1
|
Haas-Neill L, Meneksedag-Erol D, Chaudhry A, Novoselova M, Ashraf QF, de Araujo ED, Wilson DJ, Rauscher S. The structural influence of the oncogenic driver mutation N642H in the STAT5B SH2 domain. Protein Sci 2025; 34:e70022. [PMID: 39723827 DOI: 10.1002/pro.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer. To investigate the mutation's mechanism of action, we conducted extensive all-atom molecular dynamics simulations of multiple oligomeric forms of both STAT5B and STAT5BN642H, including a model for the parallel dimer. The N642H mutation directly affects the hydrogen bonding network within the phosphotyrosine (pY)-binding pocket of the parallel dimer, enhancing the pY-binding interaction. The simulations indicate that apo STAT5B is highly flexible, exploring a diverse conformational space. In contrast, apo STAT5BN642H accesses two distinct conformational states, one of which resembles the conformation of the parallel dimer. The simulation predictions of the effects of the mutation on structure and dynamics are supported by the results of hydrogen-deuterium exchange (HDX) mass spectrometry measurements carried out on STAT5B and STAT5BN642H in which a phosphopeptide was used to mimic the effects of parallel dimerization on the SH2 domain. The molecular-level information uncovered in this work contributes to our understanding of STAT5B hyperactivation by the N642H mutation and could help pave the way for novel therapeutic strategies targeting this mutation.
Collapse
Affiliation(s)
- Liam Haas-Neill
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Deniz Meneksedag-Erol
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Ayesha Chaudhry
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Masha Novoselova
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Qirat F Ashraf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Sarah Rauscher
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Rao SS, Nelson PA, Lunde HS, Haugland GT. Evolutionary, comparative, and functional analyses of STATs and regulation of the JAK-STAT pathway in lumpfish upon bacterial and poly(I:C) exposure. Front Cell Infect Microbiol 2023; 13:1252744. [PMID: 37808912 PMCID: PMC10556531 DOI: 10.3389/fcimb.2023.1252744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background The Janus kinase/signal transducers and activators of transcription (JAK-STAT) system regulates several biological processes by affecting transcription of genes as a response to cytokines and growth factors. In the present study, we have characterized the STAT genes in lumpfish (Cyclopterus lumpus L.), belonging to the order Perciformes, and investigated regulation of the JAK-STAT signaling pathway upon exposure to bacteria (Vibrio anguillarum) and poly(I:C), the latter mimicking antiviral responses. Methods Characterization and evolutionary analyses of the STATs were performed by phylogeny, protein domain, homology similarity and synteny analyses. Antibacterial and antiviral responses were investigated by performing KEGG pathway analysis. Results We observed that lumpfish have stat1a, 2, 3, 4, 5a, 5b, and 6. Transcriptome-wide analyses showed that most components of the JAK-STAT pathway were present in lumpfish. il-6, il-10, il-21, iκBα and stat3 were upregulated 6 hours post exposure (hpe) against bacteria while type I interferons (IFNs), irf1, irf3, irf10, stat1 and 2 were upregulated 24 hpe against poly(I:C). Conclusions Our findings shed light on the diversity and evolution of the STATs and the data show that the STAT genes are highly conserved among fish, including lumpfish. The transcriptome-wide analyses lay the groundwork for future research into the functional significance of these genes in regulating critical biological processes and make an important basis for development of prophylactic measure such as vaccination, which is highly needed for lumpfish since it is vulnerable for both bacterial and viral diseases.
Collapse
Affiliation(s)
- Shreesha S Rao
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Patrick A Nelson
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Harald S Lunde
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Gyri T Haugland
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Zhao T, Karki N, Zoltowski BD, Matthews DA. Allosteric regulation in STAT3 interdomains is mediated by a rigid core: SH2 domain regulation by CCD in D170A variant. PLoS Comput Biol 2022; 18:e1010794. [PMID: 36542668 PMCID: PMC9815575 DOI: 10.1371/journal.pcbi.1010794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/05/2023] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) plays a crucial role in cancer development and thus is a viable target for cancer treatment. STAT3 functions as a dimer mediated by phosphorylation of the SRC-homology 2 (SH2) domain, a key target for therapeutic drugs. While great efforts have been employed towards the development of compounds that directly target the SH2 domain, no compound has yet been approved by the FDA due to a lack of specificity and pharmacologic efficacy. Studies have shown that allosteric regulation of SH2 via the coiled-coil domain (CCD) is an alternative drug design strategy. Several CCD effectors have been shown to modulate SH2 binding and affinity, and at the time of writing at least one drug candidate has entered phase I clinical trials. However, the mechanism for SH2 regulation via CCD is poorly understood. Here, we investigate structural and dynamic features of STAT3 and compare the wild type to the reduced function variant D170A in order to delineate mechanistic differences and propose allosteric pathways. Molecular dynamics simulations were employed to explore conformational space of STAT3 and the variant, followed by structural, conformation, and dynamic analysis. The trajectories explored show distinctive conformational changes in the SH2 domain for the D170A variant, indicating long range allosteric effects. Multiple analyses provide evidence for long range communication pathways between the two STAT3 domains, which seem to be mediated by a rigid core which connects the CCD and SH2 domains via the linker domain (LD) and transmits conformational changes through a network of short-range interactions. The proposed allosteric mechanism provides new insight into the understanding of intramolecular signaling in STAT3 and potential pharmaceutical control of STAT3 specificity and activity.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| | - Nischal Karki
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| | - Brian D. Zoltowski
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| | - Devin A. Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| |
Collapse
|
4
|
Ramírez L, Sanguineti N, Scaglia P, Keselman A, Ballerini MG, Karabatas L, Landi E, Castro J, Domené S, Pennisi P, Jasper H, Rey RA, Vázquez M, Domené H, Bergadá I, Gutiérrez M. A novel heterozygous STAT5B variant in a patient with short stature and partial growth hormone insensitivity (GHI). Growth Horm IGF Res 2020; 50:61-70. [PMID: 31902742 DOI: 10.1016/j.ghir.2019.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/13/2019] [Accepted: 12/26/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The most frequent monogenic causes of growth hormone insensitivity (GHI) include defects in genes encoding the GH receptor itself (GHR), the signal transducer and activator of transcription (STAT5B), the insulin like-growth factor type I (IGF1) and the acid-labile subunit (IGFALS). GHI is characterized by a continuum of mild to severe post-natal growth failure. OBJECTIVE To characterize the molecular defect in a patient with short stature and partial GHI. PATIENT AND METHODS The boy was born at term adequate for gestational age from non-consanguineous normal-stature parents. At 2.2 years, he presented proportionate short stature (height -2.77 SDS), wide forehead and normal mental development. Whole-exome analysis and functional characterization (site-directed mutagenesis, dual luciferase reporter assay, immunofluorescence and western immunoblot) were performed. RESULTS Biochemical and endocrinological evaluation revealed partial GH insensitivity with normal stimulated GH peak (7.8 ng/mL), undetectable IGF1 and low IGFBP3 levels. Two heterozygous variants in the GH-signaling pathway were found: a novel heterozygous STAT5B variant (c.1896G>T, p.K632N) and a hypomorphic IGFALS variant (c.1642C>T, p.R548W). Functional in vitro characterization demonstrated that p.K632N-STAT5b is an inactivating variant that impairs STAT5b activity through abolished phosphorylation. Remarkably, the patient's immunological evaluation displayed only a mild hypogammaglobulinemia, while a major characteristic of STAT5b deficient patients is severe immunodeficiency. CONCLUSIONS We reported a novel pathogenic inactivating STAT5b variant, which may be associated with partial GH insensitivity and can present without severe immunological complications in heterozygous state. Our results contribute to expand the spectrum of phenotypes associated to GHI.
Collapse
Affiliation(s)
- Laura Ramírez
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Nora Sanguineti
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Gabriela Ballerini
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Liliana Karabatas
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Estefanía Landi
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Julia Castro
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Patricia Pennisi
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Héctor Jasper
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | - Horacio Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
| |
Collapse
|
5
|
de Araujo ED, Orlova A, Neubauer HA, Bajusz D, Seo HS, Dhe-Paganon S, Keserű GM, Moriggl R, Gunning PT. Structural Implications of STAT3 and STAT5 SH2 Domain Mutations. Cancers (Basel) 2019; 11:E1757. [PMID: 31717342 PMCID: PMC6895964 DOI: 10.3390/cancers11111757] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
Src Homology 2 (SH2) domains arose within metazoan signaling pathways and are involved in protein regulation of multiple pleiotropic cascades. In signal transducer and activator of transcription (STAT) proteins, SH2 domain interactions are critical for molecular activation and nuclear accumulation of phosphorylated STAT dimers to drive transcription. Sequencing analysis of patient samples has revealed the SH2 domain as a hotspot in the mutational landscape of STAT proteins although the functional impact for the vast majority of these mutations remains poorly characterized. Despite several well resolved structures for SH2 domain-containing proteins, structural data regarding the distinctive STAT-type SH2 domain is limited. Here, we review the unique features of STAT-type SH2 domains in the context of all currently reported STAT3 and STAT5 SH2 domain clinical mutations. The genetic volatility of specific regions in the SH2 domain can result in either activating or deactivating mutations at the same site in the domain, underscoring the delicate evolutionary balance of wild type STAT structural motifs in maintaining precise levels of cellular activity. Understanding the molecular and biophysical impact of these disease-associated mutations can uncover convergent mechanisms of action for mutations localized within the STAT SH2 domain to facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elvin D. de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Chemical & Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; (H.-S.S.); (S.D.-P.)
- Department of Biological Chemistry, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; (H.-S.S.); (S.D.-P.)
- Department of Biological Chemistry, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Patrick T. Gunning
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Chemical & Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
6
|
de Araujo ED, Erdogan F, Neubauer HA, Meneksedag-Erol D, Manaswiyoungkul P, Eram MS, Seo HS, Qadree AK, Israelian J, Orlova A, Suske T, Pham HTT, Boersma A, Tangermann S, Kenner L, Rülicke T, Dong A, Ravichandran M, Brown PJ, Audette GF, Rauscher S, Dhe-Paganon S, Moriggl R, Gunning PT. Structural and functional consequences of the STAT5B N642H driver mutation. Nat Commun 2019; 10:2517. [PMID: 31175292 PMCID: PMC6555848 DOI: 10.1038/s41467-019-10422-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/10/2019] [Indexed: 11/30/2022] Open
Abstract
Hyper-activated STAT5B variants are high value oncology targets for pharmacologic intervention. STAT5BN642H, a frequently-occurring oncogenic driver mutation, promotes aggressive T-cell leukemia/lymphoma in patient carriers, although the molecular origins remain unclear. Herein, we emphasize the aggressive nature of STAT5BN642H in driving T-cell neoplasia upon hematopoietic expression in transgenic mice, revealing evidence of multiple T-cell subset organ infiltration. Notably, we demonstrate STAT5BN642H-driven transformation of γδ T-cells in in vivo syngeneic transplant models, comparable to STAT5BN642H patient γδ T-cell entities. Importantly, we present human STAT5B and STAT5BN642H crystal structures, which propose alternative mutation-mediated SH2 domain conformations. Our biophysical data suggests STAT5BN642H can adopt a hyper-activated and hyper-inactivated state with resistance to dephosphorylation. MD simulations support sustained interchain cross-domain interactions in STAT5BN642H, conferring kinetic stability to the mutant anti-parallel dimer. This study provides a molecular explanation for the STAT5BN642H activating potential, and insights into pre-clinical models for targeted intervention of hyper-activated STAT5B.
Collapse
Affiliation(s)
- Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Fettah Erdogan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria
| | - Deniz Meneksedag-Erol
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Mohammad S Eram
- Dalriada Drug Discovery, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Abdul K Qadree
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria
| | - Tobias Suske
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Ha T T Pham
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria
| | - Auke Boersma
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Manimekalai Ravichandran
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Gerald F Audette
- Department of Chemistry, York University, 327C Life Sciences Building, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7, Canada
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA.
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
- Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria.
- Medical University of Vienna, 1090, Vienna, Austria.
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada.
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
7
|
Vymětal J, Jurásková V, Vondrášek J. AMBER and CHARMM Force Fields Inconsistently Portray the Microscopic Details of Phosphorylation. J Chem Theory Comput 2018; 15:665-679. [PMID: 30468703 DOI: 10.1021/acs.jctc.8b00715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phosphorylation of serine, threonine, and tyrosine is one of the most frequently occurring and crucial post-translational modifications of proteins often associated with important structural and functional changes. We investigated the direct effect of phosphorylation on the intrinsic conformational preferences of amino acids as a potential trigger of larger structural events. We conducted a comparative study of force fields on terminally capped amino acids (dipeptides) as the simplest model for phosphorylation. Our bias-exchange metadynamics simulations revealed that all model dipeptides sampled a great heterogeneity of ensembles affected by introduction of mono- and dianionic phosphate groups. However, the detected changes in populations of backbone conformers and side-chain rotamers did not reveal a strong discriminatory shift in preferences, as could be anticipated for the bulky, charged phosphate group. Furthermore, the AMBER and CHARMM force fields provided inconsistent populations of individual conformers as well as net structural trends upon phosphorylation. Detailed analysis of ensembles revealed competition between hydration and formation of internal hydrogen bonds involving amide hydrogens and the phosphate group. The observed difference in hydration free energy and potential for hydrogen bonding in individual force fields could be attributed to the different partial atomic charges used in each force field and, hence, the different parametrization strategies. Nevertheless, conformational propensities and net structural changes upon phosphorylation are difficult to extract from experimental measurements, and existing experimental data provide limited guidance for force field assessment and further development.
Collapse
Affiliation(s)
- Jiří Vymětal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 542/2 , 166 10 Praha 6 , Czech Republic
| | - Veronika Jurásková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 542/2 , 166 10 Praha 6 , Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 542/2 , 166 10 Praha 6 , Czech Republic
| |
Collapse
|