination, regardless of the culture condition. The epithelium was multilayered, with cuboidal basal cells and flattened superficial cells. Cells were attached to each other by desmosomes. Adhesion complexes were observed between basal cells and the underlying carrier in LECs cultured on HAM, but not in LECs cultured on PL. GeneChip Human Gene 2.0 ST microarray (Affymetrix) analysis revealed that 18,653 transcripts were ≥2 fold up or downregulated (p ≤ 0.05). Cells cultured in the same medium (COM or HS) showed more similarities in gene expression than cells cultured on the same carrier (HAM or PL). When each condition was compared to HAM/COM, no statistical difference was found in the transcription level of the selected genes associated with keratin expression, stemness, proliferation, differentiation, apoptosis, corneal wound healing or autophagy. In conclusion, the results indicate that ex vivo cultures of LECs on HAM and PL, using culture media supplemented with COM or HS, yield tissues with similar morphology and keratin staining. The gene expression appears to be more similar in cells cultured in the same medium (COM or HS) compared to cells cultured on the same carrier (HAM or PL).
Collapse
Affiliation(s)
- Meeta Pathak
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål, Oslo, Norway; University of Oslo, Oslo, Norway.
| | - O K Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Liv Drolsum
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Morten C Moe
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Natalia Smorodinova
- Institute of Histology and Embryology, Charles University in Prague, First Faculty of Medicine, Czech Republic
| | - Sarka Kalasova
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, General Teaching Hospital, Charles University, Prague, Czech Republic
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, General Teaching Hospital, Charles University, Prague, Czech Republic
| | - Bjørn Nicolaissen
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Agate Noer
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
20
|
Jia G, Wang X, Yan M, Chen W, Zhang P. CD166-mediated epidermal growth factor receptor phosphorylation promotes the growth of oral squamous cell carcinoma. Oral Oncol 2016; 59:1-11. [DOI: 10.1016/j.oraloncology.2016.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
|