1
|
Delic D, Klein T, Wohnhaas CT, Feng H, Lin X, Zhang JR, Wu D. Dipeptidyl peptidase-4 inhibitor linagliptin reduces inflammatory response, ameliorates tissue edema formation, and improves survival in severe sepsis. Biomed Pharmacother 2025; 182:117778. [PMID: 39724680 DOI: 10.1016/j.biopha.2024.117778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Excessive inflammation in sepsis causes microvascular dysfunction associated with organ dysfunction and high mortality. The present studies aimed to examine the therapeutic potential of linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor in a clinically relevant polymicrobial sepsis model in mice. METHODS Sepsis was induced by cecal ligation and puncture (CLP). Mice were grouped into: Sham control+vehicle; Group 2: CLP+vehicle; Group 3: CLP+dexamethasone (10 mg/kg, s.c.) given 6 h after CLP; Group 4: CLP+linagliptin (1 mg/kg, s.c.) given 6 h after CLP. The experiment was terminated 24 hours after CLP in two experimental sets. Seven-day survival following CLP was determined in a third experimental set. RESULTS Treatment with linagliptin inhibited DPP-4 activity, increased the levels of active forms of endogenous gastric inhibitory polypeptide and glucagon-like peptide-1, without affecting the blood glucose levels in CLP mice. Compared to vehicle treatment, administration of linagliptin reduced sepsis-induced tissue hyper permeability as evidenced by a reduction in vascular Evans blue leakage, prevented edema formation in the lung, heart, liver and kidney. Furthermore, linagliptin or dexamethasone reduced sepsis-induced proinflammatory cytokine and chemokine production, such as IL-1β, IL-2, IL-10, IL-23, IL-27, VCAM-1, eotaxin, MDC, MCSF1, GCP-2, and NGAL. Importantly, administration of linagliptin improved the 7-day survival rate following CLP in mice. RNA sequencing in lung and heart revealed that linagliptin attenuated key inflammatory pathways including TNF alpha (via NFκB) and IL6/JAK/STAT3 signaling and activated interferon signaling in the heart. CONCLUSIONS Linagliptin treatment can attenuate the inflammatory response, protect against severe sepsis-induced vascular hyperpermeability, reduce multiorgan injury, and most importantly, improve the survival.
Collapse
Affiliation(s)
- Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Huiying Feng
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Xinchun Lin
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Jin-Rui Zhang
- First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Dongmei Wu
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
2
|
Okan A, Demir N, Doğanyiğit Z. Linagliptin in combination with insulin suppresses apoptotic unfolded protein response in ovaries exposed to type 1 diabetes. Cell Biochem Funct 2024; 42:e3898. [PMID: 38088568 DOI: 10.1002/cbf.3898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 03/14/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is one of the main causes of ovarian atresia, but its molecular effect on the ovaries is not fully understood. Accumulating evidence suggests that T1DM causes excessive endoplasmic reticulum (ER) stress and insufficient adaptive unfolded protein response that triggers proapoptotic signaling pathways in ovarian tissue. In addition, problems such as amenorrhea and infertility, which are frequently seen in women with T1DM, continue despite the intensification of insulin therapy and improvement of metabolic control. Therefore new, and adjunctive treatments for women with T1DM need to be explored. We aimed to examine how the use of linagliptin, which has blood sugar-lowering effects and high antioxidant activity, together with insulin affects the expression levels of proteins and genes that play a role in ER stress in type 1 diabetic mouse ovaries. Eighty-four Balb/C 6-week-old female mice were randomly divided into seven groups: control, vehicle, diabetes + insulin, diabetes + linagliptin, diabetes + linagliptin + insulin, diabetes + TUDCA, and diabetes + TUDCA + insulin. TUDCA (an inhibitor of ER stress) groups are positive control groups created to compare linagliptin groups in terms of ER stress. Linagliptin and TUDCA were given by oral gavage and 1U insulin was administered subcutaneously for 2 weeks. A significant decrease was observed in the MDA and NOX1 levels and the number of atretic follicles in the ovaries of the diabetes + linagliptin + insulin group compared to the diabetes + insulin group. The use of linagliptin and insulin increased the expression of pro-survival XBP1s transmembrane protein and decreased the expression of proapoptotic ATF4, pJNK1/2, cleaved caspase 12, and cleaved caspase 3 in mouse ovaries. Our study provides new therapeutic evidence that linagliptin administered in addition to insulin induces ER stress mechanism-dependent survival in ovaries with type 1 diabetes.
Collapse
Affiliation(s)
- Aslı Okan
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Züleyha Doğanyiğit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
3
|
Doğanyiğit Z, Okan A, Taheri S, Yılmaz Z, Akyüz E, Demir N. Evaluation of linagliptin and insulin combined therapy on unfolded protein response in type 1 diabetic mouse heart. Chem Biol Drug Des 2023; 102:1085-1096. [PMID: 37532256 DOI: 10.1111/cbdd.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
The aim of this study is to reveal the effects of the use of linagliptin, a DPP-4 inhibitor due to its beneficial cardiovascular effects, on endoplasmic reticulum stress (ERS) signaling, which is involved in the pathogenesis of cardiovascular complications related to type 1 diabetes. BALB/c female mice (n = 72) were divided into six groups: control, diabetes+insulin, diabetes+linagliptin, diabetes+linagliptin+insulin, diabetes+TUDCA, and diabetes+TUDCA+insulin. Immunohistochemistry and western blot method, qRT-PCR, ELISA method, and malondialdehyde (MDA) measurements were performed. Linagliptin administered to the type 1 diabetic mouse heart significantly reduced the expression levels of the total and cleaved forms of ATF6, ATF4, and p-JNK, caspase 3. Immunohistochemical and western blot analyses revealed that cleaved caspase 3 protein expression was significantly increased in the diabetes+insulin group compared to the other groups. According to ELISA findings, TUDCA was more effective in reducing NOX 1 and MDA levels than linagliptin. While linagliptin decreased the Chop mRNA level, no change was observed in the Grp78 mRNA level. Our findings showed that there was not much difference between the administration of linagliptin alone or in combination with insulin. Our study reveals that linagliptin is an effective therapeutic agent on ERS and apoptotic UPR in type 1 diabetic hearts.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Faculty of Medicine, Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Serpil Taheri
- Faculty of Medicine, Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Zeynep Yılmaz
- Faculty of Medicine, Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Enes Akyüz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Necdet Demir
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
Ribeiro-Silva JC, Marques VB, Dos Santos L. Effects of dipeptidyl peptidase 4 inhibition on the endothelial control of the vascular tone. Am J Physiol Cell Physiol 2023; 325:C972-C980. [PMID: 37642237 PMCID: PMC11932530 DOI: 10.1152/ajpcell.00246.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a serine protease known to cleave incretin hormones, which stimulate insulin secretion after food intake, a fact that supported the development of its inhibitors (DPP4i or gliptins) for the treatment of type 2 diabetes mellitus. In addition to their glucose-lowering effects, DPP4i show benefits for the cardiovascular system that could be related, at least in part, to their protective action on vascular endothelium. DPP4i have been associated with the reversal of endothelial dysfunction, an important predictor of cardiovascular events and a hallmark of diseases such as atherosclerosis, diabetes mellitus, hypertension, and heart failure. In animal models of these diseases, DPP4i increase nitric oxide bioavailability and limits oxidative stress, thereby improving the endothelium-dependent relaxation. Similar effects on flow-mediated dilation and attenuation of endothelial dysfunction have also been noted in human studies, suggesting a value for gliptins in the clinical scenario, despite the variability of the results regarding the DPP4i used, treatment duration, and presence of comorbidities. In this mini-review, we discuss the advances in our comprehension of the DPP4i effects on endothelial regulation of vascular tone. Understanding the role of DPP4 and its involvement in the signaling mechanisms leading to endothelial dysfunction will pave the way for a broader use of DPP4i in conditions that endothelial dysfunction is a pivotal pathophysiological player.
Collapse
Affiliation(s)
- Joao Carlos Ribeiro-Silva
- Department of Ophthalmology and Visual Sciences, State University of New York Upstate Medical University, Syracuse, New York, United States
| | | | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
5
|
Huang HC, Hsu SJ, Chuang CL, Hsiung SY, Chang CC, Hou MC, Lee FY. Effects of dipeptidyl peptidase-4 inhibition on portal hypertensive and cirrhotic rats. J Chin Med Assoc 2021; 84:1092-1099. [PMID: 34670224 DOI: 10.1097/jcma.0000000000000636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Portal hypertension is a pathophysiological abnormality with distinct vascular derangements associated with liver cirrhosis. Dipeptidyl peptidase-4 (DPP-4) inhibitors are antidiabetic agents which exert pleiotropic vascular effects, but their relevant impact on portal hypertension and liver cirrhosis remains unclear. This study aims to clarify this issue. METHODS Rats receiving partial portal vein ligation (PVL) and common bile duct ligation (BDL) served as experimental models for portal hypertension and cirrhosis, respectively. After linagliptin (a DPP-4 inhibitor) treatment, the survival rate, hemodynamics, biochemistry parameters and liver histopathology were evaluated. In addition, the collateral vascular responsiveness and severity of portal-systemic shunting were examined. mRNA and protein expression in the vasculature and liver were also examined. RESULTS Linagliptin significantly reduced portal pressure (control vs linagliptin: 12.9 ± 1.2 vs 9.1 ± 2.0 mmHg, p = 0.001) and upregulated nitric oxide synthase expression in the collateral vessel, superior mesentery artery, and liver of PVL rats. However, the portal hypotensive effect was insignificant in BDL rats. Glucose plasma levels, liver and renal biochemistry parameters were not significantly altered by linagliptin. The degree of portal-systemic shunting and collateral vascular responsiveness were also not significantly altered by linagliptin treatment. Linagliptin did not improve liver fibrosis and hepatic inflammation in BDL rats. CONCLUSION DPP-4 inhibition by linagliptin reduced portal pressure in portal hypertensive rats but not in cirrhotic rats. It may act by decreasing intrahepatic resistance via upregulation of hepatic nitric oxide synthase in portal hypertensive rats.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chiao-Lin Chuang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shao-Yu Hsiung
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ching-Chih Chang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
6
|
Gokani S, Bhatt LK. Caveolin-1: A promising therapeutic target for diverse diseases. Curr Mol Pharmacol 2021; 15:701-715. [PMID: 34847854 DOI: 10.2174/1874467214666211130155902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
The plasma membrane of eukaryotic cells contains small flask-shaped invaginations known as caveolae that are involved in the regulation of cellular signaling. Caveolin-1 is a 21-24kDa protein localized in the caveolar membrane. Caveolin-1 (Cav-1) has been considered as a master regulator among the various signaling molecules. It has been emerging as a chief protein regulating cellular events associated with homeostasis, caveolae formation, and caveolae trafficking. In addition to the physiological role of cav-1, it has a complex role in the progression of various diseases. Caveolin-1 has been identified as a prognosticator in patients with cancer and has a dual role in tumorigenesis. The expression of Cav-1 in hippocampal neurons and synapses is related to neurodegeneration, cognitive decline, and aging. Despite the ubiquitous association of caveolin-1 in various pathological processes, the mechanisms associated with these events are still unclear. Caveolin-1 has a significant role in various events of the viral cycle, such as viral entry. This review will summarize the role of cav-1 in the development of cancer, neurodegeneration, glaucoma, cardiovascular diseases, and infectious diseases. The therapeutic perspectives involving clinical applications of Caveolin-1 have also been discussed. The understanding of the involvement of caveolin-1 in various diseased states provides insights into how it can be explored as a novel therapeutic target.
Collapse
Affiliation(s)
- Shivani Gokani
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai. India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai. India
| |
Collapse
|
7
|
Tanaka A, Node K. Cardiovascular surrogate markers and cardiometabolic therapeutics: a viewpoint learned from clinical trials on dipeptidyl peptidase-4 inhibitors. Cardiovasc Diabetol 2021; 20:41. [PMID: 33573675 PMCID: PMC7879604 DOI: 10.1186/s12933-021-01234-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 01/14/2023] Open
Abstract
Clinical trials are often performed to investigate the effects of various types of cardiometabolic therapies on cardiovascular surrogate markers, including vascular function and biomarkers. This study platform has the potential to provide information on the suspected actions of drugs and mechanistic insights into their prognostic impact. However, despite using the same class of drugs and similar study designs we are often faced with inconsistent and even conflicting results, possibly leading to some confusion in the clinical setting. When interpreting these results, it is important to investigate what caused the differences and carefully assess the information, taking into account the research situation and the patient population investigated. Using this approach, assessment of the impact on cardiovascular surrogate markers observed in clinical studies from multiple perspectives should help to better understand the potential cardiovascular effects. In this commentary we discuss how we should interpret the effects of cardiometabolic therapeutics on vascular surrogate markers, based on viewpoints learned from the results of clinical trials on dipeptidyl peptidase-4 inhibitors. This learning strategy could also be helpful for appropriate selection of drugs for evidence-based, patient-centric, tailored medication.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
8
|
Haddad D, Al Madhoun A, Nizam R, Al-Mulla F. Role of Caveolin-1 in Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9761539. [PMID: 32082483 PMCID: PMC7007939 DOI: 10.1155/2020/9761539] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
It is estimated that in 2017 there were 451 million people with diabetes worldwide. These figures are expected to increase to 693 million by 2045; thus, innovative preventative programs and treatments are a necessity to fight this escalating pandemic disorder. Caveolin-1 (CAV1), an integral membrane protein, is the principal component of caveolae in membranes and is involved in multiple cellular functions such as endocytosis, cholesterol homeostasis, signal transduction, and mechanoprotection. Previous studies demonstrated that CAV1 is critical for insulin receptor-mediated signaling, insulin secretion, and potentially the development of insulin resistance. Here, we summarize the recent progress on the role of CAV1 in diabetes and diabetic complications.
Collapse
Affiliation(s)
- Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
9
|
Neuroprotective Properties of Linagliptin: Focus on Biochemical Mechanisms in Cerebral Ischemia, Vascular Dysfunction and Certain Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20164052. [PMID: 31434198 PMCID: PMC6719127 DOI: 10.3390/ijms20164052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023] Open
Abstract
Linagliptin is a representative of dipeptidyl peptidase 4 (DPP-4) inhibitors which are registered and used effectively in a treatment of diabetes mellitus type 2. They increase the levels of active forms of endogenous incretins such as GLP-1 and GIP by inhibiting their enzymatic decomposition. Scientific reports suggest beneficial effects of linagliptin administration via immunological and biochemical pathways involved in neuroprotective processes of CNS. Linagliptin’s administration leads to a decrease in the concentration of proinflammatory factors such as: TNF-α, IL-6 and increases the number of anti-inflammatory patrolling monocytes CX3CR1bright. Significant reduction in Aβ42 level has been associated with the use of linagliptin implying potential application in Alzheimer’s disease. Linagliptin improved vascular functions by increasing production of nitric oxide (NO) and limiting concentration of apolipoprotein B. Linagliptin-induced decrease in macrophages infiltration may provide improvement in atheromatous plaque stabilization. Premedication with linagliptin increases neuron’s survival after stroke and augments neuronal stem cells proliferation. It seems to be connected with SDF-1α/CXCR4 signaling pathway. Linagliptin prevented abnormal proliferation and migration of rat brain microvascular endothelial cells in a state of hypoperfusion via SIRT1/HIF-1α/VEGF pathway. The article presents a summary of the studies assessing neuroprotective properties of linagliptin with special emphasis on cerebral ischemia, vascular dysfunction and neurodegenerative diseases.
Collapse
|
10
|
Endothelium-Dependent Hyperpolarization (EDH) in Diabetes: Mechanistic Insights and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20153737. [PMID: 31370156 PMCID: PMC6695796 DOI: 10.3390/ijms20153737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is one of the major risk factors for cardiovascular disease and is an important health issue worldwide. Long-term diabetes causes endothelial dysfunction, which in turn leads to diabetic vascular complications. Endothelium-derived nitric oxide is a major vasodilator in large-size vessels, and the hyperpolarization of vascular smooth muscle cells mediated by the endothelium plays a central role in agonist-mediated and flow-mediated vasodilation in resistance-size vessels. Although the mechanisms underlying diabetic vascular complications are multifactorial and complex, impairment of endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells would contribute at least partly to the initiation and progression of microvascular complications of diabetes. In this review, we present the current knowledge about the pathophysiology and underlying mechanisms of impaired EDH in diabetes in animals and humans. We also discuss potential therapeutic approaches aimed at the prevention and restoration of EDH in diabetes.
Collapse
|
11
|
Woodman OL, Ortega JM, Hart JL, Klein T, Potocnik S. Influence of type-4 dipeptidyl peptidase inhibition on endothelium-dependent relaxation of aortae from a db/db mouse model of type 2 diabetes: a comparison with the effect of glimepiride. Diabetes Metab Syndr Obes 2019; 12:1449-1458. [PMID: 31496778 PMCID: PMC6701666 DOI: 10.2147/dmso.s215086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/19/2019] [Indexed: 01/03/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the effects of the type-4 dipeptidyl peptidase (DPP-4) inhibitors linagliptin and vildagliptin as well as the sulfonylurea glimepiride on endothelium-dependent relaxation of aortae from female db/db mice with established hyperglycemia to determine whether these treatments were able to attenuate diabetes-induced endothelial dysfunction. MATERIALS AND METHODS The mice were treated with glimepiride (2 mg/kg po per day, weeks 1-6, n=12), glimepiride plus vildagliptin (glimepiride 2 mg/kg po per day, weeks 1-6; vildagliptin 3 mg/kg po per day, weeks 4-6, n=11), glimepiride plus linagliptin (glimepiride 2 mg/kg po per day, weeks 1-6; linagliptin 3 mg/kg po per day, weeks 4-6, n=11) or linagliptin (3 mg/kg po per day, weeks 1-6, n=12). Endothelium-dependent relaxation using acetylcholine was assessed in the absence and presence of pharmacological tools (TRAM-34 1 μM; apamin 1 μM; N-nitro-L-arginine [L-NNA] 100 μM; 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one [ODQ] 10 μM) to distinguish relaxation mediated by nitric oxide (NO). RESULTS Linagliptin was associated with a significant improvement in endothelium-dependent relaxation (ACh Rmax; db/db 41±1%, linagliptin 73±6%, p<0.05). The enhanced response was maintained in the presence of TRAM-34+ apamin (ACh Rmax; db/db 23±6%, linagliptin 60±6%, p<0.01), ie, when the endothelium-dependent relaxation was mediated by NO. There was no evidence for a contribution from KCa channel opening to responses under any conditions. Glimepiride had no effect on endothelium-dependent relaxation when given alone (ACh Rmax 38±3%). The addition of linagliptin or vildagliptin to glimepiride did not significantly improve endothelium-dependent relaxation. All treatments caused some decrease in aortic superoxide production but the effect of linagliptin was significantly greater than glimepiride (linagliptin 534±60 relative luminescence unit [RLU], glimepiride 1471±265 RLU, p<0.05). CONCLUSION Linagliptin is superior to glimepiride in regard to the preservation of endothelium-dependent relaxation in the presence of hyperglycemia and the improvement in endothelial function in response to linagliptin treatment is associated with greater antioxidant activity compared to glimepiride.
Collapse
Affiliation(s)
- Owen L Woodman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Correspondence: Owen L WoodmanBaker Heart & Diabetes Institute, PO Box 6492, Melbourne3004, AustraliaTel +61 38 532 1917Email
| | - Jacinta M Ortega
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Joanne L Hart
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach, Germany
| | - Simon Potocnik
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
12
|
Willson C, Watanabe M, Tsuji-Hosokawa A, Makino A. Pulmonary vascular dysfunction in metabolic syndrome. J Physiol 2018; 597:1121-1141. [PMID: 30125956 DOI: 10.1113/jp275856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a critically important precursor to the onset of many diseases, such as cardiovascular disease, and cardiovascular disease is the leading cause of death worldwide. The primary risk factors of metabolic syndrome include hyperglycaemia, abdominal obesity, dyslipidaemia, and high blood pressure. It has been well documented that metabolic syndrome alters vascular endothelial and smooth muscle cell functions in the heart, brain, kidney and peripheral vessels. However, there is less information available regarding how metabolic syndrome can affect pulmonary vascular function and ultimately increase an individual's risk of developing various pulmonary vascular diseases, such as pulmonary hypertension. Here, we review in detail how metabolic syndrome affects pulmonary vascular function.
Collapse
Affiliation(s)
- Conor Willson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Ayako Makino
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Lee CH, Dai ZK, Yen CT, Hsieh SL, Wu BN. KMUP-1 protects against streptozotocin-induced mesenteric artery dysfunction via activation of ATP-sensitive potassium channels. Pharmacol Rep 2018; 70:746-752. [PMID: 29936361 DOI: 10.1016/j.pharep.2018.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/11/2018] [Accepted: 02/19/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia accompanied by impaired vascular and endothelial function. Activation of ATP-sensitive potassium (KATP) channels can protect endothelial function against hypertension and hyperglycemia. KMUP-1, a xanthine derivative, has been demonstrated to modulate K+-channel activity in smooth muscles. This study investigated protective mechanisms of KMUP-1 in impaired mesenteric artery (MA) reactivity in streptozotocin (STZ)-induced diabetic rats. METHODS Rats were divided into three groups: control, STZ (65 mg/kg, ip) and STZ + KMUP-1 (5 or 10 mg/kg/day, ip). MA reactivity was measured by dual wire myograph. MA smooth muscle cells (MASMCs) were enzymatically dissociated and the KATP currents recorded by a whole-cell patch-clamp technique. RESULTS STZ decreased MA KATP currents in a time-course dependent manner and achieved steady inhibition at day 14. In the MASMCs of STZ-treated rats, KMUP-1 partially recovered the KATP currents, suggesting that vascular KATP channels were activated by KMUP-1. K+ (80 mM KCl)-induced MA contractions in STZ-treated rats were higher than those of control rats. KMUP-1 significantly attenuated STZ-stimulated MA contractions in response to high K+, suggesting that KMUP-1 may partly restore the vascular reactivity of MAs. In addition, STZ decreased the expression of endothelial nitric oxide synthase (eNOS) and this effect was reversed by KMUP-1, suggesting that KMUP-1 could improve STZ-induced vascular endothelial dysfunction. CONCLUSION KMUP-1 prevents STZ impairment of MA reactivity, eNOS levels and KATP channels, and accordingly protects against vascular dysfunction in diabetic rats.
Collapse
Affiliation(s)
- Chien-Hsing Lee
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Division of Pediatric Cardiology and Pulmonology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Ting Yen
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Otto-Buczkowska E, Jainta N. Pharmacological Treatment in Diabetes Mellitus Type 1 - Insulin and What Else? Int J Endocrinol Metab 2018; 16:e13008. [PMID: 29696037 PMCID: PMC5903388 DOI: 10.5812/ijem.13008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/18/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
The basis of treatment in autoimmune diabetes is insulin therapy; however, many clinical cases have proven that this method does not solve all problems. Trials of causal treatment including blocking the autoimmune processes and insulin-producing cells transplants were carried out. Those methods require more research to be concerned as efficient and safe ways of treatment in type 1 diabetes. The use of non-insulin adjunct treatment is a new trend. It has been successfully used in laboratories as well as clinical trials. Metformin is the most widely used drug, together with sodium-glucose co-transporters 2 (SGLT2) inhibitors, amylin analogues, glucagon-like peptide 1 (GLP-1) receptor agonists, and dipeptidyl peptidase-4 (DPP-4) inhibitors. The results of administration of these medicaments give good outcomes in patients with diabetes mellitus type 1. Most likely, in the near future, they will progressively be used in both adult and adolescent patients with type 1 diabetes. Further multicenter, randomized studies are required to evaluate the efficacy of treatment and long term safety of these drugs.
Collapse
Affiliation(s)
- Ewa Otto-Buczkowska
- Medical Specialist Centre in Gliwice, Poland
- Corresponding author: Ewa Otto-Buczkowska MD PhD, Jasnogorska 16/2144-100 Gliwice, Poland. E-mail:
| | | |
Collapse
|
15
|
Ordiz A, Støen OG, Delibes M, Swenson JE. Staying cool or staying safe in a human-dominated landscape: which is more relevant for brown bears? Oecologia 2017; 185:191-194. [PMID: 28887693 PMCID: PMC5617871 DOI: 10.1007/s00442-017-3948-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/31/2017] [Indexed: 11/21/2022]
Abstract
Pigeon et al. (2016) Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection. Oecologia 181:1101. doi:10.1007/s00442-016-3630-5 analyzed the effect of ambient temperature on the habitat selection of grizzly bears (Ursus arctos) in Alberta, Canada. They concluded that temperature played a significant role in bear habitat selection and that it was unlikely that human activity introduced biases to the habitat selection of bears. However, Pigeon et al. did not consider variables related to human activities in their analyses. They also misinterpreted previous research that has accounted for temperature in the habitat selection of brown bears. There is much literature published on the negative effects of human disturbance on wildlife in general and on bears in particular. Downplaying the role of human disturbance could have important negative consequences if, in fact, human disturbance were a more important factor than thermoregulation. Indeed, dismissing the importance of human influence, in the face of contradictory evidence, could tempt managers to disregard an important factor that is difficult and often unpopular to deal with in their conservation plans.
Collapse
Affiliation(s)
- Andrés Ordiz
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, NO-1432, Ås, Norway.
| | - Ole-Gunnar Støen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, NO-1432, Ås, Norway.,Norwegian Institute for Nature Research, NO-7485, Trondheim, Norway
| | - Miguel Delibes
- Department of Conservation Biology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, E-41092, Seville, Spain
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, NO-1432, Ås, Norway.,Norwegian Institute for Nature Research, NO-7485, Trondheim, Norway
| |
Collapse
|
16
|
Akoumianakis I, Antoniades C. Dipeptidyl peptidase IV inhibitors as novel regulators of vascular disease. Vascul Pharmacol 2017; 96-98:1-4. [PMID: 28697993 DOI: 10.1016/j.vph.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV) has been revealed as an adipokine with potential relevance in cardiovascular disease (CVD), while clinically used DPP-IV inhibitors have demonstrated beneficial cardiovascular effects in several experimental studies. Perivascular adipose tissue (PVAT) is a unique adipose tissue depot in close anatomical proximity and bidirectional functional interaction with the vascular wall, which is a source of DPP-IV and its biology may be influenced by DPP-IV inhibition. Recently, DPP-IV inhibition has been associated with decreased local inflammation and oxidative stress both in the vascular wall and the PVAT, potentially regulating atherogenesis progression in vivo. DPP-IV inhibition may thus be a promising target in cardiovascular disease. However, the exact pleiotropic mechanisms that underlie the cardiovascular effects of DPP-IV inhibition need to be clarified, while the in vivo benefit of DPP-IV inhibition in humans remains unclear.
Collapse
|
17
|
Hardigan T, Hernandez C, Ward R, Hoda MN, Ergul A. TLR2 knockout protects against diabetes-mediated changes in cerebral perfusion and cognitive deficits. Am J Physiol Regul Integr Comp Physiol 2017; 312:R927-R937. [PMID: 28336553 DOI: 10.1152/ajpregu.00482.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/25/2017] [Accepted: 02/17/2017] [Indexed: 12/29/2022]
Abstract
The risk of cognitive decline in diabetes (Type 1 and Type 2) is significantly greater compared with normoglycemic patients, and the risk of developing dementia in diabetic patients is doubled. The etiology for this is likely multifactorial, but one mechanism that has gained increasing attention is decreased cerebral perfusion as a result of cerebrovascular dysfunction. The innate immune system has been shown to play a role in diabetic vascular complications, notably through the Toll-like receptor (TLR)-stimulated release of proinflammatory cytokines and chemokines that lead to vascular damage. TLR2 has been implicated in playing a crucial role in the development of diabetic microvascular complications, such as nephropathy, and thus, we hypothesized that TLR2-mediated cerebrovascular dysfunction leads to decreased cerebral blood flow (CBF) and cognitive impairment in diabetes. Knockout of TLR2 conferred protection from impaired CBF in early-stage diabetes and from hyperperfusion in long-term diabetes, prevented the development of endothelium-dependent vascular dysfunction in diabetes, created a hyperactive and anxiolytic phenotype, and protected against diabetes-induced impairment of long-term hippocampal and prefrontal cortex-mediated fear learning. In conclusion, these findings support the involvement of TLR2 in the pathogenesis of diabetic vascular disease and cognitive impairment.
Collapse
Affiliation(s)
- Trevor Hardigan
- Department of Physiology, University of Georgia, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Caterina Hernandez
- Department of Pharmacology and Toxicology, University of Georgia, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Small Animal Behavior Core Facility, University of Georgia, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Rebecca Ward
- Department of Neuroscience, University of Georgia, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - M Nasrul Hoda
- Department of Medical Laboratory, Imaging and Radiologic Sciences, University of Georgia, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Neurology, University of Georgia, Medical College of Georgia, Augusta University, Augusta, Georgia.,Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | - Adviye Ergul
- Department of Physiology, University of Georgia, Medical College of Georgia, Augusta University, Augusta, Georgia; .,Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
| |
Collapse
|