1
|
Runel G, Lopez-Ramirez N, Barbollat-Boutrand L, Cario M, Durand S, Grimont M, Schartl M, Dalle S, Caramel J, Chlasta J, Masse I. Cancer Cell Biomechanical Properties Accompany Tspan8-Dependent Cutaneous Melanoma Invasion. Cancers (Basel) 2024; 16:694. [PMID: 38398085 PMCID: PMC10887418 DOI: 10.3390/cancers16040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The intrinsic biomechanical properties of cancer cells remain poorly understood. To decipher whether cell stiffness modulation could increase melanoma cells' invasive capacity, we performed both in vitro and in vivo experiments exploring cell stiffness by atomic force microscopy (AFM). We correlated stiffness properties with cell morphology adaptation and the molecular mechanisms underlying epithelial-to-mesenchymal (EMT)-like phenotype switching. We found that melanoma cell stiffness reduction was systematically associated with the acquisition of invasive properties in cutaneous melanoma cell lines, human skin reconstructs, and Medaka fish developing spontaneous MAP-kinase-induced melanomas. We observed a systematic correlation of stiffness modulation with cell morphological changes towards mesenchymal characteristic gains. We accordingly found that inducing melanoma EMT switching by overexpressing the ZEB1 transcription factor, a major regulator of melanoma cell plasticity, was sufficient to decrease cell stiffness and transcriptionally induce tetraspanin-8-mediated dermal invasion. Moreover, ZEB1 expression correlated with Tspan8 expression in patient melanoma lesions. Our data suggest that intrinsic cell stiffness could be a highly relevant marker for human cutaneous melanoma development.
Collapse
Affiliation(s)
- Gaël Runel
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
- BioMeca, 60F, Bioserra 2, Av. Rockefeller, 69008 Lyon, France
| | - Noémie Lopez-Ramirez
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| | - Laetitia Barbollat-Boutrand
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| | - Muriel Cario
- National Reference Center for Rare Skin Disease, Department of Dermatology, University Hospital, INSERM 1035, 33000 Bordeaux, France
- AquiDerm, University Bordeaux, 33076 Bordeaux, France
| | - Simon Durand
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| | - Maxime Grimont
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| | - Manfred Schartl
- Developmental Biochemistry, University of Würzburg, 97074 Würzburg, Germany
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | - Stéphane Dalle
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
- Dermatology Department, Hôpital Universitaire Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Julie Caramel
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| | - Julien Chlasta
- BioMeca, 60F, Bioserra 2, Av. Rockefeller, 69008 Lyon, France
| | - Ingrid Masse
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| |
Collapse
|
2
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
3
|
Helmprobst F, Kneitz S, Klotz B, Naville M, Dechaud C, Volff JN, Schartl M. Differential expression of transposable elements in the medaka melanoma model. PLoS One 2021; 16:e0251713. [PMID: 34705830 PMCID: PMC8550402 DOI: 10.1371/journal.pone.0251713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma incidence is rising worldwide. Its treatment in an advanced state is difficult, and the prognosis of this severe disease is still very poor. One major source of these difficulties is the high rate of metastasis and increased genomic instability leading to a high mutation rate and the development of resistance against therapeutic approaches. Here we investigate as one source of genomic instability the contribution of activation of transposable elements (TEs) within the tumor. We used the well-established medaka melanoma model and RNA-sequencing to investigate the differential expression of TEs in wildtype and transgenic fish carrying melanoma. We constructed a medaka-specific TE sequence library and identified TE sequences that were specifically upregulated in tumors. Validation by qRT- PCR confirmed a specific upregulation of a LINE and an LTR element in malignant melanomas of transgenic fish.
Collapse
Affiliation(s)
- Frederik Helmprobst
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
- Department of Neuropathology, Philipps-University Marburg, Marburg, Germany
- * E-mail: (FH); (MS)
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Barbara Klotz
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, United States of America
- Developmental Biochemistry, University of Würzburg, Würzburg, Germany
- * E-mail: (FH); (MS)
| |
Collapse
|
4
|
Nicolaï MPJ, D'Alba L, Goldenberg J, Gansemans Y, Van Nieuwerburgh F, Clusella-Trullas S, Shawkey MD. Untangling the structural and molecular mechanisms underlying colour and rapid colour change in a lizard, Agama atra. Mol Ecol 2021; 30:2262-2284. [PMID: 33772941 DOI: 10.1111/mec.15901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
With functions as diverse as communication, protection and thermoregulation, coloration is one of the most important traits in lizards. The ability to change colour as a function of varying social and environmental conditions is thus an important innovation. While colour change is present in animals ranging from squids, to fish and reptiles, not much is known about the mechanisms behind it. Traditionally, colour change was attributed to migration of pigments, in particular melanin. More recent work has shown that the changes in nanostructural configuration inside iridophores are able to produce a wide palette of colours. However, the genetic mechanisms underlying colour, and colour change in particular, remain unstudied. Here we use a combination of transcriptomic and microscopic data to show that melanin, iridophores and pteridines are the main colour-producing mechanisms in Agama atra, and provide molecular and structural data suggesting that rapid colour change is achieved via melanin dispersal in combination with iridophore organization. This work demonstrates the power of combining genotypic (gene expression) and phenotypic (microscopy) information for addressing physiological questions, providing a basis for future studies of colour change.
Collapse
Affiliation(s)
- Michaël P J Nicolaï
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| | - Liliana D'Alba
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| | - Jonathan Goldenberg
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Susana Clusella-Trullas
- Department of Botany and Zoology & Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| |
Collapse
|
5
|
Molecular assessment and transcriptome profiling of wild fish populations of Oryzias mekongensis and O. songkhramensis (Adrianichthyidae: Beloniformes) from Thailand. PLoS One 2020; 15:e0242382. [PMID: 33211755 PMCID: PMC7676673 DOI: 10.1371/journal.pone.0242382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/01/2020] [Indexed: 11/19/2022] Open
Abstract
Among the fish of the genus Oryzias, two species are frequently used as model animals in biological research. In Thailand, Oryzias mekongensis is usually found in natural freshwater near the Mekong Basin in the northeast region, while O. songkhramensis inhabits the Songkhram Basin. For differential morphological identification, the coloured bands on the dorsal and ventral margins of the caudal fin are used to distinguish O. mekongensis from O. songkhramensis. However, these characteristics are insufficient to justify species differentiation, and little molecular evidence is available to supplement them. This study aimed to investigate the molecular population and transcriptome profiles of adult O. mekongensis and O. songkhramensis. In the molecular tree based on cytochrome b sequences, O. mekongensis exhibited four clades that were clearly distinguished from O. songkhramensis. Clade 1 of the O. mekongensis population was close to the Mekong River and lived in the eastern portion of the upper northeast region. Clade 2 was far from the Mekong River and inhabited the middle region of the Songkhram River. Clade 3 was positioned to the west of the Songkhram River, and clade 4 was to the south of the Songkhram River Basin. After RNA sequencing using an Illumina HiSeq 2500 platform, the gene category annotations hardly differentiated the species and were discussed in the text. Based on the present findings, population dispersal of these Oryzias species might be associated with geographic variations of the upper northeast region. Molecular genetics and transcriptome profiling might advance our understanding of the evolution of teleost fish.
Collapse
|
6
|
Runel G, Cario M, Lopez‐Ramirez N, Malbouyres M, Ruggiero F, Bernard L, Puisieux A, Caramel J, Chlasta J, Masse I. Stiffness measurement is a biomarker of skin ageing in vivo. Exp Dermatol 2020; 29:1233-1237. [DOI: 10.1111/exd.14195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Gaël Runel
- Centre de Recherche en Cancérologie de Lyon CNRS UMR5286 Inserm U1052 Université Lyon 1 Université de Lyon Lyon France
- BioMeca Lyon France
| | - Muriel Cario
- Inserm 1035 University of Bordeaux Bordeaux France
| | - Noémie Lopez‐Ramirez
- Centre de Recherche en Cancérologie de Lyon CNRS UMR5286 Inserm U1052 Université Lyon 1 Université de Lyon Lyon France
| | - Marilyne Malbouyres
- ENS de Lyon, CNRS Université Lyon 1 Institut de Génomique Fonctionnelle de Lyon UMR 5242 Université Lyon Lyon Cedex 07 France
| | - Florence Ruggiero
- ENS de Lyon, CNRS Université Lyon 1 Institut de Génomique Fonctionnelle de Lyon UMR 5242 Université Lyon Lyon Cedex 07 France
| | - Laure Bernard
- ENS de Lyon, CNRS Université Lyon 1 Institut de Génomique Fonctionnelle de Lyon UMR 5242 Université Lyon Lyon Cedex 07 France
- SFR Biosciences, ENS de Lyon Inserm US8 CNRS UMS3444 Univ Lyon Lyon France
| | - Alain Puisieux
- Centre de Recherche en Cancérologie de Lyon CNRS UMR5286 Inserm U1052 Université Lyon 1 Université de Lyon Lyon France
| | - Julie Caramel
- Centre de Recherche en Cancérologie de Lyon CNRS UMR5286 Inserm U1052 Université Lyon 1 Université de Lyon Lyon France
| | | | - Ingrid Masse
- Centre de Recherche en Cancérologie de Lyon CNRS UMR5286 Inserm U1052 Université Lyon 1 Université de Lyon Lyon France
| |
Collapse
|
7
|
Expression Signatures of Cisplatin- and Trametinib-Treated Early-Stage Medaka Melanomas. G3-GENES GENOMES GENETICS 2019; 9:2267-2276. [PMID: 31101653 PMCID: PMC6643878 DOI: 10.1534/g3.119.400051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small aquarium fish models provide useful systems not only for a better understanding of the molecular basis of many human diseases, but also for first-line screening to identify new drug candidates. For testing new chemical substances, current strategies mostly rely on easy to perform and efficient embryonic screens. Cancer, however, is a disease that develops mainly during juvenile and adult stage. Long-term treatment and the challenge to monitor changes in tumor phenotype make testing of large chemical libraries in juvenile and adult animals cost prohibitive. We hypothesized that changes in the gene expression profile should occur early during anti-tumor treatment, and the disease-associated transcriptional change should provide a reliable readout that can be utilized to evaluate drug-induced effects. For the current study, we used a previously established medaka melanoma model. As proof of principle, we showed that exposure of melanoma developing fish to the drugs cisplatin or trametinib, known cancer therapies, for a period of seven days is sufficient to detect treatment-induced changes in gene expression. By examining whole body transcriptome responses we provide a novel route toward gene panels that recapitulate anti-tumor outcomes thus allowing a screening of thousands of drugs using a whole-body vertebrate model. Our results suggest that using disease-associated transcriptional change to screen therapeutic molecules in small fish model is viable and may be applied to pre-clinical research and development stages in new drug discovery.
Collapse
|
8
|
Lu Y, Boswell W, Boswell M, Klotz B, Kneitz S, Regneri J, Savage M, Mendoza C, Postlethwait J, Warren WC, Schartl M, Walter RB. Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model. Sci Rep 2019; 9:530. [PMID: 30679619 PMCID: PMC6345854 DOI: 10.1038/s41598-018-36656-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Cell culture and protein target-based compound screening strategies, though broadly utilized in selecting candidate compounds, often fail to eliminate candidate compounds with non-target effects and/or safety concerns until late in the drug developmental process. Phenotype screening using intact research animals is attractive because it can help identify small molecule candidate compounds that have a high probability of proceeding to clinical use. Most FDA approved, first-in-class small molecules were identified from phenotypic screening. However, phenotypic screening using rodent models is labor intensive, low-throughput, and very expensive. As a novel alternative for small molecule screening, we have been developing gene expression disease profiles, termed the Transcriptional Disease Signature (TDS), as readout of small molecule screens for therapeutic molecules. In this concept, compounds that can reverse, or otherwise affect known disease-associated gene expression patterns in whole animals may be rapidly identified for more detailed downstream direct testing of their efficacy and mode of action. To establish proof of concept for this screening strategy, we employed a transgenic strain of a small aquarium fish, medaka (Oryzias latipes), that overexpresses the malignant melanoma driver gene xmrk, a mutant egfr gene, that is driven by a pigment cell-specific mitf promoter. In this model, melanoma develops with 100% penetrance. Using the transgenic medaka malignant melanoma model, we established a screening system that employs the NanoString nCounter platform to quantify gene expression within custom sets of TDS gene targets that we had previously shown to exhibit differential transcription among xmrk-transgenic and wild-type medaka. Compound-modulated gene expression was identified using an internet-accessible custom-built data processing pipeline. The effect of a given drug on the entire TDS profile was estimated by comparing compound-modulated genes in the TDS using an activation Z-score and Kolmogorov-Smirnov statistics. TDS gene probes were designed that target common signaling pathways that include proliferation, development, toxicity, immune function, metabolism and detoxification. These pathways may be utilized to evaluate candidate compounds for potential favorable, or unfavorable, effects on melanoma-associated gene expression. Here we present the logistics of using medaka to screen compounds, as well as, the development of a user-friendly NanoString data analysis pipeline to support feasibility of this novel TDS drug-screening strategy.
Collapse
Affiliation(s)
- Yuan Lu
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - William Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Mikki Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Barbara Klotz
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Susanne Kneitz
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Janine Regneri
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Markita Savage
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Cristina Mendoza
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | | | - Manfred Schartl
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, USA
| | - Ronald B Walter
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
9
|
Sarasamma S, Lai YH, Liang ST, Liu K, Hsiao CD. The Power of Fish Models to Elucidate Skin Cancer Pathogenesis and Impact the Discovery of New Therapeutic Opportunities. Int J Mol Sci 2018; 19:E3929. [PMID: 30544544 PMCID: PMC6321611 DOI: 10.3390/ijms19123929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023] Open
Abstract
Animal models play important roles in investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic tools. Despite rapid progress in the understanding of disease mechanisms and technological advancement in drug discovery, negative trial outcomes are the most frequent incidences during a Phase III trial. Skin cancer is a potential life-threatening disease in humans and might be medically futile when tumors metastasize. This explains the low success rate of melanoma therapy amongst other malignancies. In the past decades, a number of skin cancer models in fish that showed a parallel development to the disease in humans have provided important insights into the fundamental biology of skin cancer and future treatment methods. With the diversity and breadth of advanced molecular genetic tools available in fish biology, fish skin cancer models will continue to be refined and expanded to keep pace with the rapid development of skin cancer research. This review begins with a brief introduction of molecular characteristics of skin cancers, followed by an overview of teleost models that have been used in the last decades in melanoma research. Next, we will detail the importance of the zebrafish (Danio rerio) animal model and other emerging fish models including platyfish (Xiphophorus sp.), and medaka (Oryzias latipes) in future cutaneous malignancy studies. The last part of this review provides the recent development and genome editing applications of skin cancer models in zebrafish and the progress in small molecule screening.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Taiwan Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
10
|
Regneri J, Klotz B, Wilde B, Kottler VA, Hausmann M, Kneitz S, Regensburger M, Maurus K, Götz R, Lu Y, Walter RB, Herpin A, Schartl M. Analysis of the putative tumor suppressor gene cdkn2ab in pigment cells and melanoma of Xiphophorus and medaka. Pigment Cell Melanoma Res 2018; 32:248-258. [PMID: 30117276 DOI: 10.1111/pcmr.12729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
In humans, the CDKN2A locus encodes two transcripts, INK4A and ARF. Inactivation of either one by mutations or epigenetic changes is a frequent signature of malignant melanoma and one of the most relevant entry points for melanomagenesis. To analyze whether cdkn2ab, the fish ortholog of CDKN2A, has a similar function as its human counterpart, we studied its action in fish models for human melanoma. Overexpression of cdkn2ab in a Xiphophorus melanoma cell line led to decreased proliferation and induction of a senescence-like phenotype, indicating a melanoma-suppressive function analogous to mammals. Coexpression of Xiphophorus cdkn2ab in medaka transgenic for the mitfa:xmrk melanoma-inducing gene resulted in full suppression of melanoma development, whereas CRISPR/Cas9 knockout of cdkn2ab resulted in strongly enhanced tumor growth. In summary, this provides the first functional evidence that cdkn2ab acts as a potent tumor suppressor gene in fish melanoma models.
Collapse
Affiliation(s)
- Janine Regneri
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Barbara Klotz
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Brigitta Wilde
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Verena A Kottler
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Michael Hausmann
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | | | - Katja Maurus
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Ralph Götz
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Yuan Lu
- Department of Chemistry & Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas
| | - Ronald B Walter
- Department of Chemistry & Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas
| | - Amaury Herpin
- INRA, Fish Physiology and Genomics Institute (INRA-LPGP), Sexual Differentiation and Oogenesis Group (SDOG), Campus de Beaulieu, Rennes Cedex, France
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany.,Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
11
|
Lu Y, Boswell M, Boswell W, Kneitz S, Hausmann M, Klotz B, Regneri J, Savage M, Amores A, Postlethwait J, Warren W, Schartl M, Walter R. Comparison of Xiphophorus and human melanoma transcriptomes reveals conserved pathway interactions. Pigment Cell Melanoma Res 2018; 31:496-508. [PMID: 29316274 PMCID: PMC6013346 DOI: 10.1111/pcmr.12686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022]
Abstract
Comparative analysis of human and animal model melanomas can uncover conserved pathways and genetic changes that are relevant for the biology of cancer cells. Spontaneous melanoma in Xiphophorus interspecies backcross hybrid progeny may be informative in identifying genes and functional pathways that are similarly related to melanoma development in all vertebrates, including humans. To assess functional pathways involved in the Xiphophorus melanoma, we performed gene expression profiling of the melanomas produced in interspecies BC1 and successive backcross generations (i.e., BC5 ) of the cross: X. hellerii × [X. maculatus Jp 163 A × X. hellerii]. Using RNA-Seq, we identified genes that are transcriptionally co-expressed with the driver oncogene, xmrk. We determined functional pathways in the fish melanoma that are also present in human melanoma cohorts that may be related to dedifferentiation based on the expression levels of pigmentation genes. Shared pathways between human and Xiphophorus melanomas are related to inflammation, cell migration, cell proliferation, pigmentation, cancer development, and metastasis. Our results suggest xmrk co-expressed genes are associated with dedifferentiation and highlight these signaling pathways as playing important roles in melanomagenesis.
Collapse
Affiliation(s)
- Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Mikki Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Susanne Kneitz
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
| | - Michael Hausmann
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
| | - Barbara Klotz
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
| | - Janine Regneri
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Wesley Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Manfred Schartl
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
- Texas A&M Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, USA
| | - Ronald Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| |
Collapse
|
12
|
Klotz B, Kneitz S, Regensburger M, Hahn L, Dannemann M, Kelso J, Nickel B, Lu Y, Boswell W, Postlethwait J, Warren W, Kunz M, Walter RB, Schartl M. Expression signatures of early-stage and advanced medaka melanomas. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:20-28. [PMID: 29162497 PMCID: PMC5936653 DOI: 10.1016/j.cbpc.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Melanoma is one of the most aggressive tumors with a very low survival rate once metastasized. The incidence of newly detected cases increases every year suggesting the necessity of development and application of innovative treatment strategies. Human melanoma develops from melanocytes localized in the epidermis of the skin to malignant tumors because of deregulated effectors influencing several molecular pathways. Despite many advances in describing the molecular changes accompanying melanoma formation, many critical and clinically relevant molecular features of the transformed pigment cells and the underlying mechanisms are largely unknown. To contribute to a better understanding of the molecular processes of melanoma formation, we use a transgenic medaka melanoma model that is well suited for the investigation of melanoma tumor development because fish and human melanocytes are both localized in the epidermis. The purpose of our study was to gain insights into melanoma development from the first steps of tumor formation up to melanoma progression and to identify gene expression patterns that will be useful for monitoring treatment effects in drug screening approaches. Comparing transcriptomes from juvenile fish at the tumor initiating stage with nevi and advanced melanoma of adults, we identified stage specific expression signatures and pathways that are characteristic for the development of medaka melanoma, and are also found in human malignancies.
Collapse
Affiliation(s)
- Barbara Klotz
- Physiological Chemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Martina Regensburger
- Physiological Chemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Lena Hahn
- Physiological Chemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Birgit Nickel
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, OR 97401, USA
| | - Wesley Warren
- Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park Blvd., St Louis, MO, 63108, USA
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany
| | - Ronald B. Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
- Corresponding author: Prof. Dr. Manfred Schartl, Tel.: +49 931 31 84148; fax: +49 931 31 84150. (M. Schartl)
| |
Collapse
|
13
|
Horimizu R, Ogawa R, Watanabe Y, Tatsukawa H, Kinoshita M, Hashimoto H, Hitomi K. Biochemical characterization of a medaka (Oryzias latipes) orthologue for mammalian Factor XIII and establishment of a gene-edited mutant. FEBS J 2017; 284:2843-2855. [DOI: 10.1111/febs.14153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Rima Horimizu
- Graduate School of Pharmaceutical Sciences; Nagoya University; Japan
| | - Ryota Ogawa
- Graduate School of Pharmaceutical Sciences; Nagoya University; Japan
| | - Yuko Watanabe
- Graduate School of Pharmaceutical Sciences; Nagoya University; Japan
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences; Nagoya University; Japan
| | | | | | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences; Nagoya University; Japan
| |
Collapse
|