1
|
Qin C, Li J, Yang J, Cheng Y, Fu X. Soft Palate Dysplasia: Properties and Surgical Techniques. Plast Reconstr Surg 2024; 153:1368-1377. [PMID: 37257150 DOI: 10.1097/prs.0000000000010787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND The authors aimed to report a hitherto undescribed class of patients with the obvious phenotype of a novel soft palate dysplasia (SPD) combining unilateral soft palate hypoplasia with a fully developed uvula. The authors also aimed to investigate and evaluate the corresponding surgical approaches. METHODS Twelve patients were clinically diagnosed with SPD. Clinical examination, including radiographic tests, was performed to characterize the congenital deformity. The effectiveness of velopharyngeal closure and speech were tested preoperatively and postoperatively. RESULTS SPD was featured with velopharyngeal insufficiency, food regurgitation, and speech disorders. It was commonly manifested as structural deformities of the soft palate, tongue palatine arch, pharyngeal palatine arch, and pterygomandibular fold, but with complete uvula shape. According to radiographic analysis, in five patients, the lateral pterygoid processes were poorly developed, and other malformations were present. Velopharyngoplasty based on the unilateral posterior pharyngeal flap can well restore the velopharyngeal closure and speech intelligibility without respiration obstruction. CONCLUSIONS SPD is characterized as congenital velopharyngeal insufficiency manifested as a primary soft palate defect. It is highly associated with other physical deformities but independent of conventionally known syndromes. The cause may be an abnormal development of the pterygoid process. Unilateral velopharyngoplasty based on the posterior pharyngeal flap is a great technique to repair SPD. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, IV.
Collapse
Affiliation(s)
- Chuanqi Qin
- From the The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University
| | - Jian Li
- From the The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology
| | - Jiegang Yang
- From the The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University
| | - Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University
| | - Xiazhou Fu
- From the The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology
| |
Collapse
|
2
|
Parslow VR, Elmore SA, Cochran RZ, Bolon B, Mahler B, Sabio D, Lubeck BA. Histology Atlas of the Developing Mouse Respiratory System From Prenatal Day 9.0 Through Postnatal Day 30. Toxicol Pathol 2024; 52:153-227. [PMID: 39096105 DOI: 10.1177/01926233241252114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Respiratory diseases are one of the leading causes of death and disability around the world. Mice are commonly used as models of human respiratory disease. Phenotypic analysis of mice with spontaneous, congenital, inherited, or treatment-related respiratory tract abnormalities requires investigators to discriminate normal anatomic features of the respiratory system from those that have been altered by disease. Many publications describe individual aspects of normal respiratory tract development, primarily focusing on morphogenesis of the trachea and lung. However, a single reference providing detailed low- and high-magnification, high-resolution images of routine hematoxylin and eosin (H&E)-stained sections depicting all major structures of the entire developing murine respiratory system does not exist. The purpose of this atlas is to correct this deficiency by establishing one concise reference of high-resolution color photomicrographs from whole-slide scans of H&E-stained tissue sections. The atlas has detailed descriptions and well-annotated images of the developing mouse upper and lower respiratory tracts emphasizing embryonic days (E) 9.0 to 18.5 and major early postnatal events. The selected images illustrate the main structures and events at key developmental stages and thus should help investigators both confirm the chronological age of mouse embryos and distinguish normal morphology as well as structural (cellular and organ) abnormalities.
Collapse
Affiliation(s)
| | - Susan A Elmore
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Robert Z Cochran
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Beth Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - David Sabio
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Beth A Lubeck
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
3
|
Roth DM, Piña JO, Raju R, Iben J, Faucz FR, Makareeva E, Leikin S, Graf D, D'Souza RN. Tendon-associated gene expression precedes osteogenesis in mid-palatal suture establishment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.590129. [PMID: 38798531 PMCID: PMC11118303 DOI: 10.1101/2024.05.11.590129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Orthodontic maxillary expansion relies on intrinsic mid-palatal suture mechanobiology to induce guided osteogenesis, yet establishment of the mid-palatal suture within the continuous secondary palate and causes of maxillary insufficiency remain poorly understood. In contrast, advances in cranial suture research hold promise to improve surgical repair of prematurely fused cranial sutures in craniosynostosis to potentially restore the obliterated signaling environment and ensure continual success of the intervention. We hypothesized that mid-palatal suture establishment is governed by shared principles with calvarial sutures and involves functional linkage between expanding primary ossification centres with the midline mesenchyme. We characterized establishment of the mid-palatal suture from late embryonic to early postnatal timepoints. Suture establishment was visualized using histological techniques and multimodal transcriptomics. We identified that mid-palatal suture formation depends on a spatiotemporally controlled signalling milieu in which tendon-associated genes play a significant role. We mapped relationships between extracellular matrix-encoding gene expression, tenocyte markers, and novel suture patency candidate genes. We identified similar expression patterns in FaceBase-deposited scRNA-seq datasets from cranial sutures. These findings demonstrate shared biological principles for suture establishment, providing further avenues for future development and understanding of maxillofacial interventions.
Collapse
Affiliation(s)
- Daniela M Roth
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jeremie Oliver Piña
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Resmi Raju
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fabio R Faucz
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena Makareeva
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sergey Leikin
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Graf
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Canada
| | - Rena N D'Souza
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
4
|
Nikoloudaki G, Hamilton DW. Assessing the fate and contribution of Foxd1-expressing embryonic precursors and their progeny in palatal development, homeostasis and excisional repair. Sci Rep 2024; 14:4969. [PMID: 38424240 PMCID: PMC10904772 DOI: 10.1038/s41598-024-55486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
Oral mucosal tissues heal rapidly with minimal scarring, although palatal mucosa can be associated with excessive fibrosis in response to injury. Investigations on the balance between neovascularization and tissue repair suggests regulation of angiogenesis is an important determinant of repair versus scarring. Associated with pericyte mediated fibrosis in kidney injury, FoxD1 is implicated in growth centres during cranio-facial development, although which cell lineages are derived from these embryonic populations in development and in adult animals is unknown. Using a lineage tracing approach, we assessed the fate of embryonic Foxd1-expressing progenitor cells and their progeny in palatal development and during wound healing in adult mice. During palatal development as well as in post-natal tissues, Foxd1-lineage progeny were associated with the vasculature and the epineurium. Post-injury, de novo expression of FoxD1 was not detectable, although Foxd1-lineage progeny expanded while exhibiting low association with the fibroblast/myofibroblast markers PDGFα, PDGFβ, vimentin, α-smooth muscle actin, as well as the neuronal associated markers S100β and p75NTR. Foxd1-lineage progeny were primarily associated with CD146, CD31, and to a lesser extent CD105, remaining in close proximity to developing neovascular structures. Our findings demonstrate that FoxD1 derived cells are predominantly associated with the palatal vasculature and provide strong evidence that FoxD1 derived cells do not give rise to populations involved directly in the scarring of the palate.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
- Schulich Dentistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
- Schulich Dentistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
| |
Collapse
|
5
|
Ozekin YH, O’Rourke R, Bates EA. Single cell sequencing of the mouse anterior palate reveals mesenchymal heterogeneity. Dev Dyn 2023; 252:713-727. [PMID: 36734036 PMCID: PMC10238667 DOI: 10.1002/dvdy.573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cleft palate is one of the most prevalent birth defects. Mice are useful for studying palate development because of their morphological and genetic similarities to humans. In mice, palate development occurs between embryonic days (E)11.5 to 15.5. Single cell transcriptional profiles of palate cell populations have been a valuable resource for the craniofacial research community, but we lack a single cell transcriptional profile for anterior palate at E13.5, at the transition from proliferation to shelf elevation. RESULTS A detailed single cell RNA sequencing analysis reveals heterogeneity in expression profiles of the cell populations of the E13.5 anterior palate. Hybridization chain reaction RNA fluorescent in situ hybridization (HCR RNA FISH) reveals epithelial populations segregate into layers. Mesenchymal populations spatially segregate into four domains. One of these mesenchymal populations expresses ligands and receptors distinct from the rest of the mesenchyme, suggesting that these cells have a unique function. RNA velocity analysis shows two terminal cell states that contribute to either the proximal or distal palatal regions emerge from a single progenitor pool. CONCLUSION This single cell resolution expression data and detailed analysis from E13.5 anterior palate provides a powerful resource for mechanistic insight into secondary palate morphogenesis for the craniofacial research community.
Collapse
Affiliation(s)
- Yunus H. Ozekin
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca O’Rourke
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Anne Bates
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Dickinson AJG. Jak2 and Jaw Muscles Are Required for Buccopharyngeal Membrane Perforation during Mouth Development. J Dev Biol 2023; 11:24. [PMID: 37367478 DOI: 10.3390/jdb11020024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
The mouth is a central feature of our face, without which we could not eat, breathe, or communicate. A critical and early event in mouth formation is the creation of a "hole" which connects the digestive system and the external environment. This hole, which has also been called the primary or embryonic mouth in vertebrates, is initially covered by a 1-2 cell layer thick structure called the buccopharyngeal membrane. When the buccopharyngeal membrane does not rupture, it impairs early mouth functions and may also lead to further craniofacial malformations. Using a chemical screen in an animal model (Xenopus laevis) and genetic data from humans, we determined that Janus kinase 2 (Jak2) has a role in buccopharyngeal membrane rupture. We have determined that decreased Jak2 function, using antisense morpholinos or a pharmacological antagonist, caused a persistent buccopharyngeal membrane as well as the loss of jaw muscles. Surprisingly, we observed that the jaw muscle compartments were connected to the oral epithelium that is continuous with the buccopharyngeal membrane. Severing such connections resulted in buccopharyngeal membrane buckling and persistence. We also noted puncta accumulation of F-actin, an indicator of tension, in the buccopharyngeal membrane during perforation. Taken together, the data has led us to a hypothesis that muscles are required to exert tension across the buccopharyngeal membrane, and such tension is necessary for its perforation.
Collapse
Affiliation(s)
- Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
7
|
Janečková E, Feng J, Guo T, Han X, Ghobadi A, Araujo-Villalba A, Rahman MS, Ziaei H, Ho TV, Pareek S, Alvarez J, Chai Y. Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis. Development 2023; 150:dev201189. [PMID: 36825984 PMCID: PMC10108707 DOI: 10.1242/dev.201189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Craniofacial morphogenesis requires complex interactions involving different tissues, signaling pathways, secreted factors and organelles. The details of these interactions remain elusive. In this study, we have analyzed the molecular mechanisms and homeostatic cellular activities governing soft palate development to improve regenerative strategies for individuals with cleft palate. We have identified canonical Wnt signaling as a key signaling pathway primarily active in cranial neural crest (CNC)-derived mesenchymal cells surrounding soft palatal myogenic cells. Using Osr2-Cre;β-cateninfl/fl mice, we show that Wnt signaling is indispensable for mesenchymal cell proliferation and subsequently for myogenesis through mediating ciliogenesis. Specifically, we have identified that Wnt signaling directly regulates expression of the ciliary gene Ttll3. Impaired ciliary disassembly leads to differentiation defects in mesenchymal cells and indirectly disrupts myogenesis through decreased expression of Dlk1, a mesenchymal cell-derived pro-myogenesis factor. Moreover, we show that siRNA-mediated reduction of Ttll3 expression partly rescues mesenchymal cell proliferation and myogenesis in the palatal explant cultures from Osr2-Cre;β-cateninfl/fl embryos. This study highlights the role of Wnt signaling in palatogenesis through the control of ciliary homeostasis, which establishes a new mechanism for Wnt-regulated craniofacial morphogenesis.
Collapse
Affiliation(s)
- Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Aileen Ghobadi
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Angelita Araujo-Villalba
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Md Shaifur Rahman
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Heliya Ziaei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Siddhika Pareek
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jasmine Alvarez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Feng J, Han X, Yuan Y, Cho CK, Janečková E, Guo T, Pareek S, Rahman MS, Zheng B, Bi J, Jing J, Zhang M, Xu J, Ho TV, Chai Y. TGF-β signaling and Creb5 cooperatively regulate Fgf18 to control pharyngeal muscle development. eLife 2022; 11:e80405. [PMID: 36542062 PMCID: PMC9771365 DOI: 10.7554/elife.80405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The communication between myogenic cells and their surrounding connective tissues is indispensable for muscle morphogenesis. During late embryonic development in mice, myogenic progenitors migrate to discrete sites to form individual muscles. The detailed mechanism of this process remains unclear. Using mouse levator veli palatini (LVP) development as a model, we systematically investigated how a distinct connective tissue subpopulation, perimysial fibroblasts, communicates with myogenic cells to regulate mouse pharyngeal myogenesis. Using single-cell RNAseq data analysis, we identified that TGF-β signaling is a key regulator for the perimysial fibroblasts. Loss of TGF-β signaling in the neural crest-derived palatal mesenchyme leads to defects in perimysial fibroblasts and muscle malformation in the soft palate in Osr2Cre;Tgfbr1fl/fl mice. In particular, Creb5, a transcription factor expressed in the perimysial fibroblasts, cooperates with TGF-β signaling to activate expression of Fgf18. Moreover, Fgf18 supports pharyngeal muscle development in vivo and exogenous Fgf18 can partially rescue myogenic cell numbers in Osr2Cre;Tgfbr1fl/fl samples, illustrating that TGF-β-regulated Fgf18 signaling is required for LVP development. Collectively, our findings reveal the mechanism by which TGF-β signaling achieves its functional specificity in defining the perimysial-to-myogenic signals for pharyngeal myogenesis.
Collapse
Affiliation(s)
- Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Courtney Kyeong Cho
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Siddhika Pareek
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Md Shaifur Rahman
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Banghong Zheng
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Jing Bi
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
9
|
Zhang Y, Li J, Ji Y, Cheng Y, Fu X. Mutations in the TBX15-ADAMTS2 pathway associate with a novel soft palate dysplasia. Hum Mutat 2022; 43:2102-2115. [PMID: 36124393 DOI: 10.1002/humu.24473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/25/2023]
Abstract
We reported de novo variants in specific exons of the TBX15 and ADAMTS2 genes in a hitherto undescribed class of patients with unique craniofacial developmental defects. The nine unrelated patients represent unilateral soft palate hypoplasia, lost part of the sphenoid bone in the pterygoid process, but the uvula developed completely. Interestingly, these clinical features are contrary to the palate's anterior-posterior (A-P) developmental direction. Based on developmental characteristics, we suggested that these cases correspond to a novel craniofacial birth defect different from cleft palate, and we named it soft palate dysplasia (SPD). However, little is known about the molecular mechanism of the ADAMTS2 and TBX15 genes in the regulation of soft palate development. Phylogenetic analysis showed that the sequences around these de novo mutation sites are conserved between species. Through cellular co-transfections and chromatin immunoprecipitation assays, we demonstrate that TBX15 binds to the promoter regions of the ADAMTS2 gene and activates the promoter activity. Furthermore, we show that TBX15 and ADAMTS2 are colocalization in the posterior palatal mesenchymal cells during soft palate development in E13.5 mice embryos. Based on these data, we propose that the disruption of the TBX15-ADAMTS2 signaling pathway during embryogenesis leads to a novel SPD.
Collapse
Affiliation(s)
- Yuying Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiazhou Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Grimaldi A, Comai G, Mella S, Tajbakhsh S. Identification of bipotent progenitors that give rise to myogenic and connective tissues in mouse. eLife 2022; 11:70235. [PMID: 35225230 PMCID: PMC9020825 DOI: 10.7554/elife.70235] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
How distinct cell fates are manifested by direct lineage ancestry from bipotent progenitors, or by specification of individual cell types is a key question for understanding the emergence of tissues. The interplay between skeletal muscle progenitors and associated connective tissue cells provides a model for examining how muscle functional units are established. Most craniofacial structures originate from the vertebrate-specific neural crest cells except in the dorsal portion of the head, where they arise from cranial mesoderm. Here, using multiple lineage-tracing strategies combined with single cell RNAseq and in situ analyses, we identify bipotent progenitors expressing Myf5 (an upstream regulator of myogenic fate) that give rise to both muscle and juxtaposed connective tissue. Following this bifurcation, muscle and connective tissue cells retain complementary signalling features and maintain spatial proximity. Disrupting myogenic identity shifts muscle progenitors to a connective tissue fate. The emergence of Myf5-derived connective tissue is associated with the activity of several transcription factors, including Foxp2. Interestingly, this unexpected bifurcation in cell fate was not observed in craniofacial regions that are colonised by neural crest cells. Therefore, we propose that an ancestral bi-fated program gives rise to muscle and connective tissue cells in skeletal muscles that are deprived of neural crest cells.
Collapse
Affiliation(s)
| | - Glenda Comai
- UMR 3738, Department of Developmental and Stem Cell Biology, CNRS, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers UTechS, Institut Pasteur, Paris, France
| | | |
Collapse
|
11
|
Feng Y, Xia W, Zhao P, Yi X, Tang A. Survey anatomy and histological observation of the nasal cavity of Tupaia belangeri chinensis (Tupaiidae, Scandentia, Mammalia). Anat Rec (Hoboken) 2021; 305:1448-1458. [PMID: 34605617 DOI: 10.1002/ar.24793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022]
Abstract
This study aimed to provide researchers with an atlas of the survey anatomy, histology, and imaging of the nasal cavity of Tupaia belangeri chinensis. Seven T. b. chinensis adult males were euthanized and scanned using micro-computed tomography (CT). The nose was separated, and tissue sections were made on the coronal and axial planes to observe the survey anatomy and histological and imaging characteristics of the nose. T. b. chinensis contains one maxilloturbinal and three ethmoturbinals, one nasoturbinal, one interturbinal, two frontoturbinals, and one lamina semicircularis in the unilateral nasal cavity. Other identified structures were the ostiomeatal complex, vomeronasal organ, superior nasal vault, maxillary sinus, and frontal recess. The drainage pathways of the sinuses and nasal airflow in T. b. chinensis were confirmed. The vault epithelium consisted of the squamous epithelium, respiratory epithelium, transitional epithelium, and olfactory epithelium. Micro-CT confirmed our findings of the coronal tissue sections. The nasal cavity anatomy of T. b. chinensis is similar to that of some strepsirrhine primates. However, the airflow and olfactory function are quite different from that of humans. Our gross and histological atlas of the nasal septum, turbinals, maxillary sinus, and frontal recess provides a reference for researchers to use T. b. chinensis for nasal cavity functional research.
Collapse
Affiliation(s)
- Yiwei Feng
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Xia
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pengcheng Zhao
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Yi
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Anzhou Tang
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Deng J, Wang S, Li N, Chen X, Wang B, Liu H, Zhu L, Cong W, Xiao J, Liu C. Noggin Overexpression Impairs the Development of Muscles, Tendons, and Aponeurosis in Soft Palates by Disrupting BMP-Smad and Shh-Gli1 Signaling. Front Cell Dev Biol 2021; 9:711334. [PMID: 34557486 PMCID: PMC8453081 DOI: 10.3389/fcell.2021.711334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
The roles of bone morphogenetic protein (BMP) signaling in palatogenesis were well documented in the developing hard palate; however, little is known about how BMP signaling regulates the development of soft palate. In this study, we overexpressed Noggin transgene via Osr2-cre KI allele to suppress BMP signaling in the developing soft palate. We found that BMP-Smad signaling was detected in the palatal muscles and surrounding mesenchyme. When BMP-Smad signaling was suppressed by the overexpressed Noggin, the soft palatal shelves were reduced in size with the hypoplastic muscles and the extroversive hypophosphatasia (HPP). The downregulated cell proliferation and survival in the Osr2-cre KI ;pMes-Noggin soft palates were suggested to result from the repressed Shh transcription and Gli1 activity, implicating that the BMP-Shh-Gli1 network played a similar role in soft palate development as in the hard palate. The downregulated Sox9, Tenascin-C (TnC), and Col1 expression in Osr2-cre KI ;pMes-Noggin soft palate indicated the impaired differentiation of the aponeurosis and tendons, which was suggested to result in the hypoplasia of palatal muscles. Intriguingly, in the Myf5-cre KI ;pMes-Noggin and the Myf5-cre KI ;Rosa26R-DTA soft palates, the hypoplastic or abrogated muscles affected little the fusion of soft palate. Although the Scx, Tnc, and Co1 transcription was significantly repressed in the tenogenic mesenchyme of the Myf5-cre KI ;pMes-Noggin soft palate, the Sox9 expression, and the Tnc and Col1 transcription in aponeurosis mesenchyme were almost unaffected. It implicated that the fusion of soft palate was controlled by the mesenchymal clues at the tensor veli palatini (TVP) and levator veli palatini (LVP) levels, but by the myogenic components at the palatopharyngeus (PLP) level.
Collapse
Affiliation(s)
- Jiamin Deng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Shangqi Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Nan Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| | - Xiaoyan Chen
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Biying Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Han Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Lei Zhu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Wei Cong
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Grimaldi A, Tajbakhsh S. Diversity in cranial muscles: Origins and developmental programs. Curr Opin Cell Biol 2021; 73:110-116. [PMID: 34500235 DOI: 10.1016/j.ceb.2021.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023]
Abstract
Cranial muscles have been the focus of many studies over the years because of their unique developmental programs and relative resistance to illnesses. In addition, head muscles possess clonal relationships with heart muscles and have been highly remodeled during vertebrate evolution. Here, we provide an overview of recent findings that have helped to redefine the boundaries and lineages of cranial mesoderm. These studies have important implications regarding the emergence of muscle connective tissues, which can share a common origin with skeletal muscle. We also highlight new regulatory networks of various muscle subgroups, particularly those derived from the most caudal arches, which remain poorly defined. Finally, we suggest future research avenues to characterize the nature of their intrinsic specificities and their emergence during evolution.
Collapse
Affiliation(s)
- Alexandre Grimaldi
- Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France; UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France; UMR CNRS 3738, Institut Pasteur, Paris, France.
| |
Collapse
|
14
|
Han X, Feng J, Guo T, Loh YHE, Yuan Y, Ho TV, Cho CK, Li J, Jing J, Janeckova E, He J, Pei F, Bi J, Song B, Chai Y. Runx2-Twist1 interaction coordinates cranial neural crest guidance of soft palate myogenesis. eLife 2021; 10:e62387. [PMID: 33482080 PMCID: PMC7826157 DOI: 10.7554/elife.62387] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/14/2021] [Indexed: 01/09/2023] Open
Abstract
Cranial neural crest (CNC) cells give rise to bone, cartilage, tendons, and ligaments of the vertebrate craniofacial musculoskeletal complex, as well as regulate mesoderm-derived craniofacial muscle development through cell-cell interactions. Using the mouse soft palate as a model, we performed an unbiased single-cell RNA-seq analysis to investigate the heterogeneity and lineage commitment of CNC derivatives during craniofacial muscle development. We show that Runx2, a known osteogenic regulator, is expressed in the CNC-derived perimysial and progenitor populations. Loss of Runx2 in CNC-derivatives results in reduced expression of perimysial markers (Aldh1a2 and Hic1) as well as soft palate muscle defects in Osr2-Cre;Runx2fl/fl mice. We further reveal that Runx2 maintains perimysial marker expression through suppressing Twist1, and that myogenesis is restored in Osr2-Cre;Runx2fl/fl;Twist1fl/+ mice. Collectively, our findings highlight the roles of Runx2, Twist1, and their interaction in regulating the fate of CNC-derived cells as they guide craniofacial muscle development through cell-cell interactions.
Collapse
Affiliation(s)
- Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Yong-Hwee Eddie Loh
- USC Libraries Bioinformatics Services, University of Southern California, Los AngelesLos AngelesUnited States
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Courtney Kyeong Cho
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jing Bi
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Brian Song
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| |
Collapse
|
15
|
Ohki S, Oka K, Ogata K, Okuhara S, Rikitake M, Toda-Nakamura M, Tamura S, Ozaki M, Iseki S, Sakai T. Transforming Growth Factor-Beta and Sonic Hedgehog Signaling in Palatal Epithelium Regulate Tenascin-C Expression in Palatal Mesenchyme During Soft Palate Development. Front Physiol 2020; 11:532. [PMID: 32581832 PMCID: PMC7287209 DOI: 10.3389/fphys.2020.00532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/30/2020] [Indexed: 11/13/2022] Open
Abstract
During palatogenesis, the palatal shelves first grow vertically on either side of the tongue before changing their direction of growth to horizontal. The extracellular matrix (ECM) plays an important role in these dynamic changes in palatal shelf morphology. Tenascin-C (TNC) is an ECM glycoprotein that shows unique expression in the posterior part of the palatal shelf, but little is known about the regulation of TNC expression. Since transforming growth factor-beta-3 (TGF-β3) and sonic hedgehog (SHH) signaling are known to play important roles in palatogenesis, we investigated whether TGF-β3 and SHH are involved in the regulation of TNC expression in the developing palate. TGF-β3 increased the expression of TNC mRNA and protein in primary mouse embryonic palatal mesenchymal cells (MEPM) obtained from palatal mesenchyme dissected at embryonic day 13.5-14.0. Interestingly, immunohistochemistry experiments revealed that TNC expression was diminished in K14-cre;Tgfbr2 fl/fl mice that lack the TGF-β type II receptor in palatal epithelial cells and exhibit cleft soft palate, whereas TNC expression was maintained in Wnt1-cre;Tgfbr2 fl/fl mice that lack the TGF-β type II receptor in palatal mesenchymal cells and exhibit a complete cleft palate. SHH also increased the expression of TNC mRNA and protein in MEPM cells. However, although TGF-β3 up-regulated TNC mRNA and protein expression in O9-1 cells (a cranial neural crest cell line), SHH did not. Furthermore, TGF-β inhibited the expression of osteoblastic differentiation markers (osterix and alkaline phosphatase) and induced the expression of fibroblastic markers (fibronectin and periostin) in O9-1 cells, whereas SHH did not affect the expression of osteoblastic and fibroblastic markers in O9-1 cells. However, immunohistochemistry experiments showed that TNC expression was diminished in the posterior palatal shelves of Shh-/+ ;MFCS4 +/- mice, which have deficient SHH signaling in the posterior palatal epithelium. Taken together, our findings support the proposal that TGF-β and SHH signaling in palatal epithelium co-ordinate the expression of TNC in the posterior palatal mesenchyme through a paracrine mechanism. This signal cascade may work in the later stage of palatogenesis when cranial neural crest cells have differentiated into fibroblast-like cells. The spatiotemporal regulation of ECM-related proteins by TGF-β and SHH signaling may contribute not only to tissue construction but also to cell differentiation or determination along the anterior-posterior axis of the palatal shelves.
Collapse
Affiliation(s)
- Shirabe Ohki
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Kayoko Ogata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.,Section of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Shigeru Okuhara
- Section of Molecular Craniofacial Embryology, Graduate School of Dental and Medical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mihoko Rikitake
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Masako Toda-Nakamura
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Shougo Tamura
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Masao Ozaki
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Dental and Medical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Sakai
- Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
16
|
Janečková E, Feng J, Li J, Rodriguez G, Chai Y. Dynamic activation of Wnt, Fgf, and Hh signaling during soft palate development. PLoS One 2019; 14:e0223879. [PMID: 31613912 PMCID: PMC6793855 DOI: 10.1371/journal.pone.0223879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
The soft palate is a key component of the oropharyngeal complex that is critical for swallowing, breathing, hearing and speech. However, complete functional restoration in patients with cleft soft palate remains a challenging task. New insights into the molecular signaling network governing the development of soft palate will help to overcome these clinical challenges. In this study, we investigated whether key signaling pathways required for hard palate development are also involved in soft palate development in mice. We described the dynamic expression patterns of signaling molecules from well-known pathways, such as Wnt, Hh, and Fgf, during the development of the soft palate. We found that Wnt signaling is active throughout the development of soft palate myogenic sites, predominantly in cells of cranial neural crest (CNC) origin neighboring the myogenic cells, suggesting that Wnt signaling may play a significant role in CNC-myogenic cell-cell communication during myogenic differentiation in the soft palate. Hh signaling is abundantly active in early palatal epithelium, some myogenic cells, and the CNC-derived cells adjacent to the myogenic cells. Hh signaling gradually diminishes during the later stages of soft palate development, indicating its involvement mainly in early embryonic soft palate development. Fgf signaling is expressed most prominently in CNC-derived cells in the myogenic sites and persists until later stages of embryonic soft palate development. Collectively, our results highlight a network of Wnt, Hh, and Fgf signaling that may be involved in the development of the soft palate, particularly soft palate myogenesis. These findings provide a foundation for future studies on the functional significance of these signaling pathways individually and collectively in regulating soft palate development.
Collapse
Affiliation(s)
- Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Gabriela Rodriguez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Li J, Rodriguez G, Han X, Janečková E, Kahng S, Song B, Chai Y. Regulatory Mechanisms of Soft Palate Development and Malformations. J Dent Res 2019; 98:959-967. [PMID: 31150594 PMCID: PMC6651766 DOI: 10.1177/0022034519851786] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Orofacial clefting is the most common congenital craniofacial malformation, appearing in approximately 1 in 700 live births. Orofacial clefting includes several distinct anatomic malformations affecting the upper lip and hard and soft palate. The etiology of orofacial clefting is multifactorial, including genetic or environmental factors or their combination. A large body of work has focused on the molecular etiology of cleft lip and clefts of the hard palate, but study of the underlying etiology of soft palate clefts is an emerging field. Recent advances in the understanding of soft palate development suggest that it may be regulated by distinct pathways from those implicated in hard palate development. Soft palate clefting leads to muscle misorientation and oropharyngeal deficiency and adversely affects speech, swallowing, breathing, and hearing. Hence, there is an important need to investigate the regulatory mechanisms of soft palate development. Significantly, the anatomy, function, and development of soft palatal muscles are similar in humans and mice, rendering the mouse an excellent model for investigating molecular and cellular mechanisms of soft palate clefts. Cranial neural crest-derived cells provide important regulatory cues to guide myogenic progenitors to differentiate into muscles in the soft palate. Signals from the palatal epithelium also play key roles via tissue-tissue interactions mediated by Tgf-β, Wnt, Fgf, and Hh signaling molecules. Additionally, mutations in transcription factors, such as Dlx5, Tbx1, and Tbx22, have been associated with soft palate clefting in humans and mice, suggesting that they play important regulatory roles during soft palate development. Finally, we highlight the importance of distinguishing specific types of soft palate defects in patients and developing relevant animal models for each of these types to improve our understanding of the regulatory mechanism of soft palate development. This knowledge will provide a foundation for improving treatment for patients in the future.
Collapse
Affiliation(s)
- J. Li
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - G. Rodriguez
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - X. Han
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - E. Janečková
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - S. Kahng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - B. Song
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Y. Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Ziermann JM, Diogo R, Noden DM. Neural crest and the patterning of vertebrate craniofacial muscles. Genesis 2018; 56:e23097. [PMID: 29659153 DOI: 10.1002/dvg.23097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022]
Abstract
Patterning of craniofacial muscles overtly begins with the activation of lineage-specific markers at precise, evolutionarily conserved locations within prechordal, lateral, and both unsegmented and somitic paraxial mesoderm populations. Although these initial programming events occur without influence of neural crest cells, the subsequent movements and differentiation stages of most head muscles are neural crest-dependent. Incorporating both descriptive and experimental studies, this review examines each stage of myogenesis up through the formation of attachments to their skeletal partners. We present the similarities among developing muscle groups, including comparisons with trunk myogenesis, but emphasize the morphogenetic processes that are unique to each group and sometimes subsets of muscles within a group. These groups include branchial (pharyngeal) arches, which encompass both those with clear homologues in all vertebrate classes and those unique to one, for example, mammalian facial muscles, and also extraocular, laryngeal, tongue, and neck muscles. The presence of several distinct processes underlying neural crest:myoblast/myocyte interactions and behaviors is not surprising, given the wide range of both quantitative and qualitative variations in craniofacial muscle organization achieved during vertebrate evolution.
Collapse
Affiliation(s)
- Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
19
|
Acuna-Mendoza S, Martin S, Kuchler-Bopp S, Ribes S, Thalgott J, Chaussain C, Creuzet S, Lesot H, Lebrin F, Poliard A. A New Wnt1-CRE TomatoRosa Embryonic Stem Cell Line: A Tool for Studying Neural Crest Cell Integration Capacity. Stem Cells Dev 2017; 26:1682-1694. [PMID: 28922973 DOI: 10.1089/scd.2017.0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Soledad Acuna-Mendoza
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
- Department of Pathology and Oral Medicine, Dental Faculty, University of Chile, Santiago, Chile
| | - Sabrina Martin
- CNRS UMR 7241/INSERM U1050, CIRB, Collège de France, Paris, France
| | - Sabine Kuchler-Bopp
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Sandy Ribes
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
| | - Jérémy Thalgott
- The Einthoven Laboratory for Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Catherine Chaussain
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
- AP-HP Department of Odontology, Bretonneau Hospital, Paris, France
| | - Sophie Creuzet
- Laboratoire Neurobiologie et Développement, Institut de Neurobiologie, CNRS-UPR3294, Gif-sur-Yvette, France
| | - Hervé Lesot
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Franck Lebrin
- CNRS UMR 7241/INSERM U1050, CIRB, Collège de France, Paris, France
- The Einthoven Laboratory for Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Poliard
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
| |
Collapse
|
20
|
Sugii H, Grimaldi A, Li J, Parada C, Vu-Ho T, Feng J, Jing J, Yuan Y, Guo Y, Maeda H, Chai Y. The Dlx5-FGF10 signaling cascade controls cranial neural crest and myoblast interaction during oropharyngeal patterning and development. Development 2017; 144:4037-4045. [PMID: 28982687 DOI: 10.1242/dev.155176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/21/2017] [Indexed: 02/05/2023]
Abstract
Craniofacial development depends on cell-cell interactions, coordinated cellular movement and differentiation under the control of regulatory gene networks, which include the distal-less (Dlx) gene family. However, the functional significance of Dlx5 in patterning the oropharyngeal region has remained unknown. Here, we show that loss of Dlx5 leads to a shortened soft palate and an absence of the levator veli palatini, palatopharyngeus and palatoglossus muscles that are derived from the 4th pharyngeal arch (PA); however, the tensor veli palatini, derived from the 1st PA, is unaffected. Dlx5-positive cranial neural crest (CNC) cells are in direct contact with myoblasts derived from the pharyngeal mesoderm, and Dlx5 disruption leads to altered proliferation and apoptosis of CNC and muscle progenitor cells. Moreover, the FGF10 pathway is downregulated in Dlx5-/- mice, and activation of FGF10 signaling rescues CNC cell proliferation and myogenic differentiation in these mutant mice. Collectively, our results indicate that Dlx5 plays crucial roles in the patterning of the oropharyngeal region and development of muscles derived from the 4th PA mesoderm in the soft palate, likely via interactions between CNC-derived and myogenic progenitor cells.
Collapse
Affiliation(s)
- Hideki Sugii
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka 812-8582, Japan
| | - Alexandre Grimaldi
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Carolina Parada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach Vu-Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuxing Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatological, Beijing 100081, China
| | - Hidefumi Maeda
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka 812-8582, Japan.,Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
21
|
Tian H, Feng J, Li J, Ho TV, Yuan Y, Liu Y, Brindopke F, Figueiredo JC, Magee W, Sanchez-Lara PA, Chai Y. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum Mol Genet 2017; 26:860-872. [PMID: 28069795 DOI: 10.1093/hmg/ddx002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/03/2016] [Indexed: 01/08/2023] Open
Abstract
Ciliopathies are pleiotropic human diseases resulting from defects of the primary cilium, and these patients often have cleft lip and palate. IFT88 is required for the assembly and function of the primary cilia, which mediate the activity of key developmental signaling pathways. Through whole exome sequencing of a family of three affected siblings with isolated cleft lip and palate, we discovered that they share a novel missense mutation in IFT88 (c.915G > C, p.E305D), suggesting this gene should be considered a candidate for isolated orofacial clefting. In order to evaluate the function of IFT88 in regulating craniofacial development, we generated Wnt1-Cre;Ift88fl/fl mice to eliminate Ift88 specifically in cranial neural crest (CNC) cells. Wnt1-Cre;Ift88fl/flpups died at birth due to severe craniofacial defects including bilateral cleft lip and palate and tongue agenesis, following the loss of the primary cilia in the CNC-derived palatal mesenchyme. Loss of Ift88 also resulted in a decrease in neural crest cell proliferation during early stages of palatogenesis as well as a downregulation of the Shh signaling pathway in the palatal mesenchyme. Importantly, Osr2KI-Cre;Ift88fl/flmice, in which Ift88 is lost specifically in the palatal mesenchyme, exhibit isolated cleft palate. Taken together, our results demonstrate that IFT88 has a highly conserved function within the primary cilia of the CNC-derived mesenchyme in the lip and palate region in mice and is a strong candidate as an orofacial clefting gene in humans.
Collapse
Affiliation(s)
- Hua Tian
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Frederick Brindopke
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William Magee
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Pedro A Sanchez-Lara
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Department of Pathology & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
22
|
Yu K, Deng M, Naluai-Cecchini T, Glass IA, Cox TC. Differences in Oral Structure and Tissue Interactions during Mouse vs. Human Palatogenesis: Implications for the Translation of Findings from Mice. Front Physiol 2017; 8:154. [PMID: 28360863 PMCID: PMC5350148 DOI: 10.3389/fphys.2017.00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
Clefting of the secondary palate is one of the most common human birth defects and results from failure of the palatal shelves to fuse during embryonic development. Palatogenesis is traditionally considered to be a highly conserved developmental process among mammalian species. However, cleft palate phenotypes in humans are considerably more variable than those seen in mice, the most common animal model for studying palatal development and pathogenesis of cleft palate. In this investigation, we utilized macroscopic observations, histology and 3D imaging techniques to directly compare palate morphology and the oral-nasal cavity during palate closure in mouse embryos and human conceptuses. We showed that mouse and human palates display distinct morphologies attributable to the structural differences of the oral-nasal cavity. We further showed that the palatal shelves interact differently with the primary palate and nasal septum in the hard palate region and with pharyngeal walls in the soft palate region during palate closure in mice and humans. Knowledge of these morphological differences is important for improved translation of findings in mouse models of human cleft lip/palate and, as such, should ultimately enhance our understanding of human palatal morphogenesis and the pathogenesis of cleft lip/palate in humans.
Collapse
Affiliation(s)
- Kai Yu
- Department of Pediatrics, Division of Craniofacial Medicine, University of WashingtonSeattle, WA, USA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research InstituteSeattle, WA, USA
| | - Mei Deng
- Birth Defects Research Laboratory, Department of Pediatrics, University of Washington Seattle, WA, USA
| | - Theresa Naluai-Cecchini
- Birth Defects Research Laboratory, Department of Pediatrics, University of Washington Seattle, WA, USA
| | - Ian A Glass
- Birth Defects Research Laboratory, Department of Pediatrics, University of Washington Seattle, WA, USA
| | - Timothy C Cox
- Department of Pediatrics, Division of Craniofacial Medicine, University of WashingtonSeattle, WA, USA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research InstituteSeattle, WA, USA; Department of Anatomy and Developmental Biology, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
23
|
Diogo R, Bello‐Hellegouarch G, Kohlsdorf T, Esteve‐Altava B, Molnar JL. Comparative Myology and Evolution of Marsupials and Other Vertebrates, With Notes on Complexity, Bauplan, and “Scala Naturae”. Anat Rec (Hoboken) 2016; 299:1224-55. [DOI: 10.1002/ar.23390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Rui Diogo
- Department of AnatomyHoward University College of MedicineWashington DC USA
| | | | - Tiana Kohlsdorf
- Department of BiologyFFCLRP, University of São Paulo, Avenida BandeirantesRibeirão Preto SP Brazil
| | - Borja Esteve‐Altava
- Department of AnatomyHoward University College of MedicineWashington DC USA
- Structure and Motion Laboratory Department of Comparative Biomedical SciencesRoyal Veterinary College, Hawkshead Lane, HatfieldHertfordshireAL9 7TA UK
| | - Julia L. Molnar
- Department of AnatomyHoward University College of MedicineWashington DC USA
| |
Collapse
|