1
|
Shirley AM, Vallad GE, Quesada-Ocampo L, Dufault N, Raid R. Effect of Cucurbit Host, Production Region, and Season on the Population Structure of Pseudoperonospora cubensis in Florida. PLANT DISEASE 2024; 108:442-450. [PMID: 37642548 DOI: 10.1094/pdis-12-22-2939-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pseudoperonospora cubensis, the causal agent of Cucurbit downy mildew (CDM), is one of the most important diseases affecting cucurbit production in the United States. This disease is especially damaging to Florida production areas, as the state is a top producer of many cucurbit species. In addition, winter production in central and south Florida likely serves as a likely source of P. cubensis inoculum for spring and summer cucurbit production throughout the eastern United States, where CDM is unable to overwinter in the absence of a living host. Over 2 years (2017 and 2018) and four seasons (spring 2017, spring 2018, fall 2017, and fall 2018), 274 P. cubensis isolates were collected from cucurbit hosts at production sites in south, central, and north Florida. The isolates were analyzed with 10 simple sequence repeat (SSR) markers to establish population structure and genetic diversity and further assigned to a clade based on a qPCR assay. Results of population structure and genetic diversity analyses differentiated isolates based on cucurbit host and clade (1 or 2). Of the isolates assigned to clade by qPCR, butternut squash, watermelon, and zucchini were dominated by clade 1 isolates, whereas cucumber isolates were split 34 and 59% between clades 1 and 2, respectively. Clade assignments agreed with isolate clustering observed within discriminant analysis of principal components (DAPC) based on SSR markers, although watermelon isolates formed a group distinct from the other clade 1 isolates. For seasonal collections from cucumber at each location, isolates were typically skewed to one clade or the other and varied across locations and seasons within each year of the study. This variable population structure of cucumber isolates could have consequences for regional disease management. This is the first study to characterize P. cubensis populations in Florida and evaluate the effect of cucurbit host and clade-type on isolate diversity and population structure, with implications for CDM management in Florida and other United States cucurbit production areas.
Collapse
Affiliation(s)
- Andrew M Shirley
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Lina Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825
| | - Nicholas Dufault
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Richard Raid
- Department of Plant Pathology, Everglades Research and Education Center, University of Florida, Belle Glade, FL 33430
| |
Collapse
|
2
|
Bello JC, Higgins DS, Sakalidis ML, Quesada-Ocampo LM, Martin F, Hausbeck MK. Clade-Specific Monitoring of Airborne Pseudoperonospora spp. Sporangia Using Mitochondrial DNA Markers for Disease Management of Cucurbit Downy Mildew. PHYTOPATHOLOGY 2022; 112:2110-2125. [PMID: 35585721 DOI: 10.1094/phyto-12-21-0500-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Management of cucurbit downy mildew (CDM) caused by Pseudoperonospora cubensis, relies on an intensive fungicide program. In Michigan, CDM occurs annually due to an influx of airborne sporangia and timely alerts of airborne inoculum can assist growers in assessing the need to initiate fungicide sprays. This research aimed to improve the specific detection of airborne P. cubensis sporangia by adapting quantitative real-time polymerase chain reaction (qPCR) assays to distinguish among P. cubensis clades I and II and P. humuli in spore trap samples from commercial production sites and research plots. We also evaluated the suitability of impaction spore traps compared with Burkard traps for detection of airborne sporangia. A multiplex qPCR assay improved the specificity of P. cubensis clade II detection accelerating the assessment of field spore trap samples. After 2 years of monitoring, P. cubensis clade II DNA was detected in spore trap samples before CDM symptoms were first observed in cucumber fields (July and August), while P. cubensis clade I DNA was not detected in air samples before or after the disease onset. In some commercial cucumber fields, P. humuli DNA was detected throughout the growing season. The Burkard spore trap appeared to be better suited for recovery of sporangia at low concentrations than the impaction spore trap. This improved methodology for the monitoring of airborne Pseudoperonospora spp. sporangia could be used as part of a CDM risk advisory system to time fungicide applications that protect cucurbit crops in Michigan.
Collapse
Affiliation(s)
- Julian C Bello
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Douglas S Higgins
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
- Department of Forestry, Michigan State University, East Lansing, MI 48824
| | - Lina M Quesada-Ocampo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| | - Frank Martin
- U.S. Department of Agriculture-Agriculture Research Service, Salinas, CA 93905
| | - Mary K Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
3
|
Liu Q, Johnson LJ, Applegate ER, Arfmann K, Jauregui R, Larking A, Mace WJ, Maclean P, Walker T, Johnson RD. Identification of Genetic Diversity, Pyrrocidine-Producing Strains and Transmission Modes of Endophytic Sarocladium zeae Fungi from Zea Crops. Microorganisms 2022; 10:microorganisms10071415. [PMID: 35889134 PMCID: PMC9316807 DOI: 10.3390/microorganisms10071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Genotyping by sequencing (GBS) was used to reveal the inherent genetic variation within the haploid fungi Sarocladium zeae isolated from diverse Zea germplasm, including modern Zea mays and its wild progenitors—the teosintes. In accordance with broad host relationship parameters, GBS analysis revealed significant host lineages of S. zeae genetic diversity, indicating that S. zeae genetic variation may associate with different evolutionary histories of host species or varieties. Based on a recently identified PKS-NRPS gene responsible for pyrrocidine biosynthesis in S. zeae fungi, a novel PCR assay was developed to discriminate pyrrocidine-producing S. zeae strains. This molecular method for screening bioactive strains of S. zeae is complementary to other approaches, such as chemical analyses. An eGFP-labelled S. zeae strain was also developed to investigate the endophytic transmission of S. zeae in Z. mays seedlings, which has further improved our understanding of the transmission modes of S. zeae endophytes in maize tissues.
Collapse
|
4
|
Van der Heyden H, Dutilleul P, Duceppe M, Bilodeau GJ, Charron J, Carisse O. Genotyping by sequencing suggests overwintering of Peronospora destructor in southwestern Québec, Canada. MOLECULAR PLANT PATHOLOGY 2022; 23:339-354. [PMID: 34921486 PMCID: PMC8828460 DOI: 10.1111/mpp.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/19/2023]
Abstract
Several Peronospora species are carried by wind over short and long distances, from warmer climates where they survive on living plants to cooler climates. In eastern Canada, this annual flow of sporangia was thought to be the main source of Peronospora destructor responsible for onion downy mildew. However, the results of a recent study showed that the increasing frequency of onion downy mildew epidemics in eastern Canada is associated with warmer autumns, milder winters, and previous year disease severity, suggesting overwintering of the inoculum in an area where the pathogen is not known to be endogenous. In this study, genotyping by sequencing was used to investigate the population structure of P. destructor at the landscape scale. The study focused on a particular region of southwestern Québec-Les Jardins de Napierville-to determine if the populations were clonal and regionally differentiated. The data were characterized by a high level of linkage disequilibrium, characteristic of clonal organisms. Consequently, the null hypothesis of random mating was rejected when tested on predefined or nonpredefined populations, indicating that linkage disequilibrium was not a function of population structure and suggesting a mixed reproduction mode. Discriminant analysis of principal components performed with predefined population assignment allowed grouping P. destructor isolates by geographical regions, while analysis of molecular variance confirmed that this genetic differentiation was significant at the regional level. Without using a priori population assignment, isolates were clustered into four genetic clusters. These results represent a baseline estimate of the genetic diversity and population structure of P. destructor.
Collapse
Affiliation(s)
- Hervé Van der Heyden
- Cie de Recherche PhytodataSherringtonQuébecCanada
- Department of Plant ScienceMcGill UniversityMontrealQuébecCanada
| | - Pierre Dutilleul
- Department of Plant ScienceMcGill UniversityMontrealQuébecCanada
| | | | | | | | - Odile Carisse
- Agriculture and Agri‐Food CanadaSt‐Jean‐sur‐RichelieuQuébecCanada
| |
Collapse
|
5
|
Bello JC, Hausbeck MK, Sakalidis ML. Application of Target Enrichment Sequencing for Population Genetic Analyses of the Obligate Plant Pathogens Pseudoperonospora cubensis and P. humuli in Michigan. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1103-1118. [PMID: 34227836 DOI: 10.1094/mpmi-11-20-0329-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Technological advances in genome sequencing have improved our ability to catalog genomic variation and have led to an expansion of the scope and scale of genetic studies over the past decade. Yet, for agronomically important plant pathogens such as the downy mildews (Peronosporaceae), the scale of genetic studies remains limited. This is, in part, due to the difficulties associated with maintaining obligate pathogens and the logistical constraints involved in the genotyping of these species (e.g., obtaining DNA of sufficient quantity and quality). To gain an evolutionary and ecological perspective of downy mildews, adaptable methods for the genotyping of their populations are required. Here, we describe a targeted enrichment (TE) protocol to genotype isolates from two Pseudoperonospora species (P. cubensis and P. humuli), using less than 50 ng of mixed pathogen and plant DNA for library preparation. We were able to enrich 830 target genes across 128 samples and identified 2,514 high-quality single nucleotide polymorphism (SNP) variants. Using these SNPs, we detected significant genetic differentiation (analysis of molecular variance [AMOVA], P = 0.01) between P. cubensis subpopulations from Cucurbita moschata (clade I) and Cucumis sativus (clade II) in the state of Michigan. No evidence of location-based differentiation was detected within the P. cubensis (clade II) subpopulation in Michigan. However, a significant effect of location on the genetic variation of the P. humuli subpopulation was detected in the state (AMOVA, P = 0.01). Mantel tests found evidence that the genetic distance among P. humuli samples was associated with the physical distance of the hop yards from which the samples were collected (P = 0.005). The differences in the distribution of genetic variation of the Michigan P. humuli and P. cubensis subpopulations suggest differences in the dispersal of these two species. The TE protocol described here provides an additional tool for genotyping obligate biotrophic plant pathogens and the execution of new genetic studies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Julian C Bello
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Mary K Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
- Department of Forestry, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
6
|
Adhikari TB, Muzhinji N, Halterman D, Louws FJ. Genetic diversity and population structure of Alternaria species from tomato and potato in North Carolina and Wisconsin. Sci Rep 2021; 11:17024. [PMID: 34426589 PMCID: PMC8382843 DOI: 10.1038/s41598-021-95486-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
Early blight (EB) caused by Alternaria linariae or Alternaria solani and leaf blight (LB) caused by A. alternata are economically important diseases of tomato and potato. Little is known about the genetic diversity and population structure of these pathogens in the United States. A total of 214 isolates of A. alternata (n = 61), A. linariae (n = 96), and A. solani (n = 57) were collected from tomato and potato in North Carolina and Wisconsin and grouped into populations based on geographic locations and tomato varieties. We exploited 220 single nucleotide polymorphisms derived from DNA sequences of 10 microsatellite loci to analyse the population genetic structure between species and between populations within species and infer the mode of reproduction. High genetic variation and genotypic diversity were observed in all the populations analysed. The null hypothesis of the clonality test based on the index of association \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {\overline{r}_{d} } \right)$$\end{document}r¯d was rejected, and equal frequencies of mating types under random mating were detected in some studied populations of Alternaria spp., suggesting that recombination can play an important role in the evolution of these pathogens. Most genetic differences were found between species, and the results showed three distinct genetic clusters corresponding to the three Alternaria spp. We found no evidence for clustering of geographic location populations or tomato variety populations. Analyses of molecular variance revealed high (> 85%) genetic variation within individuals in a population, confirming a lack of population subdivision within species. Alternaria linariae populations harboured more multilocus genotypes (MLGs) than A. alternata and A. solani populations and shared the same MLG between populations within a species, which was suggestive of gene flow and population expansion. Although both A. linariae and A. solani can cause EB on tomatoes and potatoes, these two species are genetically differentiated. Our results provide new insights into the evolution and structure of Alternaria spp. and can lead to new directions in optimizing management strategies to mitigate the impact of these pathogens on tomato and potato production in North Carolina and Wisconsin.
Collapse
Affiliation(s)
- Tika B Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Norman Muzhinji
- Department of Applied and Natural Sciences, Namibia University of Science and Technology, Private Bag 13388, Windhoek, Namibia
| | - Dennis Halterman
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Vegetable Crops Research Unit, Madison, WI, 53706, USA
| | - Frank J Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
7
|
Toporek SM, Branham SE, Katawczik ML, Keinath AP, Patrick Wechter W. QTL mapping of resistance to Pseudoperonospora cubensis clade 1, mating type A2, in Cucumis melo. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2577-2586. [PMID: 33950283 DOI: 10.1007/s00122-021-03843-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
This is the first identification of QTLs underlying resistance to Pseudoperonospora cubensis in Cucumis melo using a genetically characterized isolate. Pseudoperonospora cubensis, causal organism of cucurbit downy mildew (CDM), is one of the largest threats to cucurbit production in the eastern USA. Currently, no Cucumis melo (melon) cultivars have significant levels of resistance. Additionally, little is understood about the genetic basis of resistance in C. melo. Recombinant inbred lines (RILs; N = 169) generated from a cross between the resistant melon breeding line MR-1 and susceptible cultivar Ananas Yok'neam were phenotyped for CDM resistance in both greenhouse and growth chamber studies. A high-density genetic linkage map with 5,663 binned SNPs created from the RIL population was utilized for QTL mapping. Nine QTLs, including two major QTLs, were associated with CDM resistance. Of the major QTLs, qPcub-10.1 was stable across growth chamber and greenhouse tests, whereas qPcub-8.2 was detected only in growth chamber tests. qPcub-10.1 co-located with an MLO-like protein coding gene, which has been shown to confer resistance to powdery mildew and Phytophthora in other plants. This is the first screening of C. melo germplasm with a genetically characterized P. cubensis isolate.
Collapse
Affiliation(s)
- Sean M Toporek
- Department of Plant and Environmental Sciences, Coastal Research and Education Center, Clemson University, Charleston, SC, 29414, USA
| | - Sandra E Branham
- Department of Plant and Environmental Sciences, Coastal Research and Education Center, Clemson University, Charleston, SC, 29414, USA
| | - Melanie L Katawczik
- US Vegetable Laboratory, USDA, ARS, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Anthony P Keinath
- Department of Plant and Environmental Sciences, Coastal Research and Education Center, Clemson University, Charleston, SC, 29414, USA
| | - W Patrick Wechter
- US Vegetable Laboratory, USDA, ARS, 2700 Savannah Highway, Charleston, SC, 29414, USA.
| |
Collapse
|
8
|
Nowicki M, Hadziabdic D, Trigiano RN, Boggess SL, Kanetis L, Wadl PA, Ojiambo PS, Cubeta MA, Spring O, Thines M, Runge F, Scheffler BE. "Jumping Jack": Genomic Microsatellites Underscore the Distinctiveness of Closely Related Pseudoperonospora cubensis and Pseudoperonospora humuli and Provide New Insights Into Their Evolutionary Past. Front Microbiol 2021; 12:686759. [PMID: 34335513 PMCID: PMC8317435 DOI: 10.3389/fmicb.2021.686759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Downy mildews caused by obligate biotrophic oomycetes result in severe crop losses worldwide. Among these pathogens, Pseudoperonospora cubensis and P. humuli, two closely related oomycetes, adversely affect cucurbits and hop, respectively. Discordant hypotheses concerning their taxonomic relationships have been proposed based on host-pathogen interactions and specificity evidence and gene sequences of a few individuals, but population genetics evidence supporting these scenarios is missing. Furthermore, nuclear and mitochondrial regions of both pathogens have been analyzed using microsatellites and phylogenetically informative molecular markers, but extensive comparative population genetics research has not been done. Here, we genotyped 138 current and historical herbarium specimens of those two taxa using microsatellites (SSRs). Our goals were to assess genetic diversity and spatial distribution, to infer the evolutionary history of P. cubensis and P. humuli, and to visualize genome-scale organizational relationship between both pathogens. High genetic diversity, modest gene flow, and presence of population structure, particularly in P. cubensis, were observed. When tested for cross-amplification, 20 out of 27 P. cubensis-derived gSSRs cross-amplified DNA of P. humuli individuals, but few amplified DNA of downy mildew pathogens from related genera. Collectively, our analyses provided a definite argument for the hypothesis that both pathogens are distinct species, and suggested further speciation in the P. cubensis complex.
Collapse
Affiliation(s)
- Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Robert N. Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sarah L. Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Loukas Kanetis
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol, Cyprus
| | | | - Peter S. Ojiambo
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Marc A. Cubeta
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Otmar Spring
- Institute of Botany 210, University of Hohenheim, Stuttgart, Germany
| | - Marco Thines
- Department of Biological Sciences, Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft fuer Naturforschung and Evolution and Diversity, Institute of Ecology, Goethe University, Frankfurt am Main, Germany
| | | | - Brian E. Scheffler
- U.S. Department of Agriculture, Agricultural Research Service, Stoneville, MS, United States
| |
Collapse
|
9
|
Rahman A, Standish JR, D'Arcangelo KN, Quesada-Ocampo LM. Clade-Specific Biosurveillance of Pseudoperonospora cubensis Using Spore Traps for Precision Disease Management of Cucurbit Downy Mildew. PHYTOPATHOLOGY 2021; 111:312-320. [PMID: 32748731 DOI: 10.1094/phyto-06-20-0231-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pseudoperonospora cubensis is an obligate oomycete and cause of cucurbit downy mildew (CDM), the most destructive foliar disease affecting cucurbit hosts. Annual epidemics develop throughout the United States as windborne sporangia travel great distances and survive prolonged exposure to solar radiation. Recent genomic evidence suggests that P. cubensis isolates display host adaptation based on their respective clade. Early detection is key for fungicide application timing, and identification of the host-adapted clade provides information on the risk of infection for specific cucurbit crops. In this study, a multiplex quantitative PCR assay was developed based on species- and clade-specific nuclear genomic markers. The assay detected as few as 10 sporangia or DNA at 100 fg/ml for both clades and was validated in the field by deploying rotorod spore samplers in cucurbit sentinel plots located at two research stations in North Carolina. Using this assay, sporangia DNA was detected in spore trap sampling rods before signs of P. cubensis or CDM symptoms were observed in the sentinel plots. Both clade 1 and clade 2 DNA were detected in late-season cucumber and watermelon plots but only clade 2 DNA was detected in the early-season cucumber plots. These results will significantly improve disease management of CDM by monitoring inoculum levels to determine the cucurbit crops at risk of infection throughout each growing season.
Collapse
Affiliation(s)
- A Rahman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| | - J R Standish
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| | - K N D'Arcangelo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| | - L M Quesada-Ocampo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| |
Collapse
|
10
|
Wallace EC, D'Arcangelo KN, Quesada-Ocampo LM. Population Analyses Reveal Two Host-Adapted Clades of Pseudoperonospora cubensis, the Causal Agent of Cucurbit Downy Mildew, on Commercial and Wild Cucurbits. PHYTOPATHOLOGY 2020; 110:1578-1587. [PMID: 32314948 DOI: 10.1094/phyto-01-20-0009-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew, is an airborne, obligate oomycete pathogen that re-emerged in 2004 and causes foliar disease and yield losses in all major cucurbit crops in the United States. Approximately 60 species in the family Cucurbitaceae have been reported as hosts of P. cubensis. Commercial hosts including cucumber, cantaloupe, pumpkin, squash, and watermelon are grown in North Carolina and many host species occur in the wild as weeds. Little is known about the contribution of wild cucurbits to the yearly epidemic; thus, this study aimed to determine the role of commercial and wild cucurbits in the structuring of P. cubensis populations in North Carolina, a region with high pathogen diversity. Ten microsatellite markers were used to analyze 385 isolates from six commercial and four wild cucurbits from three locations representing different growing regions across North Carolina. Population analyses revealed that wild and commercial cucurbits are hosts of P. cubensis in the United States, that host is the main factor structuring P. cubensis populations, and that P. cubensis has two distinct, host-adapted clades at the cucurbit species level, with clade 1 showing random mating and evidence of recombination and clade 2 showing nonrandom mating and no evidence of recombination. Our findings have implications for disease management because clade-specific factors such as host susceptibility and inoculum availability of each clade by region may influence P. cubensis outbreaks in different commercial cucurbits, timing of fungicide applications, and phenotyping for breeding efforts.
Collapse
Affiliation(s)
- E C Wallace
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| | - K N D'Arcangelo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| | - L M Quesada-Ocampo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| |
Collapse
|
11
|
Gent DH, Adair N, Knaus BJ, Grünwald NJ. Genotyping-by-Sequencing Reveals Fine-Scale Differentiation in Populations of Pseudoperonospora humuli. PHYTOPATHOLOGY 2019; 109:1801-1810. [PMID: 31199202 DOI: 10.1094/phyto-12-18-0485-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudoperonospora humuli is the causal agent of downy mildew of hop, one of the most important diseases of this plant and a limiting factor for production of susceptible cultivars in certain environments. The degree of genetic diversity and population differentiation within and among P. humuli populations at multiple spatial scales was quantified using genotyping-by-sequencing to test the hypothesis that populations of P. humuli have limited genetic diversity but are differentiated at the scale of individual hop yards. Hierarchical sampling was conducted to collect isolates from three hop yards in Oregon, plants within these yards, and infected shoots within heavily diseased plants. Additional isolates also were collected broadly from other geographic regions and from the two previously described clades of the sister species, P. cubensis. Genotyping of these 240 isolates produced a final quality-filtered data set of 216 isolates possessing 25,227 variants. Plots of G'ST values indicated that the majority of variants had G'ST values near 0 and were scattered randomly across contig positions. However, there was a subset of variants that were highly differentiated (G'ST > 0.3) and reproducible when genotyped independently. Within P. humuli, there was evidence of genetic differentiation at the level of hop yards and plants within yards; 19.8% of the genetic variance was associated with differences among yards and 20.3% of the variance was associated with plants within the yard. Isolates of P. humuli were well differentiated from two isolates of P. cubensis representative of the two clades of this organism. There was strong evidence of linkage disequilibrium in variant loci, consistent with nonrandom assortment of alleles expected from inbreeding and/or asexual recombination. Mantel tests found evidence that the genetic distance between isolates collected from heavily diseased plants within a hop yard was associated with the physical distance of the plants from which the isolates were collected. The sum of the data presented here indicates that populations of P. humuli are consistent with a clonal or highly inbred genetic structure with a small, yet significant differentiation of populations among yards and plants within yards. Fine-scale genetic differentiation at the yard and plant scales may point to persistence of founder genotypes associated with planting material, and chronic, systemic infection of hop plants by P. humuli. More broadly, genotyping-by-sequencing appears to have sufficient resolution to identify rare variants that differentiate subpopulations within organisms with limited genetic variability.
Collapse
Affiliation(s)
- David H Gent
- Forage Seed and Cereal Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97331
| | - Nanci Adair
- Forage Seed and Cereal Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97331
| | - Brian J Knaus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Niklaus J Grünwald
- U.S. Department of Agriculture-Agricultural Research Service, Horticultural Crops Research Unit, Corvallis, OR 97330
| |
Collapse
|
12
|
Rahman A, Góngora-Castillo E, Bowman MJ, Childs KL, Gent DH, Martin FN, Quesada-Ocampo LM. Genome Sequencing and Transcriptome Analysis of the Hop Downy Mildew Pathogen Pseudoperonospora humuli Reveal Species-Specific Genes for Molecular Detection. PHYTOPATHOLOGY 2019; 109:1354-1366. [PMID: 30939079 DOI: 10.1094/phyto-11-18-0431-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudoperonospora humuli is an obligate oomycete pathogen of hop (Humulus lupulus) that causes downy mildew, an important disease in most production regions in the Northern Hemisphere. The pathogen can cause a systemic infection in hop, overwinter in the root system, and infect propagation material. Substantial yield loss may occur owing to P. humuli infection of strobiles (seed cones), shoots, and cone-bearing branches. Fungicide application and cultural practices are the primary methods to manage hop downy mildew. However, effective, sustainable, and cost-effective management of downy mildew can be improved by developing early detection systems to inform on disease risk and timely fungicide application. However, no species-specific diagnostic assays or genomic resources are available for P. humuli. The genome of the P. humuli OR502AA isolate was partially sequenced using Illumina technology and assembled with ABySS. The assembly had a minimum scaffold length of 500 bp and an N50 (median scaffold length of the assembled genome) of 19.2 kbp. A total number of 18,656 genes were identified using MAKER standard gene predictions. Additionally, transcriptome assemblies were generated using RNA-seq and Trinity for seven additional P. humuli isolates. Bioinformatics analyses of next generation sequencing reads of P. humuli and P. cubensis (a closely related sister species) identified 242 candidate species-specific P. humuli genes that could be used as diagnostic molecular markers. These candidate genes were validated using polymerase chain reaction against a diverse collection of isolates from P. humuli, P. cubensis, and other oomycetes. Overall, four diagnostic markers were found to be uniquely present in P. humuli. These candidate markers identified through comparative genomics can be used for pathogen diagnostics in propagation material, such as rhizomes and vegetative cuttings, or adapted for biosurveillance of airborne sporangia, an important source of inoculum in hop downy mildew epidemics.
Collapse
Affiliation(s)
- A Rahman
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - E Góngora-Castillo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- 2Department of Biotechnology, Yucatan Center for Scientific Research, 97205 Mérida, Yucatán, México
| | - M J Bowman
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - K L Childs
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - D H Gent
- 4Forage Seed and Cereal Research Unit, U.S. Department of Agriculture-Agricultural Research Service and Oregon State University, Corvallis 97331, OR, U.S.A
| | - F N Martin
- 5Crop Improvement and Protection Research Station, U.S. Department of Agriculture-Agricultural Research Service, Salinas, CA 93905, U.S.A
| | - L M Quesada-Ocampo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| |
Collapse
|
13
|
Wang Y, Yan C, Zou B, Wang C, Xu W, Cui C, Qu S. Morphological, Transcriptomic and Hormonal Characterization of Trimonoecious and Subandroecious Pumpkin ( Cucurbita maxima) Suggests Important Roles of Ethylene in Sex Expression. Int J Mol Sci 2019; 20:ijms20133185. [PMID: 31261811 PMCID: PMC6651883 DOI: 10.3390/ijms20133185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Sex expression is a complex process, and in-depth knowledge of its mechanism in pumpkin is important. In this study, young shoot apices at the one-true-leaf stage and 10-leaf stage in Cucurbita maxima trimonoecious line ‘2013–12’ and subandroecious line ‘9–6’ were collected as materials, and transcriptome sequencing was performed using an Illumina HiSeqTM 2000 System. 496 up-regulated genes and 375 down-regulated genes were identified between shoot apices containing mostly male flower buds and only female flower buds. Based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the differentially expressed genes were mainly enriched in the ethylene and auxin synthesis and signal transduction pathways. In addition, shoot apices at the 4-leaf stage were treated with the ethylene-releasing agent 2-chloroethylphosphonic acid (Ethrel), aminoethoxyvinyl glycine (AVG), AgNO3 and indoleacetic acid (IAA). The number of female flowers up to node 20 on the main stem of ‘2013–12’ increased significantly after Ethrel and IAA treatment and decreased significantly after AVG and AgNO3 treatment. The female flowers in ‘9–6’ showed slight changes after treatment with the exogenous chemicals. The expression of key genes in ethylene synthesis and signal transduction (CmaACS7, CmaACO1, CmaETR1 and CmaEIN3) was determined using quantitative RT-PCR, and the expression of these four genes was positively correlated with the number of female flowers in ‘2013–12’. The variations in gene expression, especially that of CmaACS7, after chemical treatment were small in ‘9–6’. From stage 1 (S1) to stage 7 (S7) of flower development, the expression of CmaACS7 in the stamen was much lower than that in the ovary, stigma and style. These transcriptome data and chemical treatment results indicated that IAA might affect pumpkin sex expression by inducing CmaACS7 expression and indirectly affecting ethylene production, and the ethylene synthesis and signal transduction pathways play crucial roles in pumpkin flower sex expression. A possible reason for the differences in sex expression between pumpkin lines ‘2013–12’ and ‘9–6’ was proposed based on the key gene expression. Overall, these transcriptome data and chemical treatment results suggest important roles for ethylene in pumpkin sex expression.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chundong Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Bingxue Zou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chongshi Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Rogier O, Chateigner A, Amanzougarene S, Lesage-Descauses MC, Balzergue S, Brunaud V, Caius J, Soubigou-Taconnat L, Jorge V, Segura V. Accuracy of RNAseq based SNP discovery and genotyping in Populusnigra. BMC Genomics 2018; 19:909. [PMID: 30541448 PMCID: PMC6291945 DOI: 10.1186/s12864-018-5239-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
Abstract
Backgroud Populus nigra is a major tree species of ecological and economic importance for which several initiatives have been set up to create genomic resources. In order to access the large number of Single Nucleotide Polymorphisms (SNPs) typically needed to carry out a genome scan, the present study aimed at evaluating RNA sequencing as a tool to discover and type SNPs in genes within natural populations of P. nigra. Results We have devised a bioinformatics pipeline to call and type SNPs from RNAseq reads and applied it to P. nigra transcriptomic data. The accuracy of the resulting RNAseq-based SNP calling and typing has been evaluated by (i) comparing their position and alleles to those previously reported in candidate genes, (ii) assessing their genotyping accuracy with respect to a previously available SNP chip and (iii) evaluating their inter-annual repeatability. We found that a combination of several callers yields a good compromise between the number of variants type and the accuracy of genotyping. We further used the resulting genotypic data to carry out basic genetic analyses whose results confirm the quality of the RNAseq-based SNP dataset. Conclusions We demonstrated the potential and accuracy of RNAseq as an efficient way to genotype SNPs in P. nigra. These results open prospects towards the use of this technology for quantitative and population genomics studies. Electronic supplementary material The online version of this article (10.1186/s12864-018-5239-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Sandrine Balzergue
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Paris-Saclay, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, 91405, France.,IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49071, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Paris-Saclay, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, 91405, France
| | - José Caius
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Paris-Saclay, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, 91405, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Paris-Saclay, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, 91405, France
| | | | | |
Collapse
|
15
|
Crandall SG, Rahman A, Quesada-Ocampo LM, Martin FN, Bilodeau GJ, Miles TD. Advances in Diagnostics of Downy Mildews: Lessons Learned from Other Oomycetes and Future Challenges. PLANT DISEASE 2018; 102:265-275. [PMID: 30673522 DOI: 10.1094/pdis-09-17-1455-fe] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Downy mildews are plant pathogens that damage crop quality and yield worldwide. Among the most severe and notorious crop epidemics of downy mildew occurred on grapes in the mid-1880s, which almost destroyed the wine industry in France. Since then, there have been multiple outbreaks on sorghum and millet in Africa, tobacco in Europe, and recent widespread epidemics on lettuce, basil, cucurbits, and spinach throughout North America. In the mid-1970s, loss of corn to downy mildew in the Philippines was estimated at US$23 million. Today, crops that are susceptible to downy mildews are worth at least $7.5 billion of the United States' economy. Although downy mildews cause devastating economic losses in the United States and globally, this pathogen group remains understudied because they are difficult to culture and accurately identify. Early detection of downy mildews in the environment is critical to establish pathogen presence and identity, determine fungicide resistance, and understand how pathogen populations disperse. Knowing when and where pathogens emerge is also important for identifying critical control points to restrict movement and to contain populations. Reducing the spread of pathogens also decreases the likelihood of sexual recombination events and discourages the emergence of novel virulent strains. A major challenge in detecting downy mildews is that they are obligate pathogens and thus cannot be cultured in artificial media to identify and maintain specimens. However, advances in molecular detection techniques hold promise for rapid and in some cases, relatively inexpensive diagnosis. In this article, we discuss recent advances in diagnostic tools that can be used to detect downy mildews. First, we briefly describe downy mildew taxonomy and genetic loci used for detection. Next, we review issues encountered when identifying loci and compare various traditional and novel platforms for diagnostics. We discuss diagnosis of downy mildew traits and issues to consider when detecting this group of organisms in different environments. We conclude with challenges and future directions for successful downy mildew detection.
Collapse
Affiliation(s)
- Sharifa G Crandall
- California State University Monterey Bay, School of Natural Sciences, Seaside, CA, 93955
| | - Alamgir Rahman
- North Carolina State University, Department of Plant Pathology, Raleigh, NC, 27695
| | | | - Frank N Martin
- USDA-ARS, Crop Improvement and Protection Research Unit, Salinas, CA, 93905
| | | | - Timothy D Miles
- California State University Monterey Bay, School of Natural Sciences, Seaside, CA, 93955
| |
Collapse
|
16
|
Vaghefi N, Kikkert JR, Bolton MD, Hanson LE, Secor GA, Nelson SC, Pethybridge SJ. Global genotype flow in Cercospora beticola populations confirmed through genotyping-by-sequencing. PLoS One 2017; 12:e0186488. [PMID: 29065114 PMCID: PMC5655429 DOI: 10.1371/journal.pone.0186488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 10/01/2017] [Indexed: 11/18/2022] Open
Abstract
Genotyping-by-sequencing (GBS) was conducted on 333 Cercospora isolates collected from Beta vulgaris (sugar beet, table beet and swiss chard) in the USA and Europe. Cercospora beticola was confirmed as the species predominantly isolated from leaves with Cercospora leaf spot (CLS) symptoms. However, C. cf. flagellaris also was detected at a frequency of 3% in two table beet fields in New York. Resolution of the spatial structure and identification of clonal lineages in C. beticola populations using genome-wide single nucleotide polymorphisms (SNPs) obtained from GBS was compared to genotyping using microsatellites. Varying distance thresholds (bitwise distance = 0, 1.854599 × 10-4, and 1.298 × 10-3) were used for delineation of clonal lineages in C. beticola populations. Results supported previous reports of long distance dispersal of C. beticola through genotype flow. The GBS-SNP data set provided higher resolution in discriminating clonal lineages; however, genotype identification was impacted by filtering parameters and the distance threshold at which the multi-locus genotypes (MLGs) were contracted to multi-locus lineages. The type of marker or different filtering strategies did not impact estimates of population differentiation and structure. Results emphasize the importance of robust filtering strategies and designation of distance thresholds for delineating clonal lineages in population genomics analyses that depend on individual assignment and identification of clonal lineages. Detection of recurrent clonal lineages shared between the USA and Europe, even in the relaxed-filtered SNP data set and with a conservative distance threshold for contraction of MLGs, provided strong evidence for global genotype flow in C. beticola populations. The implications of intercontinental migration in C. beticola populations for CLS management are discussed.
Collapse
Affiliation(s)
- Niloofar Vaghefi
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, New York, United States of America
| | - Julie R. Kikkert
- Cornell Cooperative Extension, Canandaigua, New York, United States of America
| | - Melvin D. Bolton
- United States Department of Agriculture–Agricultural Research Service (USDA-ARS), Red River Valley Agricultural Research Center, Fargo, North Dakota, United States of America
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Linda E. Hanson
- USDA-ARS, Sugar Beet and Bean Research Unit, Michigan State University, Michigan, United States of America
| | - Gary A. Secor
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Scot C. Nelson
- College of Tropical Agriculture and Human Resources, Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Sarah J. Pethybridge
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, New York, United States of America
| |
Collapse
|
17
|
Grünwald NJ, Everhart SE, Knaus BJ, Kamvar ZN. Best Practices for Population Genetic Analyses. PHYTOPATHOLOGY 2017; 107:1000-1010. [PMID: 28513284 DOI: 10.1094/phyto-12-16-0425-rvw] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Population genetic analysis is a powerful tool to understand how pathogens emerge and adapt. However, determining the genetic structure of populations requires complex knowledge on a range of subtle skills that are often not explicitly stated in book chapters or review articles on population genetics. What is a good sampling strategy? How many isolates should I sample? How do I include positive and negative controls in my molecular assays? What marker system should I use? This review will attempt to address many of these practical questions that are often not readily answered from reading books or reviews on the topic, but emerge from discussions with colleagues and from practical experience. A further complication for microbial or pathogen populations is the frequent observation of clonality or partial clonality. Clonality invariably makes analyses of population data difficult because many assumptions underlying the theory from which analysis methods were derived are often violated. This review provides practical guidance on how to navigate through the complex web of data analyses of pathogens that may violate typical population genetics assumptions. We also provide resources and examples for analysis in the R programming environment.
Collapse
Affiliation(s)
- N J Grünwald
- First and third authors: Horticultural Crop Research Unit, USDA-ARS, Corvallis, OR; and second and fourth authors: Department of Botany and Plant Pathology, Oregon State University, Corvallis
| | - S E Everhart
- First and third authors: Horticultural Crop Research Unit, USDA-ARS, Corvallis, OR; and second and fourth authors: Department of Botany and Plant Pathology, Oregon State University, Corvallis
| | - B J Knaus
- First and third authors: Horticultural Crop Research Unit, USDA-ARS, Corvallis, OR; and second and fourth authors: Department of Botany and Plant Pathology, Oregon State University, Corvallis
| | - Z N Kamvar
- First and third authors: Horticultural Crop Research Unit, USDA-ARS, Corvallis, OR; and second and fourth authors: Department of Botany and Plant Pathology, Oregon State University, Corvallis
| |
Collapse
|
18
|
Thomas A, Carbone I, Choe K, Quesada‐Ocampo LM, Ojiambo PS. Resurgence of cucurbit downy mildew in the United States: Insights from comparative genomic analysis of Pseudoperonospora cubensis. Ecol Evol 2017; 7:6231-6246. [PMID: 28861228 PMCID: PMC5574870 DOI: 10.1002/ece3.3194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/12/2017] [Accepted: 05/30/2017] [Indexed: 12/30/2022] Open
Abstract
Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew (CDM), is known to exhibit host specialization. The virulence of different isolates of the pathogen can be classified into pathotypes based on their compatibility with a differential set composed of specific cucurbit host types. However, the genetic basis of host specialization within P. cubensis is not yet known. Total genomic DNA extracted from nine isolates of P. cubensis collected from 2008 to 2013 from diverse cucurbit host types (Cucumis sativus, C. melo var. reticulatus, Cucurbita maxima, C. moschata, C. pepo, and Citrullus lanatus) in the United States were subjected to whole-genome sequencing. Comparative analysis of these nine genomes confirmed the presence of two distinct evolutionary lineages (lineages I and II) of P. cubensis. Many fixed polymorphisms separated lineage I comprising isolates from Cucurbita pepo, C. moschata, and Citrullus lanatus from lineage II comprising isolates from Cucumis spp. and Cucurbita maxima. Phenotypic characterization showed that lineage II isolates were of the A1 mating type and belonged to pathotypes 1 and 3 that were not known to be present in the United States prior to the resurgence of CDM in 2004. The association of lineage II isolates with the new pathotypes and a lack of genetic diversity among these isolates suggest that lineage II of P. cubensis is associated with the resurgence of CDM on cucumber in the United States.
Collapse
Affiliation(s)
- Anna Thomas
- Center for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Ignazio Carbone
- Center for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Kisurb Choe
- Center for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | | | - Peter S. Ojiambo
- Center for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
19
|
Hansen ZR, Everts KL, Fry WE, Gevens AJ, Grünwald NJ, Gugino BK, Johnson DA, Johnson SB, Judelson HS, Knaus BJ, McGrath MT, Myers KL, Ristaino JB, Roberts PD, Secor GA, Smart CD. Genetic Variation within Clonal Lineages of Phytophthora infestans Revealed through Genotyping-By-Sequencing, and Implications for Late Blight Epidemiology. PLoS One 2016; 11:e0165690. [PMID: 27812174 PMCID: PMC5094694 DOI: 10.1371/journal.pone.0165690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/17/2016] [Indexed: 01/24/2023] Open
Abstract
Genotyping-by-sequencing (GBS) was performed on 257 Phytophthora infestans isolates belonging to four clonal lineages to study within-lineage diversity. The four lineages used in the study were US-8 (n = 28), US-11 (n = 27), US-23 (n = 166), and US-24 (n = 36), with isolates originating from 23 of the United States and Ontario, Canada. The majority of isolates were collected between 2010 and 2014 (94%), with the remaining isolates collected from 1994 to 2009, and 2015. Between 3,774 and 5,070 single-nucleotide polymorphisms (SNPs) were identified within each lineage and were used to investigate relationships among individuals. K-means hierarchical clustering revealed three clusters within lineage US-23, with US-23 isolates clustering more by collection year than by geographic origin. K-means hierarchical clustering did not reveal significant clustering within the smaller US-8, US-11, and US-24 data sets. Neighbor-joining (NJ) trees were also constructed for each lineage. All four NJ trees revealed evidence for pathogen dispersal and overwintering within regions, as well as long-distance pathogen transport across regions. In the US-23 NJ tree, grouping by year was more prominent than grouping by region, which indicates the importance of long-distance pathogen transport as a source of initial late blight inoculum. Our results support previous studies that found significant genetic diversity within clonal lineages of P. infestans and show that GBS offers sufficiently high resolution to detect sub-structuring within clonal populations.
Collapse
Affiliation(s)
- Zachariah R. Hansen
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, United States of America
| | - Kathryne L. Everts
- Department of Plant Science and Landscape Architecture, University of Maryland, Salisbury, MD, United States of America
| | - William E. Fry
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY, United States of America
| | - Amanda J. Gevens
- Department of Plant Pathology, University of Wisconsin, Madison, WI, United States of America
| | - Niklaus J. Grünwald
- Horticultural Crops Research Laboratory, United States Department of Agriculture–Agricultural Research Service, Corvallis, OR, United States of America
| | - Beth K. Gugino
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States of America
| | - Dennis A. Johnson
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | - Steven B. Johnson
- University of Maine Cooperative Extension, Presque Isle, ME, United States of America
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, CA, United States of America
| | - Brian J. Knaus
- Horticultural Crops Research Laboratory, United States Department of Agriculture–Agricultural Research Service, Corvallis, OR, United States of America
| | - Margaret T. McGrath
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Riverhead, NY, United States of America
| | - Kevin L. Myers
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY, United States of America
| | - Jean B. Ristaino
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Pamela D. Roberts
- Department of Plant Pathology, University of Florida, Immokalee, FL, United States of America
| | - Gary A. Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States of America
| | - Christine D. Smart
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, United States of America
| |
Collapse
|