1
|
Wang K, Schober L, Fischer A, Bechmann N, Maurer J, Peischer L, Reul A, Hantel C, Reincke M, Beuschlein F, Robledo M, Mohr H, Pellegata NS, Schilbach K, Knösel T, Ilmer M, Angele M, Kroiss M, Maccio U, Broglie-Däppen M, Vetter D, Lehmann K, Pacak K, Grossman AB, Auernhammer CJ, Zitzmann K, Nölting S. Opposing Effects of Cannabidiol in Patient-derived Neuroendocrine Tumor, Pheochromocytoma/Paraganglioma Primary Cultures. J Clin Endocrinol Metab 2024; 109:2892-2904. [PMID: 38605427 PMCID: PMC12102718 DOI: 10.1210/clinem/dgae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
CONTEXT Treatment options for advanced neuroendocrine tumors (NETs), pheochromocytomas and paragangliomas (PPGLs) are still limited. In recent years, antitumor effects of cannabinoids have been reported; however, there are only very limited data available in NETs or PPGLs. OBJECTIVE Investigation of the effects of cannabidiol (CBD) on patient-derived human NET/PPGL primary cultures and on NET/PPGL cell lines. METHODS We established primary cultures derived from 46 different patients with PPGLs (n = 35) or NETs (n = 11) who underwent tumor resection at 2 centers. Treatment of patient primary cultures with clinically relevant doses (5 µM) and slightly higher doses (10 µM) of CBD was performed. RESULTS We found opposing effects of 5 µM CBD: significant antitumor effects in 5/35 (14%) and significant tumor-promoting effects in 6/35 (17%) of PPGL primary cultures. In terms of antitumor effects, cluster 2-related PPGLs showed significantly stronger responsivity to CBD compared to cluster 1-related PPGLs (P = .042). Of the cluster 2-related tumors, NF1 PPGLs showed the strongest responsivity (4/5 PPGL primary cultures with a significant decrease in cell viability were NF1-mutated). We also found opposing effects of 10 µM CBD in PPGLs and NETs: significant antitumor effects in 9/33 of PPGL (27%) and 3/11 of NET (27%) primary cultures and significant tumor-promoting effects in 6/33 of PPGL (18%) and 2/11 of NET (18%) primary cultures. CONCLUSION We suggest a potential novel treatment option for some NETs/PPGLs but also provide evidence for caution when applying cannabinoids as supportive therapy for pain or appetite management to cancer patients and possibly as health supplements.
Collapse
Affiliation(s)
- Katharina Wang
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Laura Schober
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Julian Maurer
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Lea Peischer
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Astrid Reul
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
- Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Martin Reincke
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Felix Beuschlein
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
- The LOOP Zurich—Medical Research Center, 8044 Zurich, Switzerland
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Katharina Schilbach
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS-certified Center of Excellence), LMU University Hospital, 81377 Munich, Germany
| | - Matthias Ilmer
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS-certified Center of Excellence), LMU University Hospital, 81377 Munich, Germany
- Department of General, Visceral, and Transplantation Surgery, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Martin Angele
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS-certified Center of Excellence), LMU University Hospital, 81377 Munich, Germany
- Department of General, Visceral, and Transplantation Surgery, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Kroiss
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Department of Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Martina Broglie-Däppen
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Diana Vetter
- Department of Visceral and Transplantation Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Kuno Lehmann
- Department of Visceral and Transplantation Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK
- NET Unit, ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Christoph J Auernhammer
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS-certified Center of Excellence), LMU University Hospital, 81377 Munich, Germany
| | - Kathrin Zitzmann
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| |
Collapse
|
2
|
Modica R, La Salvia A, Liccardi A, Cozzolino A, Di Sarno A, Russo F, Colao A, Faggiano A. Dyslipidemia, lipid-lowering agents and neuroendocrine neoplasms: new horizons. Endocrine 2024; 85:520-531. [PMID: 38509261 PMCID: PMC11291585 DOI: 10.1007/s12020-024-03767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies originating from cells with a neuroendocrine phenotype. The complex relationship between lipid metabolism and cancer is gaining interest and a potential anti-cancer effect of lipid lowering agents is being considered. This review aims to discuss the current understanding and treatment of dyslipidaemia in NENs, focusing on the role of lipid lowering agents, including new therapeutic approaches, and future perspectives as possible tool in cancer prevention and tumor-growth control. METHODS We performed an electronic-based search using PubMed updated until December 2023, summarizing the available evidence both in basic and clinical research about lipid lowering agents in NENs. RESULTS Dyslipidemia is an important aspect to be considered in NENs management, although randomized studies specifically addressing this topic are lacking, unlike other cancer types. Available data mainly regard statins, and in vitro studies have demonstrated direct antitumor effects, including antiproliferative effects in some cancers, supporting possible pleiotropic effects also in NENs, but data remain conflicting. Ezetimibe, omega 3-fatty acids, fibrates and inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) may enhance the regulation of lipid homeostasis, as demonstrated in other cancers. CONCLUSIONS Targeting dyslipidemia in NENs should be part of the multidisciplinary management and an integrated approach may be the best option for both metabolic and tumor control. Whether lipid lowering agents may directly contribute to tumor control remains to be confirmed with specific studies, focusing on association with other metabolic risk, disease stage and primary site.
Collapse
Affiliation(s)
- Roberta Modica
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy.
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), 00161, Rome, Italy
| | - Alessia Liccardi
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
| | - Alessia Cozzolino
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Antonella Di Sarno
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
| | - Flaminia Russo
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189, Rome, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
- UNESCO Chair, Education for Health and Sustainable Development, Federico II University, 80131, Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189, Rome, Italy
| |
Collapse
|
3
|
Toshida K, Itoh S, Toshima T, Yoshiya S, Goto R, Mita A, Harada N, Kohashi K, Oda Y, Yoshizumi T. Clinical significance of mechanistic target of rapamycin expression in vessels that encapsulate tumor cluster-positive hepatocellular carcinoma patients who have undergone living donor liver transplantation. Ann Gastroenterol Surg 2024; 8:163-171. [PMID: 38250695 PMCID: PMC10797838 DOI: 10.1002/ags3.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/23/2023] [Accepted: 08/13/2023] [Indexed: 01/23/2024] Open
Abstract
Background There is limited published information regarding the expression of mechanistic target of rapamycin (mTOR) in vessels that encapsulate tumor cluster (VETC)-positive hepatocellular carcinoma (HCC). The mTOR inhibitor, everolimus, has been approved as an immunosuppressant for use in HCC patients after living donor liver transplantation (LDLT). Methods Using a database of 214 patients who underwent LDLT for HCC, we examined the mTOR protein and angiopoietin-2 (Ang-2) in VETC-positive HCC by immunohistochemical staining. The presence of VETC and mTOR expression were evaluated in both primary and recurrent HCC lesions. Results Forty-three of the 214 patients (20.1%) were VETC-positive, and 29 of these 43 patients (67.4%) expressed mTOR. Relative Ang-2 expression was significantly higher in the mTOR-positive than in the mTOR-negative group (p = 0.037). Thirty-four of the 214 patients experienced HCC recurrence after LDLT; 20 of these were operable. The primary lesions of six of these 20 patients were VETC-positive; five of these six patients also had VETC-positive recurrent lesions (p < 0.001). The expression of mTOR was significantly higher in the VETC-positive lesions (p = 0.0018). Conclusions We showed that mTOR expression was higher in the VETC-positive primary and recurrent lesions than in the VETC-negative ones.
Collapse
Affiliation(s)
- Katsuya Toshida
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shohei Yoshiya
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Atsuyoshi Mita
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation, and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineNaganoJapan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
4
|
Lee K, Noh E, Moon SJ, Joo YY, Kang EJ, Seo JH, Park IH. Statin use in patients with hormone receptor-positive metastatic breast cancer treated with everolimus and exemestane. Cancer Med 2023; 12:5461-5470. [PMID: 36263515 PMCID: PMC10028110 DOI: 10.1002/cam4.5369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND We analyzed the effect of statins in patients with hormone receptor-positive (HR+) metastatic breast cancer treated with everolimus + exemestane (EverX). MATERIALS AND METHODS We conducted a nationwide retrospective cohort study using the National Health Insurance database with patients who received EverX for metastatic breast cancer between 2011 and 2019. RESULTS Of 224,948 patients diagnosed with breast cancer, 1749 patients who received EverX for at least 30 days were included. Among them, 500 (28.6%) patients were found to take statins with EverX treatment (statin group), and the median duration of this combination was 5.36 months. The median time to treatment duration (TTD) for EverX and the overall survival (OS) were significantly higher in the statin group than in the no-statin group [7.69 vs. 5.06 months, p < 0.001; 45.7 vs. 26.0 months, p < 0.001, respectively]. Multivariable Cox analysis revealed that the use of statins was associated with prolonged TTD [HR = 0.67 (95% CI, 0.59-0.77)] and OS [HR = 0.57 (95% CI, 0.46-0.70)] for EverX even after adjustment for other covariates. CONCLUSION Statins may have synergistic effects with endocrine therapy with the mTOR inhibitor everolimus, and improve survival in patients with HR+ metastatic breast cancer.
Collapse
Affiliation(s)
- Kyoungmin Lee
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunjin Noh
- Smart Healthcare Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seok Joo Moon
- Smart Healthcare Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | | | - Eun Joo Kang
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Hong Seo
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - In Hae Park
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Sobocki BK, Perdyan A, Szot O, Rutkowski J. Management of Pheochromocytomas and Paragangliomas: A Case-Based Review of Clinical Aspects and Perspectives. J Clin Med 2022; 11:jcm11092591. [PMID: 35566714 PMCID: PMC9103340 DOI: 10.3390/jcm11092591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022] Open
Abstract
Paraganglioma and pheochromocytoma are rare medical conditions. Thus, there are still a small number of studies, clinical trials, and evidence-based data in this field. This makes clinical decisions more difficult. In this study, we present a case report enriched with a short review of available essential clinical data, indicating the need for constant metoxycatecholamine level observation and a proper diagnostic imaging approach, especially in terms of ongoing pandemics. Our research also provides a summary of the molecular background of these diseases, indicating their future role in clinical management. We analyzed the ClinicalTrials.gov dataset in order to show future perspectives. In this paper, the use of the PET-CT before MRI or CT is proposed in specific cases during diagnosis processes contrary to the guidelines. PET-CT may be as effective as standard procedures and may provide a faster diagnosis, which is important in periods with more difficult access to health care, such as during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Bartosz Kamil Sobocki
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland;
- Correspondence: (B.K.S.); (J.R.)
| | - Adrian Perdyan
- International Research Agenda 3P Medicine Laboratory, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Olga Szot
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Jacek Rutkowski
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland
- Correspondence: (B.K.S.); (J.R.)
| |
Collapse
|
6
|
Natalicchio A, Faggiano A, Zatelli MC, Argentiero A, D'Oronzo S, Marrano N, Beretta GD, Acquati S, Adinolfi V, Di Bartolo P, Danesi R, Ferrari P, Gori S, Morviducci L, Russo A, Tuveri E, Montagnani M, Gallo M, Silvestris N, Giorgino F. Metabolic disorders and gastroenteropancreatic-neuroendocrine tumors (GEP-NETs): How do they influence each other? An Italian Association of Medical Oncology (AIOM)/ Italian Association of Medical Diabetologists (AMD)/ Italian Society of Endocrinology (SIE)/ Italian Society of Pharmacology (SIF) multidisciplinary consensus position paper. Crit Rev Oncol Hematol 2021; 169:103572. [PMID: 34954047 DOI: 10.1016/j.critrevonc.2021.103572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are a heterogeneous group of malignancies derived from neuroendocrine cells that can occur anywhere along the gastrointestinal tract. GEP-NETs incidence has been steadily increasing over the past decades, in parallel with the increasing incidence of the metabolic syndrome (MetS). It is not yet fully known whether the MetS components (such as obesity, dyslipidemia and type 2 diabetes) could be involved in the etiology of GEP-NETs or could influence their outcomes. In this review, a panel of experts of the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provides a critical view of the experimental and clinical evidence about the association of GEP-NETs risk, outcomes, and therapies with the metabolic disorders typical of MetS. The potential therapeutic strategies for an optimal management of patients with both GEP-NETs and MetS are also discussed.
Collapse
Affiliation(s)
- Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical & Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| | - Maria Chiara Zatelli
- Section of Endocrinology & Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | | | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Nicola Marrano
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | | | - Silvia Acquati
- Endocrinology Unit, Ospedale Pierantoni-Morgagni, Forlì, Italy.
| | - Valerio Adinolfi
- Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| | - Paolo Di Bartolo
- Diabetology Clinic, Rete Clinica di Diabetologia Aziendale - Dipartimento, Internistico di Ravenna - AUSL Romagna, Ravenna, Italy.
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Pietro Ferrari
- Palliative Care Unit, Istituti Clinici Scientifici Maugeri SPA SB, IRCCS (PV), Italy.
| | - Stefania Gori
- Oncologia Medica, IRCCS Ospedale Sacro Cuore Don Calabria di Negrar, Verona, Italy.
| | - Lelio Morviducci
- Diabetology and Nutrition Unit, Department of Medical Specialities, ASL Roma 1 - S. Spirito Hospital, Rome, Italy.
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy.
| | - Enzo Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ATS Sardegna - ASSL Carbonia-Iglesias, Italy.
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Marco Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy.
| | - Nicola Silvestris
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy; Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
7
|
Encapsulation of Lovastatin in Zein Nanoparticles Exhibits Enhanced Apoptotic Activity in HepG2 Cells. Int J Mol Sci 2019; 20:ijms20225788. [PMID: 31752085 PMCID: PMC6888474 DOI: 10.3390/ijms20225788] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
Research on statins highlights their potent cytotoxicity against cancer cells and their potential for cancer prevention. The aim of the current study was to examine whether loading lovastatin (LVS) in zein (ZN) nanoparticles (NPs) would potentiate the anti-proliferative effects of LVS and enhance its proliferation-inhibiting activity in HepG2 cells. LVS-ZN NPs were prepared and showed excellent characteristics, with respect to their particle size, zeta potential, diffusion, and entrapment efficiency. In addition, they showed the most potent anti-proliferative activity against HepG2 cells. ZN alone showed an observable anti-proliferative that was significantly higher than that of raw LVS. Furthermore, LVS uptake by HepG2 cells was greatly enhanced by the formulation in ZN. A cell cycle analysis indicated that LVS induced a significant cell accumulation in the G2/M and pre-G phases. In this regard, the LVS-ZN NPs exhibited the highest potency. The accumulation in the pre-G phase indicated an enhanced pro-apoptotic activity of the prepared formula. The cells incubated with the LVS-ZN NPs showed the highest percentage of cells with annexin-V positive staining. In addition, the same incubations showed the highest content of caspase-3 enzyme in comparison to raw LVS or ZN. Thus, the loading of LVS in ZN nanoparticles enhances its anti-proliferative activity against HepG2 cells, which is attributed, at least partly, to the enhanced cellular uptake and the induction of apoptosis.
Collapse
|
8
|
Nölting S, Ullrich M, Pietzsch J, Ziegler CG, Eisenhofer G, Grossman A, Pacak K. Current Management of Pheochromocytoma/Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine. Cancers (Basel) 2019; 11:cancers11101505. [PMID: 31597347 PMCID: PMC6827093 DOI: 10.3390/cancers11101505] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCC/PGLs) are rare, mostly catecholamine-producing neuroendocrine tumors of the adrenal gland (PCCs) or the extra-adrenal paraganglia (PGL). They can be separated into three different molecular clusters depending on their underlying gene mutations in any of the at least 20 known susceptibility genes: The pseudohypoxia-associated cluster 1, the kinase signaling-associated cluster 2, and the Wnt signaling-associated cluster 3. In addition to tumor size, location (adrenal vs. extra-adrenal), multiplicity, age of first diagnosis, and presence of metastatic disease (including tumor burden), other decisive factors for best clinical management of PCC/PGL include the underlying germline mutation. The above factors can impact the choice of different biomarkers and imaging modalities for PCC/PGL diagnosis, as well as screening for other neoplasms, staging, follow-up, and therapy options. This review provides a guide for practicing clinicians summarizing current management of PCC/PGL according to tumor size, location, age of first diagnosis, presence of metastases, and especially underlying mutations in the era of precision medicine.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstraße 1, 80336 München, Germany.
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
- Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 9, 01062 Dresden, Germany.
| | - Christian G Ziegler
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Graeme Eisenhofer
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany.
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford Ox3 7LJ, UK.
- Department of Gastroenterology, Royal Free Hospital ENETS Centre of Excellence, London NW3 2QG, UK.
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
9
|
Sherbet GV. Statins: A Conceivable Remedial Role for the Regulation of Cancer Progression. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666180611113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mevalonate pathway (also known as the cholesterol biosynthesis pathway) plays a crucial metabolic role in normal cell function as well as in the pathological environment. It leads to the synthesis of sterol and non-sterol isoprenoid biomolecules which subserve a variety of cellular functions. It is known to be deregulated in many disease processes. Statins and bisphosphonates are prominent inhibitors of the mevalonate pathway. They inhibit cell proliferation and activate apoptotic signalling and suppress tumour growth. Statins subdue metastatic spread of tumours by virtue of their ability to suppress invasion and angiogenesis. The induction of autophagy is another feature of statin effects that could contribute to the suppression of metastasis. Herein highlighted are the major signalling systems that statins engage to generate these biological effects. Statins can constrain tumour growth by influencing the expression and function of growth factor and receptor systems. They may suppress epithelial mesenchymal transition with resultant inhibition of cell survival signalling, together with the inhibition of cancer stem cell generation, and their maintenance and expansion. They can suppress ER (oestrogen receptor)-α in breast cancer cells. Statins have been implicated in the activation of the serine/threonine protein kinase AMPK (5' adenosine monophosphate-activated protein) leading to the suppression of cell proliferation. Both statins and bisphosphonates can suppress angiogenic signalling by HIF (hypoxia- inducible factor)-1/eNOS (endothelial nitric oxide synthase) and VEGF (vascular endothelial growth factor)/VEGFR (VEGF receptor). Statins have been linked with improvements in disease prognosis. Also attributed to them is the ability of cancer prevention and reduction of risk of some forms of cancer. The wide spectrum of cancer associated events which these mevalonate inhibitors appear to influence would suggest a conceivable role for them in cancer management. However, much deliberation is warranted in the design and planning of clinical trials, their scope and definition of endpoints, modes risk assessment and the accrual of benefits.
Collapse
Affiliation(s)
- Gajanan V. Sherbet
- School of Engineering, University of Newcastle Upon Tyne, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
10
|
Calsina B, Castro-Vega LJ, Torres-Pérez R, Inglada-Pérez L, Currás-Freixes M, Roldán-Romero JM, Mancikova V, Letón R, Remacha L, Santos M, Burnichon N, Lussey-Lepoutre C, Rapizzi E, Graña O, Álvarez-Escolá C, de Cubas AA, Lanillos J, Cordero-Barreal A, Martínez-Montes ÁM, Bellucci A, Amar L, Fernandes-Rosa FL, Calatayud M, Aller J, Lamas C, Sastre-Marcos J, Canu L, Korpershoek E, Timmers HJ, Lenders JWM, Beuschlein F, Fassnacht-Capeller M, Eisenhofer G, Mannelli M, Al-Shahrour F, Favier J, Rodríguez-Antona C, Cascón A, Montero-Conde C, Gimenez-Roqueplo AP, Robledo M. Integrative multi-omics analysis identifies a prognostic miRNA signature and a targetable miR-21-3p/TSC2/mTOR axis in metastatic pheochromocytoma/paraganglioma. Am J Cancer Res 2019; 9:4946-4958. [PMID: 31410193 PMCID: PMC6691382 DOI: 10.7150/thno.35458] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale: Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that present variable outcomes. To date, no effective therapies or reliable prognostic markers are available for patients who develop metastatic PPGL (mPPGL). Our aim was to discover robust prognostic markers validated through in vitro models, and define specific therapeutic options according to tumor genomic features. Methods: We analyzed three PPGL miRNome datasets (n=443), validated candidate markers and assessed them in serum samples (n=36) to find a metastatic miRNA signature. An integrative study of miRNome, transcriptome and proteome was performed to find miRNA targets, which were further characterized in vitro. Results: A signature of six miRNAs (miR-21-3p, miR-183-5p, miR-182-5p, miR-96-5p, miR-551b-3p, and miR-202-5p) was associated with metastatic risk and time to progression. A higher expression of five of these miRNAs was also detected in PPGL patients' liquid biopsies compared with controls. The combined expression of miR-21-3p/miR-183-5p showed the best power to predict metastasis (AUC=0.804, P=4.67·10-18), and was found associated in vitro with pro-metastatic features, such as neuroendocrine-mesenchymal transition phenotype, and increased cell migration rate. A pan-cancer multi-omic integrative study correlated miR-21-3p levels with TSC2 expression, mTOR pathway activation, and a predictive signature for mTOR inhibitor-sensitivity in PPGLs and other cancers. Likewise, we demonstrated in vitro a TSC2 repression and an enhanced rapamycin sensitivity upon miR-21-3p expression. Conclusions: Our findings support the assessment of miR-21-3p/miR-183-5p, in tumors and liquid biopsies, as biomarkers for risk stratification to improve the PPGL patients' management. We propose miR-21-3p to select mPPGL patients who may benefit from mTOR inhibitors.
Collapse
|
11
|
Nölting S, Grossman A, Pacak K. Metastatic Phaeochromocytoma: Spinning Towards More Promising Treatment Options. Exp Clin Endocrinol Diabetes 2019; 127:117-128. [PMID: 30235495 PMCID: PMC7443617 DOI: 10.1055/a-0715-1888] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phaeochromocytomas (PCC) and paragangliomas (PGL) are rare tumours arising from the chromaffin cells of the adrenal medulla (PCC) or the paraganglia located outside the adrenal gland (PGL). However, their incidence is likely to be underestimated; around 10% of all PCC/PGL are metastatic, with higher metastatic potential of PGLs compared to PCCs. If benign, surgery is the treatment of choice, but if metastatic, therapy is challenging. Here we review the currently existing therapy options for metastatic PCCs/PGLs including conventional chemotherapy (the original Averbuch scheme, but updated), radiopharmaceutical treatments (131I-MIBG, 90Y- and 177Lu-DOTATATE) and novel targeted therapies (anti-angiogenic tyrosine kinase inhibitors and mTORC1 inhibitors), emphasising future therapeutic approaches (HIF-2α and PARP inhibitors, temozolomide alone, metronomic temozolomide, somatostatin analogues) based on the oncogenic signalling pathways related to three different clusters comprising more than 20 well-characterised PCC/PGL susceptibility genes. We suggest that targeted combination therapies including repurposed agents may offer more effective future options worthy of exploration.
Collapse
Affiliation(s)
- Svenja Nölting
- Medizinische Klinik und Poliklinik IV, Interdisciplinary Center of Neuroendocrine Tumours of the GastroEntero-Pancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, Royal Free Hospital ENETS Centre of Excellence, London, and Barts and the London Scool of Medicine, London, UK
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Guan X, Yin L, Yang Y, Meng XJ, Wang DL, Sun YT. Quantitation of lovastatin and its hydroxy acid in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1508473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xin Guan
- Department of Pharmacology, Tianjin Nankai Hospital, Tianjin, PR China
- School of Life Science, Jilin University, Changchun, PR China
| | - Lei Yin
- School of Life Science, Jilin University, Changchun, PR China
| | - Yan Yang
- School of Life Science, Jilin University, Changchun, PR China
| | - Xiang-Jun Meng
- School of Life Science, Jilin University, Changchun, PR China
| | - De-Li Wang
- School of Life Science, Jilin University, Changchun, PR China
| | - Yan-Tong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
13
|
Wang Y, Xie Y, Ma J, Gong R, Yan Z, Wang W, Wang Y, Xu B, Li X. Lovastatin induces apoptosis of HepG-2 cells by activating ROS-dependent mitochondrial and ER stress pathways. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11480-11488. [PMID: 31966503 PMCID: PMC6966085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Statins can reduce the malignancies through stimulating apoptosis. We aimed to elucidate the role of lovastatin in HepG-2 cells. METHODS HepG-2 and non-tumor L-O2 cells were used as the cell models. CCK-8, flow cytometric analysis and carboxy fluorescein diacetate succinimidyl ester (CFDA-SE) labeling were performed to monitor the viability, apoptosis and proliferation. RESULTS We found that lovastatin exerted the most tumor suppressing effects on liver cancer cells among the three tested statins. Lovastatin treatment significantly reduced cell viability and proliferation, and induced apoptosis in HepG-2. However, drug resistance effects were observed in the non-tumor L-O2 cells. The apoptosis triggered by lovastatin was accompanied by high intracellular levels of ROS. Pretreatment with the ROS blocker N-acetyl-cysteine (NAC) could mitigate the lovastatin-induced cytotoxicity in HepG-2 cells. Mechanistically, lovastatin increased HepG-2 cell apoptosis by triggering mitochondrial and endoplasmic reticulum (ER) stress pathways through ROS accumulation. CONCLUSIONS Lovastatin significantly induced cell apoptosis by activating ROS-dependent mitochondrial and ER stress pathways in HepG-2 cells.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai, China
| | - Yanting Xie
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai, China
| | - Junyong Ma
- Department of Hepatopancreatobiliary Surgery, Huzhou Central HospitalZhejiang Province, China
| | - Renyan Gong
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai, China
| | - Zhenlin Yan
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai, China
| | - Wenchao Wang
- Department of Hepatopancreatobiliary Surgery, Huzhou Central HospitalZhejiang Province, China
| | - Yu Wang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai, China
| | - Bo Xu
- Department of Anesthesiology and ICU, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Xifeng Li
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai, China
| |
Collapse
|
14
|
The selective PI3Kα inhibitor BYL719 as a novel therapeutic option for neuroendocrine tumors: Results from multiple cell line models. PLoS One 2017; 12:e0182852. [PMID: 28800359 PMCID: PMC5553670 DOI: 10.1371/journal.pone.0182852] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Background/Aims The therapeutic options for metastatic neuroendocrine tumors (NETs) are limited. As PI3K signaling is often activated in NETs, we have assessed the effects of selective PI3Kp110α inhibition by the novel agent BYL719 on cell viability, colony formation, apoptosis, cell cycle, signaling pathways, differentiation and secretion in pancreatic (BON-1, QGP-1) and pulmonary (H727) NET cell lines. Methods Cell viability was investigated by WST-1 assay, colony formation by clonogenic assay, apoptosis by caspase3/7 assay, the cell cycle by FACS, cell signaling by Western blot analysis, expression of chromogranin A and somatostatin receptors 1/2/5 by RT-qPCR, and chromogranin A secretion by ELISA. Results BYL719 dose-dependently decreased cell viability and colony formation with the highest sensitivity in BON-1, followed by H727, and lowest sensitivity in QGP-1 cells. BYL719 induced apoptosis and G0/G1 cell cycle arrest associated with increased p27 expression. Western blots showed inhibition of PI3K downstream targets to a varying degree in the different cell lines, but IGF1R activation. The most sensitive BON-1 cells displayed a significant, and H727 cells a non-significant, GSK3 inhibition after BYL719 treatment, but these effects do not appear to be mediated through the IGF1R. In contrast, the most resistant QGP-1 cells showed no GSK3 inhibition, but a modest activation, which would partially counteract the other anti-proliferative effects. Accordingly, BYL719 enhanced neuroendocrine differentiation with the strongest effect in BON-1, followed by H727 cells indicated by induction of chromogranin A and somatostatin receptor 1/2 mRNA-synthesis, but not in QGP-1 cells. In BON-1 and QGP-1 cells, the BYL719/everolimus combination was synergistic through simultaneous AKT/mTORC1 inhibition, and significantly increased somatostatin receptor 2 transcription compared to each drug separately. Conclusion Our results suggest that the agent BYL719 could be a novel therapeutic approach to the treatment of NETs that may sensitize NET cells to somatostatin analogs, and that if there is resistance to its action this may be overcome by combination with everolimus.
Collapse
|
15
|
The MTH1 inhibitor TH588 demonstrates anti-tumoral effects alone and in combination with everolimus, 5-FU and gamma-irradiation in neuroendocrine tumor cells. PLoS One 2017; 12:e0178375. [PMID: 28542590 PMCID: PMC5444855 DOI: 10.1371/journal.pone.0178375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
Modulation of the redox system in cancer cells has been considered a promising target for anti-cancer therapy. The novel MTH1 inhibitor TH588 proved tremendous potential in terms of cancer cell eradication, yet its specificity has been questioned by recent reports, indicating that TH588 may also induce cancer cell death by alternative mechanisms than MTH1 inhibition. Here we used a panel of heterogeneous neuroendocrine tumor cells in order to assess cellular mechanisms and molecular signaling pathways implicated in the effects of TH588 alone as well as dual-targeting approaches combining TH588 with everolimus, cytotoxic 5-fluorouracil or γ-irradiation. Our results reflect that TH588 alone efficiently decreased the survival of neuroendocrine cancer cells by PI3K-Akt-mTOR axis downregulation, increased apoptosis and oxidative stress. However, in the dual-targeting approaches cell survival was further decreased due to an even stronger downregulation of the PI3K-Akt-mTOR axis and augmentation of apoptosis but not oxidative stress. Furthermore, we could attribute TH588 chemo- and radio-sensitizing properties. Collectively our data not only provide insights into how TH588 exactly kills cancer cells but also depict novel perspectives for combinatorial treatment approaches encompassing TH588.
Collapse
|
16
|
Gunawardane PTK, Grossman A. Phaeochromocytoma and Paraganglioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:239-259. [PMID: 27888488 DOI: 10.1007/5584_2016_76] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phaeochromocytomas and paragangliomas are relatively uncommon tumours which may be manifest in many ways, specifically as sustained or paroxysmal hypertension, episodes of palpitations, sweating, headache and anxiety, or increasingly as an incidental finding. Recent studies have shown that an increasing number are due to germline mutations. This review concentrates on the diagnosis, biochemistry and treatment of these fascinating tumours.
Collapse
Affiliation(s)
- P T Kavinga Gunawardane
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.,Ministry of Health, Colombo, Sri Lanka
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
| |
Collapse
|