1
|
Yan Y, Li C, Liu Z, Zhuang JJ, Kong JR, Yang ZK, Yu J, Shah Alam M, Ruan CC, Zhang HM, Xu JH. A new demethylase gene, OsDML4, is involved in high temperature-increased grain chalkiness in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7273-7284. [PMID: 36073837 DOI: 10.1093/jxb/erac367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
High temperature (HT) can affect the accumulation of seed storage materials and cause adverse effects on the yield and quality of rice. DNA methylation plays an important role in plant growth and development. Here, we identified a new demethylase gene OsDML4 and discovered its function in cytosine demethylation to affect endosperm formation. Loss of function of OsDML4 induced chalky endosperm only under HT and dramatically reduced the transcription and accumulation of glutelins and 16 kDa prolamin. The expression of two transcription factor genes RISBZ1 and RPBF was significantly decreased in the osdml4 mutants, which caused adverse effects on the formation of protein bodies (PBs) with greatly decreased PB-II number, and incomplete and abnormally shaped PB-IIs. Whole-genome bisulfite sequencing analysis of seeds at 15 d after pollination revealed much higher global methylation levels of CG, CHG, and CHH contexts in the osdml4 mutants compared with the wild type. Moreover, the RISBZ1 promoter was hypermethylated but the RPBF promoter was almost unchanged under HT. No significant difference was detected between the wild type and osdml4 mutants under normal temperature. Our study demonstrated a novel OsDML4-mediated DNA methylation involved in the formation of chalky endosperm only under HT and provided a new perspective in regulating endosperm development and the accumulation of seed storage proteins in rice.
Collapse
Affiliation(s)
- Yan Yan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong 276034, China
| | - Zhen Liu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jun-Jie Zhuang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jia-Rui Kong
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Kun Yang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jie Yu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Mohammad Shah Alam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Cheng-Cheng Ruan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong 276034, China
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
2
|
Xu JH, Irshad F, Yan Y, Li C. Loss of Function of the RRMF Domain in OsROS1a Causes Sterility in Rice (Oryza sativa L.). Int J Mol Sci 2022; 23:ijms231911349. [PMID: 36232648 PMCID: PMC9569698 DOI: 10.3390/ijms231911349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
For crop seed production, the development of anthers and male fertility are the main agronomic traits and key biological processes for flowering plants. Active DNA demethylation regulates many plant developmental processes and is ensured by 5-meC DNA glycosylase enzymes. To find out the role of OsROS1a, OsROS1a gene editing mutants were generated using the CRISPR/Cas9 system. The osros1a mutants had shrink spikelets, smaller anthers and pollen grains, and were not stained by iodine staining showing a significant reduction in total soluble sugar and starch contents as compared to wildtype (WT), which caused complete male sterility. Similarly, the expression of genes involved in pollen and anther development was decreased in osros1a mutants as compared to WT. Furthermore, bisulfite sequencing showed that the CG and CHG methylation of the OsPKS2 gene promoter was significantly increased in the osros1a mutant, which caused a reduced expression of OsPKS2 in osros1a mutants. DNA methylation of the TDR gene promoter was similar between WT and osros1a mutants, indicating that the DNA methylation effect by OsROS1a was gene specific. The expression of OsROS1a in the mutants was not changed, but it produced a frame-shift mutation to truncate the Pem-CXXC and RRMF domains. Combined with previous studies, our findings suggested that the RRMF domain in OsROS1a is the functional domain and loss of RRMF for OsROS1a causes sterility in rice.
Collapse
Affiliation(s)
- Jian-Hong Xu
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence: (J.-H.X.); (C.L.)
| | - Faiza Irshad
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Yan
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chao Li
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence: (J.-H.X.); (C.L.)
| |
Collapse
|
3
|
Duraisamy AJ, Mishra M, Kowluru A, Kowluru RA. Epigenetics and Regulation of Oxidative Stress in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 59:4831-4840. [PMID: 30347077 PMCID: PMC6181189 DOI: 10.1167/iovs.18-24548] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Oxidative stress plays a central role in the development of diabetic retinopathy, and in the pathogenesis of this blinding disease, activation of NADPH oxidase 2 (Nox2)-mediated cytosolic reactive oxygen species (ROS) production precedes mitochondrial damage. The multicomponent cytosolic Nox2 has an obligatory component, Ras-related C3 botulinum toxin substrate 1 (Rac1); in diabetes, Rac1 is functionally and transcriptionally active. Diabetes also facilitates many epigenetic modifications, and activates both DNA methylating (Dnmts) and hydroxymethylating (Tets) enzymes. Our aim was to investigate the role of epigenetics in Rac1 regulation in diabetes. Methods Using human retinal endothelial cells, exposed to high glucose, 5-methyl cytosine (5mC) and 5-hydroxy methyl cytosine (5hmC) levels, and binding of Dnmt and Tets were quantified at the Rac1 promoter. The effect of inhibition of Dnmts/Tets (pharmacological inhibitors or short interfering RNA [siRNA]) on glucose-induced activation of Rac1-ROS production was evaluated. Results were confirmed in retinal microvessels from streptozotocin-induced diabetic mice receiving intravitreally Dnmt1-siRNA. Results Despite high glucose-induced increased binding of Dnmt1, 5mC levels remained subnormal at Rac1 promoter. But, at the same site, 5hmC levels and transcription factor nuclear factor (NF)-kB binding were increased. Inhibition of Dnmts/Tets prevented increase in 5hmC and NF-kB binding, and attenuated Rac1 activation. Similarly, in mouse retinal microvessels, Dnmt1-siRNA ameliorated diabetes-induced increase in Rac1 transcripts and activity, and decreased ROS levels. Conclusions Thus, despite Dnmts activation, concomitant increase in Tets rapidly hydroxymethylates 5mC, allowing NF-κB to bind and activate Rac1. These results imply a critical role of an active DNA methylation in cytosolic ROS regulation in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Arul J Duraisamy
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States
| | - Manish Mishra
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States
| | - Anjaneyulu Kowluru
- Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, United States.,John D. Dingell VA Medical Center, Detroit, Michigan, United States
| | - Renu A Kowluru
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States.,Anatomy/Cell Biology, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
4
|
Dimitrova AD, Georgiev O, Mishev K, Tzvetkov S, Ananiev ED, Karagyozov L. Mapping of unmethylated sites in rDNA repeats in barley NOR deletion line. JOURNAL OF PLANT PHYSIOLOGY 2016; 205:97-104. [PMID: 27649325 DOI: 10.1016/j.jplph.2016.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
Extensive cytosine methylation is characteristic of plant rDNA. Evidence exists, however, that the active rRNA genes are less methylated. In this work we report on the mapping of unmethylated CCGG sites in Hordeum vulgare rDNA repeats by digestion with methylation sensitive restriction enzyme HpaII and indirect end-labeling of the generated fragments. For mapping we used genomic DNA from barley deletion line with a single NOR on chromosome 5H. This NOR is more active in order to compensate for the missing NOR 6H. The enhanced NOR 5H activity in the deletion mutant is not due to higher multiplicity of the rRNA genes or, as sequencing showed, to changes in the subunit structure of the intergenic spacer. The HpaII sites in barley rDNA are heavily methylated. Nevertheless, a fraction of the rDNA repeats is hypomethylated with unmethylated CCGG sites at various positions. One unmethylated CCGG sequence is close to the transcription start site, downstream of the 135bp subrepeats. Unmethylated sites are also present in the external transcribed spacer and in the genes coding mature rRNAs. The patterns of unmethylated sites in the barley deletion line and in lines with two NORs were compared. It is hypothesized that the occurrence of unmethylated sites on a fixed subset of rDNA repeats correlates with their transcriptional activity.
Collapse
Affiliation(s)
- Anna D Dimitrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| | - Oleg Georgiev
- Institute of Molecular Life Sciences, University Zurich-Irchel, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Stefan Tzvetkov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Evgueni D Ananiev
- Department of Plant Physiology, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| | - Luchezar Karagyozov
- Department of Plant Physiology, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| |
Collapse
|