1
|
Myers EA, Rautsaw RM, Borja M, Jones J, Grünwald CI, Holding ML, Grazziotin FG, Parkinson CL. Phylogenomic Discordance is Driven by Wide-Spread Introgression and Incomplete Lineage Sorting During Rapid Species Diversification Within Rattlesnakes (Viperidae: Crotalus and Sistrurus). Syst Biol 2024; 73:722-741. [PMID: 38695290 PMCID: PMC11906154 DOI: 10.1093/sysbio/syae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 08/11/2024] Open
Abstract
-Phylogenomics allows us to uncover the historical signal of evolutionary processes through time and estimate phylogenetic networks accounting for these signals. Insight from genome-wide data further allows us to pinpoint the contributions to phylogenetic signal from hybridization, introgression, and ancestral polymorphism across the genome. Here, we focus on how these processes have contributed to phylogenetic discordance among rattlesnakes (genera Crotalus and Sistrurus), a group for which there are numerous conflicting phylogenetic hypotheses based on a diverse array of molecular datasets and analytical methods. We address the instability of the rattlesnake phylogeny using genomic data generated from transcriptomes sampled from nearly all known species. These genomic data, analyzed with coalescent and network-based approaches, reveal numerous instances of rapid speciation where individual gene trees conflict with the species tree. Moreover, the evolutionary history of rattlesnakes is dominated by incomplete speciation and frequent hybridization, both of which have likely influenced past interpretations of phylogeny. We present a new framework in which the evolutionary relationships of this group can only be understood in light of genome-wide data and network-based analytical methods. Our data suggest that network radiations, like those seen within the rattlesnakes, can only be understood in a phylogenomic context, necessitating similar approaches in our attempts to understand evolutionary history in other rapidly radiating species.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico
| | - Jason Jones
- Herp.mx A.C. C.P. 28989, Villa de Álvarez, Colima, Mexico
| | - Christoph I Grünwald
- Herp.mx A.C. C.P. 28989, Villa de Álvarez, Colima, Mexico
- Biodiversa A.C., Avenida de la Ribera #203, C.P. 45900, Chapala, Jalisco, Mexico
| | - Matthew L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, Avenida Vital Brasil, São Paulo, 05503-900, Brazil
| | | |
Collapse
|
2
|
Nava RA, Sigala‐Rodríguez JJ, Redetzke N, Villalobos‐Juarez I, Franco‐Servin‐de‐la‐Mora C, Rosales‐García R, Clark RW. The tale of the rattle: Using rattle size to understand growth and sexual dimorphism in an insular population of rattlesnakes ( Crotalus oreganus caliginis). Ecol Evol 2024; 14:e70005. [PMID: 38988347 PMCID: PMC11236481 DOI: 10.1002/ece3.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Islands have played a key role in our understanding of rapid evolution. A large body of literature has examined morphological changes in response to insularity and isolation, which has yielded useful generalizations about how animals can adapt to live in very small geographic areas. However, understanding the evolution of morphological variation in insular populations often requires detailed data sets on longitudinal patterns of growth and development, and such studies typically necessitate long-term mark-recapture on a large sample of individuals. Rattlesnakes provide a unique opportunity to address some of these difficulties because the addition of rattle segments to the rattle string occurs with regular periodicity and their size directly correlates with the body size of the snake at the time of the ecdysis cycle generating the segment. Here, we used a large database of rattle segment sizes recorded from island (Isla Coronado Sur, Baja California, Mexico) and mainland (Camp Pendleton, California, United States) populations of Western Rattlesnakes (Crotalus oreganus and C. o. caliginis) that separated approximately 10,000 years ago to compare body sizes at different ecdysis cycles, which allowed us to assess differences in growth rates and patterns of sexual size dimorphism. Our results show that rattlesnakes on Isla Coronado Sur appear to be born smaller and grow more slowly than their mainland counterparts, resulting in a "dwarfed" island population. However, despite significant differences in body size, both populations exhibited the same degree of sexual dimorphism. Our study demonstrates the potential to use rattle characteristics to recover detailed estimates of fundamental demographic parameters.
Collapse
Affiliation(s)
- Roman A. Nava
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Moffett Federal AirfieldMountain ViewCaliforniaUSA
| | | | - Nathaniel Redetzke
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Environmental Security ‐ Uplands Management SectionMarine Corps Base Camp PendletonCamp PendletonCaliforniaUSA
| | | | | | - Ramses Rosales‐García
- Departamento de BiologíaUniversidad Autónoma de AguascalientesAguascalientesMexico
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Rulon W. Clark
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
3
|
Westeen EP, Escalona M, Holding ML, Beraut E, Fairbairn C, Marimuthu MPA, Nguyen O, Perri R, Fisher RN, Toffelmier E, Shaffer HB, Wang IJ. A genome assembly for the southern Pacific rattlesnake, Crotalus oreganus helleri, in the western rattlesnake species complex. J Hered 2023; 114:681-689. [PMID: 37493092 PMCID: PMC10650947 DOI: 10.1093/jhered/esad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
Rattlesnakes play important roles in their ecosystems by regulating prey populations, are involved in complex coevolutionary dynamics with their prey, and exhibit a variety of unusual adaptations, including maternal care, heat-sensing pit organs, hinged fangs, and medically-significant venoms. The western rattlesnake (Crotalus oreganus) is one of the widest ranging rattlesnake species, with a distribution from British Columbia, where it is listed as threatened, to Baja California and east across the Great Basin to western Wyoming, Colorado and New Mexico. Here, we report a new reference genome assembly for one of six currently recognized subspecies, C. oreganus helleri, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomic sequencing strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 698 scaffolds spanning 1,564,812,557 base pairs, has a contig N50 of 64.7 Mb, a scaffold N50 of 110.8 Mb, and BUSCO complete score of 90.5%. This reference genome will be valuable for studies on the genomic basis of venom evolution and variation within Crotalus, in resolving the taxonomy of C. oreganus and its relatives, and for the conservation and management of rattlesnakes in general.
Collapse
Affiliation(s)
- Erin P Westeen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Matthew L Holding
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Colin Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Ralph Perri
- 1001 Foothill Drive, Fillmore, CA, 93015, United States
| | - Robert N Fisher
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, 92101, United States
| | - Erin Toffelmier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, United States
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, United States
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
4
|
Myers EA. Genome-wide data reveal extensive gene flow during the diversification of the western rattlesnakes (Viperidae: Crotalinae: Crotalus). Mol Phylogenet Evol 2021; 165:107313. [PMID: 34537323 DOI: 10.1016/j.ympev.2021.107313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/28/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022]
Abstract
Hybridization and introgression are important, but often overlooked processes when inferring phylogenies. When these processes are not accounted for and a strictly diverging phylogenetic model is applied to groups with a history of hybridization, phylogenetic inference and parameter estimation can be inaccurate. Recent developments in phylogenetic network approaches coupled with the increasing availability of genomic data allow inferences of reticulate evolutionary histories across the tree of life. The western rattlesnake species group (C. viridis species complex, C. mitchellii species complex, C. scutulutas, and C. tigris) is an iconic snake lineage that is widespread across western North America. This group is composed of several species complexes with unclear species limits, likely the result of ongoing gene flow among nascent lineages. Here I generate reduced representation genomic data and test for a history of reticulation within this group. I demonstrate that all species have undergone hybridization with at least one other lineage, suggesting introgression is widespread in this group. Topologies differ between phylogenies estimated under the multispecies coalescent and multispecies network coalescent methods, indicating that gene flow has obscured phylogenetic relationships within this group. These past introgression events are predominantly restricted to species that co-occur geographically. However, within species that have a history of introgression, this signature is detected regardless of specimen sampling across geography. Overall, my results suggest the accumulation of reproductive isolating barriers occurs slowly in rattlesnakes which likely leads to the difficulty in delimiting species, furthermore, the results of this study have implications for trait evolution in this group.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Herpetology, American Museum of Natural History, New York, NY, USA; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| |
Collapse
|
5
|
Franco-Servín C, Neri-Castro E, Bénard-Valle M, Alagón A, Rosales-García RA, Guerrero-Alba R, Poblano-Sánchez JE, Silva-Briano M, Guerrero-Barrera AL, Sigala-Rodríguez JJ. Biological and Biochemical Characterization of Coronado Island Rattlesnake ( Crotalus helleri caliginis) Venom and Antivenom Neutralization. Toxins (Basel) 2021; 13:toxins13080582. [PMID: 34437453 PMCID: PMC8402616 DOI: 10.3390/toxins13080582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
The Baja California Peninsula has over 250 islands and islets with many endemic species. Among them, rattlesnakes are the most numerous but also one of the least studied groups. The study of island rattlesnake venom could guide us to a better understanding of evolutionary processes and the description of novel toxins. Crotalus helleri caliginis venom samples were analyzed to determine possible ontogenetic variation with SDS-PAGE in one and two dimensions and with RP-HPLC. Western Blot, ELISA, and amino-terminal sequencing were used to determine the main components of the venom. The biological and biochemical activities demonstrate the similarity of C. helleri caliginis venom to the continental species C. helleri helleri, with both having low proteolytic and phospholipase A2 (PLA2) activity but differing due to the absence of neurotoxin (crotoxin-like) in the insular species. The main components of the snake venom were metalloproteases, serine proteases, and crotamine, which was the most abundant toxin group (30–35% of full venom). The crotamine was isolated using size-exclusion chromatography where its functional effects were tested on mouse phrenic nerve–hemidiaphragm preparations in which a significant reduction in muscle twitch contractions were observed. The two Mexican antivenoms could neutralize the lethality of C. helleri caliginis venom but not the crotamine effects.
Collapse
Affiliation(s)
- Cristian Franco-Servín
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Ramsés Alejandro Rosales-García
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Raquel Guerrero-Alba
- Laboratorio de Electrofisiología, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - José Emanuel Poblano-Sánchez
- Laboratorio Clínico de Especialidades del Hospital General ISSSTE, Av. Universidad 410, Aguascalientes CP 20010, Ags, Mexico;
| | - Marcelo Silva-Briano
- Laboratorio de Ecología, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Alma Lilián Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Correspondence: (A.L.G.-B.); (J.J.S.-R.)
| | - José Jesús Sigala-Rodríguez
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Correspondence: (A.L.G.-B.); (J.J.S.-R.)
| |
Collapse
|
6
|
Rhoda D, Segall M, Larouche O, Evans K, Angielczyk KD. Local superimpositions facilitate morphometric analysis of complex articulating structures. Integr Comp Biol 2021; 61:1892-1904. [PMID: 33905523 PMCID: PMC8699094 DOI: 10.1093/icb/icab031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Articulating structures, such as the vertebrate skeleton or the segmented arthropod exoskeleton, comprise a majority of the morphological diversity across the eukaryotic tree of life. Quantifying the form of articulating structures is therefore imperative for a fuller understanding of the factors influencing biological form. A wealth of freely available 3D data capturing this morphological diversity is stored in online repositories such as Morphosource, but the geometric morphometric analysis of an articulating structure is impeded by arbitrary differences in the resting positions of its individual articulating elements. In complex articulating structures, where the angles between articulating elements cannot be standardized, landmarks on articulating elements must be Procrustes superimposed independently (locally) and then recombined to quantify variation in the entire articulating structure simultaneously. Here, we discuss recent advances in local superimposition techniques, namely the “matched local superimpositions” approach, which incorporates anatomically accurate relative sizes, positions, and orientations of locally-superimposed landmarks, enabling clearer biological interpretation. We also use simulations to evaluate the consequences of choice of superimposition approach. Our results show that local superimpositions will isolate shape variation within locally-superimposed landmark subsets by sacrificing size and positional variation. They may also create morphometric “modules” when there are none by increasing integration within the locally-superimposed subsets; however, this effect is no greater than the spurious between-module integration created when superimposing landmark subsets (i.e., articulating elements) together. Taken together, our results show that local superimposition techniques differ from conventional Procrustes superimpositions in predictable ways. Finally, we use empirical datasets of the skulls of wrasses and colubriform snakes to highlight the promise of local superimpositions and their utility. Complex articulating structures must be studied, and the only current solution to do so is local superimpositions.
Collapse
Affiliation(s)
- Daniel Rhoda
- Committee on Evolutionary Biology, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA
| | - Marion Segall
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Olivier Larouche
- Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Kory Evans
- Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Kenneth D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois 60605, USA
| |
Collapse
|
7
|
Holding ML, Sovic MG, Colston TJ, Gibbs HL. The scales of coevolution: comparative phylogeography and genetic demography of a locally adapted venomous predator and its prey. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Coevolutionary theory predicts that differences in the genetic demography of interacting species can influence patterns of local adaptation by affecting the potential of local populations to respond to selection. We conducted a comparative phylogeographical study of venomous rattlesnakes and their venom-resistant ground squirrel prey across California, and assessed how effective population size (Ne) estimates correspond with a previously documented pattern of rattlesnake local adaptation. Using RAD sequencing markers, we detected lineage relationships among both the rattlesnakes (Crotalus oreganus ssp.) and ground squirrels (Otospermophilus sp.) that are incongruent with previous phylogenetic hypotheses. Both rattlesnakes and squirrels share a deep divergence at the Sacramento–San Joaquin River Delta. At this broad phylogeographical scale, we found that the locally adapted rattlesnakes had higher Ne than squirrels. At the population scale, snakes also had larger Ne accompanied by larger values of several metrics of population genetic diversity. However, the specific magnitude of local adaptation of venom activity to ground squirrel venom resistance was not significantly correlated with local differences in Ne or other diversity statistics between predator and prey populations, suggesting that other factors in the geographic mosaic of coevolution contribute to the specific local-scale outcomes of this interaction. These results suggest an evolutionary mechanism that may explain some (but clearly not all) of rattlesnake local adaptation in this coevolutionary interaction – larger population sizes raise the adaptive potential of rattlesnakes compared to ground squirrels.
Collapse
Affiliation(s)
- Matthew L Holding
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Michael G Sovic
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Timothy J Colston
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Rhoda D, Polly PD, Raxworthy C, Segall M. Morphological integration and modularity in the hyperkinetic feeding system of aquatic-foraging snakes. Evolution 2020; 75:56-72. [PMID: 33226114 DOI: 10.1111/evo.14130] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
The kinetic skull is a key innovation that allowed snakes to capture, manipulate, and swallow prey exclusively using their heads using the coordinated movement of eight bones. Despite these unique feeding behaviors, patterns of evolutionary integration and modularity within the feeding bones of snakes in a phylogenetic framework have yet to be addressed. Here, we use a dataset of 60 μCT-scanned skulls and high-density geometric morphometric methods to address the origin and patterns of variation and integration in the feeding bones of aquatic-foraging snakes. By comparing alternate superimposition protocols allowing us to analyze the entire kinetic feeding system simultaneously, we find that the feeding bones are highly integrated, driven predominantly by functional selective pressures. The most supported pattern of modularity contains four modules, each associated with distinct functional roles: the mandible, the palatopterygoid arch, the maxilla, and the suspensorium. Further, the morphological disparity of each bone is not linked to its magnitude of integration, indicating that integration within the feeding system does not strongly constrain morphological evolution, and that adequate biomechanical solutions to a wide range of feeding ecologies and behaviors are readily evolvable within the constraint due to integration in the snake feeding system.
Collapse
Affiliation(s)
- Daniel Rhoda
- Department of Herpetology, American Museum of Natural History, New York, New York, 10024.,Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, 60637
| | - P David Polly
- Department of Geological Sciences, Indiana University, Bloomington, Indiana, 47405
| | - Christopher Raxworthy
- Department of Herpetology, American Museum of Natural History, New York, New York, 10024
| | - Marion Segall
- Department of Herpetology, American Museum of Natural History, New York, New York, 10024
| |
Collapse
|
9
|
Prinsloo ND, Postma M, de Bruyn PJN. How unique is unique? Quantifying geometric differences in stripe patterns of Cape mountain zebra, Equus zebra zebra (Perissodactyla: Equidae). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Quantified coat pattern dissimilarity provides a visible surface for individual animal traceability to populations. We determined the feasibility in quantifying uniqueness of stripe patterns of Cape mountain zebra (CMZ; Equus zebra zebra) using geometric morphometrics. We photogrammetrically created dense surface models of CMZ (N = 56). Stripe edges were landmarked, superimposed and compared for shape variation across replicates and the population. Significant allometry in stripe patterns prompted allometric correction to remove increased curvature of stripes at the rump, belly and back with larger adult individuals, to facilitate equilibrated comparison between individuals. Re-landmarked replicates showed lower dissimilarity (Di) than non-replicates (Dp), representing minimal landmarking error. Individuals were 78.07 ± 1.79% unique (U=1−DiDp×100%) relative to the study population. Size, the number of torso stripes and degree of branching in four rear torso stripes described the most shape variation (36.79%) but a significant portion could only be distinguished with geometric morphometrics (41.82%). This is the first known use of geometric morphometrics to quantify coat pattern uniqueness, using a model species to provide baseline individual morphological variation. Measures of coat pattern similarity have a place in phenotypic monitoring and identification.
Collapse
Affiliation(s)
- Nicolas D Prinsloo
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Martin Postma
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - P J Nico de Bruyn
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
10
|
Djurakic MR, Milankov VR. The utility of plastron shape for uncovering cryptic diversity in Hermann's tortoise. J Zool (1987) 2019. [DOI: 10.1111/jzo.12736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. R. Djurakic
- Department of Biology and Ecology Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - V. R. Milankov
- Department of Biology and Ecology Faculty of Sciences University of Novi Sad Novi Sad Serbia
| |
Collapse
|
11
|
Schield DR, Perry BW, Adams RH, Card DC, Jezkova T, Pasquesi GIM, Nikolakis ZL, Row K, Meik JM, Smith CF, Mackessy SP, Castoe TA. Allopatric divergence and secondary contact with gene flow: a recurring theme in rattlesnake speciation. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The study of recently diverged lineages whose geographical ranges come into contact can provide insight into the early stages of speciation and the potential roles of reproductive isolation in generating and maintaining species. Such insight can also be important for understanding the strategies and challenges for delimiting species within recently diverged species complexes. Here, we use mitochondrial and nuclear genetic data to study population structure, gene flow and demographic history across a geographically widespread rattlesnake clade, the western rattlesnake species complex (Crotalus cerberus, Crotalus viridis, Crotalus oreganus and relatives), which contains multiple lineages with ranges that overlap geographically or contact one another. We find evidence that the evolutionary history of this group does not conform to a bifurcating tree model and that pervasive gene flow has broadly influenced patterns of present-day genetic diversity. Our results suggest that lineage diversity has been shaped largely by drift and divergent selection in isolation, followed by secondary contact, in which reproductive isolating mechanisms appear weak and insufficient to prevent introgression, even between anciently diverged lineages. The complexity of divergence and secondary contact with gene flow among lineages also provides new context for why delimiting species within this complex has been difficult and contentious historically.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Tereza Jezkova
- Department of Biology, Miami University of Ohio, Oxford, OH, USA
| | | | | | - Kristopher Row
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, TX, USA
| | - Cara F Smith
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
12
|
Davis MA, Douglas MR, Collyer ML, Douglas ME. Correction: Deconstructing a Species-Complex: Geometric Morphometric and Molecular Analyses Define Species in the Western Rattlesnake (Crotalus viridis). PLoS One 2019; 14:e0211753. [PMID: 30699201 PMCID: PMC6353180 DOI: 10.1371/journal.pone.0211753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
13
|
DNA barcodes from snake venom: a broadly applicable method for extraction of DNA from snake venoms. Biotechniques 2018; 65:339-345. [PMID: 30477329 DOI: 10.2144/btn-2018-0096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA barcoding is a simple technique used to develop a large-scale system of classification that is broadly applicable across a wide variety of taxa. DNA-based analysis of snake venoms can provide a system of classification independent of currently accepted taxonomic relationships by generating DNA barcodes specific to each venom sample. DNA purification from dried snake venoms has previously required large amounts of starting material, has resulted in low yields and inconsistent amplification, and was possible with front-fanged snakes only. Here, we present a modified DNA extraction protocol applied to venoms of both front- and rear-fanged snakes that requires significantly less starting material (1 mg) and yields sufficient amounts of DNA for successful PCR amplification of regions commonly used for DNA barcoding. [Formula: see text].
Collapse
|
14
|
Hofmann EP, Rautsaw RM, Strickland JL, Holding ML, Hogan MP, Mason AJ, Rokyta DR, Parkinson CL. Comparative venom-gland transcriptomics and venom proteomics of four Sidewinder Rattlesnake (Crotalus cerastes) lineages reveal little differential expression despite individual variation. Sci Rep 2018; 8:15534. [PMID: 30341342 PMCID: PMC6195556 DOI: 10.1038/s41598-018-33943-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 11/24/2022] Open
Abstract
Changes in gene expression can rapidly influence adaptive traits in the early stages of lineage diversification. Venom is an adaptive trait comprised of numerous toxins used for prey capture and defense. Snake venoms can vary widely between conspecific populations, but the influence of lineage diversification on such compositional differences are unknown. To explore venom differentiation in the early stages of lineage diversification, we used RNA-seq and mass spectrometry to characterize Sidewinder Rattlesnake (Crotalus cerastes) venom. We generated the first venom-gland transcriptomes and complementary venom proteomes for eight individuals collected across the United States and tested for expression differences across life history traits and between subspecific, mitochondrial, and phylotranscriptomic hypotheses. Sidewinder venom was comprised primarily of hemorrhagic toxins, with few cases of differential expression attributable to life history or lineage hypotheses. However, phylotranscriptomic lineage comparisons more than doubled instances of significant expression differences compared to all other factors. Nevertheless, only 6.4% of toxins were differentially expressed overall, suggesting that shallow divergence has not led to major changes in Sidewinder venom composition. Our results demonstrate the need for consensus venom-gland transcriptomes based on multiple individuals and highlight the potential for discrepancies in differential expression between different phylogenetic hypotheses.
Collapse
Affiliation(s)
- Erich P Hofmann
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA
| | - Rhett M Rautsaw
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA
| | - Jason L Strickland
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA
- University of Central Florida, Department of Biology, Orlando, FL, 32816, USA
| | - Matthew L Holding
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA
| | - Michael P Hogan
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA
| | - Andrew J Mason
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA
| | - Darin R Rokyta
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA
| | - Christopher L Parkinson
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA.
- Clemson University, Department of Forestry and Environmental Conservation, Clemson, SC, 29634, USA.
| |
Collapse
|
15
|
Dowell NL, Giorgianni MW, Griffin S, Kassner VA, Selegue JE, Sanchez EE, Carroll SB. Extremely Divergent Haplotypes in Two Toxin Gene Complexes Encode Alternative Venom Types within Rattlesnake Species. Curr Biol 2018; 28:1016-1026.e4. [PMID: 29576471 DOI: 10.1016/j.cub.2018.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
Natural selection is generally expected to favor one form of a given trait within a population. The presence of multiple functional variants of traits involved in activities such as feeding, reproduction, or the defense against predators is relatively uncommon within animal species. The genetic architecture and evolutionary mechanisms underlying the origin and maintenance of such polymorphisms are of special interest. Among rattlesnakes, several instances of the production of biochemically distinct neurotoxic or hemorrhagic venom types within the same species are known. Here, we investigated the genetic basis of this phenomenon in three species and found that neurotoxic and hemorrhagic individuals of the same species possess markedly different haplotypes at two toxin gene complexes. For example, neurotoxic and hemorrhagic Crotalus scutulatus individuals differ by 5 genes at the phospholipase A2 (PLA2) toxin gene complex and by 11 genes at the metalloproteinase (MP) gene complex. A similar set of extremely divergent haplotypes also underlies alternate venom types within C. helleri and C. horridus. We further show that the MP and PLA2 haplotypes of neurotoxic C. helleri appear to have been acquired through hybridization with C. scutulatus-a rare example of the horizontal transfer of a potentially highly adaptive suite of genes. These large structural variants appear analogous to immunity gene complexes in host-pathogen arms races and may reflect the impact of balancing selection at the PLA2 and MP complexes for predation on different prey.
Collapse
Affiliation(s)
- Noah L Dowell
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Matt W Giorgianni
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Sam Griffin
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Victoria A Kassner
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Jane E Selegue
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Elda E Sanchez
- National Natural Toxins Research Center and Department of Chemistry, Texas A&M University, Kingsville, MSC 224, Kingsville, TX 78363, USA
| | - Sean B Carroll
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
16
|
Genome-wide comparisons reveal evidence for a species complex in the black-lip pearl oyster Pinctada margaritifera (Bivalvia: Pteriidae). Sci Rep 2018; 8:191. [PMID: 29317743 PMCID: PMC5760631 DOI: 10.1038/s41598-017-18602-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/14/2017] [Indexed: 02/05/2023] Open
Abstract
Evolutionary relationships in the black-lip pearl oyster Pinctada margaritifera which is highly valued for pearl production remain poorly understood. This species possesses an 18,000 km Indo-Pacific natural distribution, and its current description includes six subspecies defined exclusively on morphological characters. To evaluate its taxonomic identity using molecular data, 14 populations in both the Indian and Pacific Oceans (n = 69), and the congeneric taxa P. maxima and P. mazatlanica (n = 29 and n = 10, respectively) were sampled. Phylogenomic reconstruction was carried out using both 8,308 genome-wide SNPs and 10,000 dominant loci (DArTseq PAVs). Reconstructions using neighbour-joining (Nei's 1972 distances), maximum likelihood and Bayesian approaches all indicate that the taxonomy of P. margaritifera is quite complex, with distinct evolutionary significant units (ESUs) identified within Tanzanian and Iranian populations. Contrastingly, phylogenies generated for Pacific Ocean oysters resolved a large monophyletic clade, suggesting little support for two current morphological subspecies classifications. Furthermore, P. mazatlanica formed a basal clade closest to French Polynesian P. margaritifera, suggesting it may be conspecific. Collectively, these findings provide evidence that P. margaritifera comprises a species complex, perhaps as a result of population fragmentation and increased divergence at range limits.
Collapse
|
17
|
Faria J, Martins GM, Pita A, Ribeiro PA, Hawkins SJ, Presa P, Neto AI. Disentangling the genetic and morphological structure of Patella candei complex in Macaronesia (NE Atlantic). Ecol Evol 2017; 7:6125-6140. [PMID: 28861219 PMCID: PMC5574786 DOI: 10.1002/ece3.3121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/28/2017] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
The uptake of natural living resources for human consumption has triggered serious changes in the balance of ecosystems. In the archipelagos of Macaronesia (NE Atlantic), limpets have been extensively exploited probably since islands were first colonized. This has led to profound consequences in the dynamics of rocky shore communities. The Patella candei complex includes various subspecies of limpets that are ascribed to a particular archipelago and has been the focus of several taxonomic surveys without much agreement. Under a conservational perspective, we apply morphometric and genetic analyses to test subspecies boundaries in P. candei and to evaluate its current population connectivity throughout Macaronesia (Azores, Madeira, and Canaries). A highly significant genetic break between archipelagos following isolation by distance was detected (FST = 0.369, p < .001). Contrastingly, significant genetic differentiation among islands (i.e., Azores) was absent possibly indicating ongoing gene flow via larval exchange between populations. Significant shell‐shape differences among archipelagos were also detected using both distance‐based and geometric morphometric analyses. Adaptive processes associated with niche differentiation and strong barriers to gene flow among archipelagos may be the mechanisms underlying P. candei diversification in Macaronesia. Under the very probable assumption that populations of P. candei from each archipelago are geographically and/or ecologically isolated populations, the various subspecies within the P. candei complex may be best thought of as true species using the denomination: P. candei in Selvagens, Patella gomesii in Azores, Patella ordinaria in Madeira, and Patella crenata for Canaries. This would be in agreement with stock delimitation and units of conservation of P. candei sensu latu along Macaronesia.
Collapse
Affiliation(s)
- Joao Faria
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group Department of Biology University of Azores Ponta Delgada São Miguel, Azores Portugal
| | - Gustavo M Martins
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group Department of Biology University of Azores Ponta Delgada São Miguel, Azores Portugal
| | - Alfonso Pita
- Faculty of Marine Sciences - ECIMAT Laboratory of Marine Genetic Resources University of Vigo Vigo Spain.,Ocean and Earth Science, National Oceanography Centre Southampton Waterfront Campus University of Southampton Southampton UK
| | - Pedro A Ribeiro
- MARE - Marine and Environmental Sciences Centre and IMAR - Institute of Marine Research Department of Oceanography and Fisheries University of the Azores Horta Portugal
| | - Stephen J Hawkins
- Ocean and Earth Science, National Oceanography Centre Southampton Waterfront Campus University of Southampton Southampton UK.,The Laboratory Marine Biological Association of UK Plymouth UK
| | - Pablo Presa
- Faculty of Marine Sciences - ECIMAT Laboratory of Marine Genetic Resources University of Vigo Vigo Spain
| | - Ana I Neto
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group Department of Biology University of Azores Ponta Delgada São Miguel, Azores Portugal
| |
Collapse
|
18
|
Warner JK, Combrink X, Calverley P, Champion G, Downs CT. Morphometrics, sex ratio, sexual size dimorphism, biomass, and population size of the Nile crocodile (Crocodylus niloticus) at its southern range limit in KwaZulu-Natal, South Africa. ZOOMORPHOLOGY 2016. [DOI: 10.1007/s00435-016-0325-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Paterson ID, Mangan R, Downie DA, Coetzee JA, Hill MP, Burke AM, Downey PO, Henry TJ, Compton SG. Two in one: cryptic species discovered in biological control agent populations using molecular data and crossbreeding experiments. Ecol Evol 2016; 6:6139-50. [PMID: 27648231 PMCID: PMC5016637 DOI: 10.1002/ece3.2297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 01/20/2023] Open
Abstract
There are many examples of cryptic species that have been identified through DNA‐barcoding or other genetic techniques. There are, however, very few confirmations of cryptic species being reproductively isolated. This study presents one of the few cases of cryptic species that has been confirmed to be reproductively isolated and therefore true species according to the biological species concept. The cryptic species are of special interest because they were discovered within biological control agent populations. Two geographically isolated populations of Eccritotarsus catarinensis (Carvalho) [Hemiptera: Miridae], a biological control agent for the invasive aquatic macrophyte, water hyacinth, Eichhornia crassipes (Mart.) Solms [Pontederiaceae], in South Africa, were sampled from the native range of the species in South America. Morphological characteristics indicated that both populations were the same species according to the current taxonomy, but subsequent DNA analysis and breeding experiments revealed that the two populations are reproductively isolated. Crossbreeding experiments resulted in very few hybrid offspring when individuals were forced to interbreed with individuals of the other population, and no hybrid offspring were recorded when a choice of mate from either population was offered. The data indicate that the two populations are cryptic species that are reproductively incompatible. Subtle but reliable diagnostic characteristics were then identified to distinguish between the two species which would have been considered intraspecific variation without the data from the genetics and interbreeding experiments. These findings suggest that all consignments of biological control agents from allopatric populations should be screened for cryptic species using genetic techniques and that the importation of multiple consignments of the same species for biological control should be conducted with caution.
Collapse
Affiliation(s)
- Iain D Paterson
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Rosie Mangan
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Douglas A Downie
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Julie A Coetzee
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Martin P Hill
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Ashley M Burke
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Paul O Downey
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa; Institute for Applied Ecology University of Canberra Canberra Australian Capital Territory 2601 Australia
| | - Thomas J Henry
- Systematic Entomology Laboratory ARS, USDA, c/o National Museum of Natural History Smithsonian Institution Washington District of Columbia 20013
| | - Stephe G Compton
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| |
Collapse
|
20
|
Davis MA, Douglas MR, Collyer ML, Douglas ME. Correction: Deconstructing a Species-Complex: Geometric Morphometric and Molecular Analyses Define Species in the Western Rattlesnake (Crotalus viridis). PLoS One 2016; 11:e0149712. [PMID: 26871577 PMCID: PMC4752339 DOI: 10.1371/journal.pone.0149712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|