1
|
Du J, Li W, Liu B, Zhang Y, Yu J, Hou X, Fang H. An in silico mechanistic insight into HDAC8 activation facilitates the discovery of new small-molecule activators. Bioorg Med Chem 2020; 28:115607. [PMID: 32690262 DOI: 10.1016/j.bmc.2020.115607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 11/25/2022]
Abstract
Research interest in the development of histone deacetylase 8 (HDAC8) activators has substantially increased since loss-of-function HDAC8 mutations were found in patients with Cornelia de Lange syndrome (CdLS). A series of N-acetylthioureas (e.g., TM-2-51) have been identified as HDAC8-selective activators, among others; however, their activation mechanisms remain elusive. Herein, we performed molecular dynamics (MD) simulations and fragment-centric topographical mapping (FCTM) to investigate the mechanism of HDAC8 activation. Our results revealed that improper binding of the coumarin group of fluorescent substrates leads to the "flipping out" of catalytic residue Y306, which reduces the enzymatic activity of HDAC8 towards fluorescent substrates. A pocket between the coumarin group of the substrate and thed catalytic residue Y306 was filled with the activator TM-2-51, which not only enhanced binding between HDAC8 and the fluorescent substrate complex but also stabilized Y306 in a catalytically active conformation. Based on this newly proposed substrate-dependent activation mechanism, we performed structure-based virtual screening and successfully identified low-molecular-weight scaffolds as new HDAC8 activators.
Collapse
Affiliation(s)
- Jintong Du
- Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250012, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Wen Li
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Bo Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003, United States; NYU-ECNU Center for Computational Chemistry, New York University-Shanghai, Shanghai 200122, China
| | - Jinming Yu
- Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250012, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China; Department of Chemistry, New York University, New York, NY 10003, United States.
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
HDAC1 overexpression enhances β-cell proliferation by down-regulating Cdkn1b/p27. Biochem J 2018; 475:3997-4010. [PMID: 30322885 DOI: 10.1042/bcj20180465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/18/2022]
Abstract
The homeobox transcription factor Nkx6.1 is sufficient to increase functional β-cell mass, where functional β-cell mass refers to the combination of β-cell proliferation, glucose-stimulated insulin secretion (GSIS) and β-cell survival. Here, we demonstrate that the histone deacetylase 1 (HDAC1), which is an early target of Nkx6.1, is sufficient to increase functional β-cell mass. We show that HDAC activity is necessary for Nkx6.1-mediated proliferation, and that HDAC1 is sufficient to increase β-cell proliferation in primary rat islets and the INS-1 832/13 β-cell line. The increase in HDAC1-mediated proliferation occurs while maintaining GSIS and increasing β-cell survival in response to apoptotic stimuli. We demonstrate that HDAC1 overexpression results in decreased expression of the cell cycle inhibitor Cdkn1b/p27 which is essential for inhibiting the G1 to S phase transition of the cell cycle. This corresponds with increased expression of key cell cycle activators, such as Cyclin A2, Cyclin B1 and E2F1, which are activated by activation of the Cdk4/Cdk6/Cyclin D holoenzymes due to down-regulation of Cdkn1b/p27. Finally, we demonstrate that overexpression of Cdkn1b/p27 inhibits HDAC1-mediated β-cell proliferation. Our data suggest that HDAC1 is critical for the Nkx6.1-mediated pathway that enhances functional β-cell mass.
Collapse
|
3
|
Jänsch N, Meyners C, Muth M, Kopranovic A, Witt O, Oehme I, Meyer-Almes FJ. The enzyme activity of histone deacetylase 8 is modulated by a redox-switch. Redox Biol 2018; 20:60-67. [PMID: 30292946 PMCID: PMC6174833 DOI: 10.1016/j.redox.2018.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 01/05/2023] Open
Abstract
Enzymes from the histone deacetylase (HDAC) family are highly regulated by different mechanisms. However, only very limited knowledge exists about the regulation of HDAC8, an established target in multiple types of cancer. A previous dedicated study of HDAC class I enzymes identified no redox-sensitive cysteinyl thiol in HDAC8. This is in contrast to the observation that HDAC8 preparations show different enzyme activities depending on the addition of reducing agents. In the light of the importance of HDAC8 in tumorigenesis a possible regulation by redox signaling was investigated using biochemical and biophysical methods combined with site directed mutagenesis. The occurrence of a characteristic disulfide bond under oxidizing conditions is associated with a complete but reversible loss of enzyme activity. Cysteines 102 and 153 are the integral components of the redox-switch. A possible regulation of HDAC8 by redox signal transduction is suggested by the observed relationship between inhibition of reactive oxygen species generating NOX and concomitant increased HDAC8 activity in neuroblastoma tumor cells. The slow kinetics for direct oxidation of HDAC8 by hydrogen peroxide suggests that transmitters of oxidative equivalents are required to transfer the H2O2 signal to HDAC8.
Collapse
Affiliation(s)
- Niklas Jänsch
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Christian Meyners
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Marius Muth
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Aleksandra Kopranovic
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Olaf Witt
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Research Consortium (DKTK), Germany
| | - Ina Oehme
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany; German Cancer Research Consortium (DKTK), Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany.
| |
Collapse
|
4
|
Toro TB, Painter RG, Haynes RA, Glotser EY, Bratton MR, Bryant JR, Nichols KA, Matthew-Onabanjo AN, Matthew AN, Bratcher DR, Perry CD, Watt TJ. Purification of metal-dependent lysine deacetylases with consistently high activity. Protein Expr Purif 2018; 141:1-6. [PMID: 28843507 PMCID: PMC5624855 DOI: 10.1016/j.pep.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/28/2017] [Accepted: 08/22/2017] [Indexed: 11/25/2022]
Abstract
Metal-dependent lysine deacetylases (KDACs) are involved in regulation of numerous biological and disease processes through control of post-translational acetylation. Characterization of KDAC activity and substrate identification is complicated by inconsistent activity of prepared enzyme and a range of multi-step purifications. We describe a simplified protocol based on two-step affinity chromatography. The purification method is appropriate for use regardless of expression host, and we demonstrate purification of several representative members of the KDAC family as well as a selection of mutated variants. The purified proteins are highly active and consistent across preparations.
Collapse
Affiliation(s)
- Tasha B Toro
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Richard G Painter
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Rashad A Haynes
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Elena Y Glotser
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Melyssa R Bratton
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Jenae R Bryant
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Kyara A Nichols
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Asia N Matthew-Onabanjo
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Ashley N Matthew
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Derek R Bratcher
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Chanel D Perry
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Terry J Watt
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| |
Collapse
|
5
|
Toro TB, Edenfield SA, Hylton BJ, Watt TJ. Chelatable trace zinc causes low, irreproducible KDAC8 activity. Anal Biochem 2018; 540-541:9-14. [PMID: 29100752 PMCID: PMC5712482 DOI: 10.1016/j.ab.2017.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 12/25/2022]
Abstract
Acetylation is an important regulatory mechanism in cells, and emphasis is being placed on identifying substrates and small molecule modulators of this post-translational modification. However, the reported in vitro activity of the lysine deacetylase KDAC8 is inconsistent across experimental setups, even with the same substrate, complicating progress in the field. We detected trace levels of zinc, a known inhibitor of KDAC8 when present in excess, even in high-quality buffer reagents, at concentrations that are sufficient to significantly inhibit the enzyme under common reaction conditions. We hypothesized that trace zinc in solution could account for the observed variability in KDAC8 activity. We demonstrate that addition of chelators, including BSA, EDTA, and citrate, and/or the use of a phosphate-based buffer instead of the more common tris-based buffer, eliminates the inhibition from low levels of zinc as well as the dependence of specific activity on enzyme concentration. This results in high KDAC8 activity that is consistent across buffer systems, even using low concentrations of enzyme. We report conditions that are suitable for several assays to increase both enzyme activity and reproducibility. Our results have significant implications for approaches used to identify substrates and small molecule modulators of KDAC8 and interpretation of existing data.
Collapse
Affiliation(s)
- Tasha B Toro
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Samantha A Edenfield
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Brandon J Hylton
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Terry J Watt
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| |
Collapse
|
6
|
Toro TB, Bryant JR, Watt TJ. Lysine Deacetylases Exhibit Distinct Changes in Activity Profiles Due to Fluorophore Conjugation of Substrates. Biochemistry 2017; 56:4549-4558. [PMID: 28749131 PMCID: PMC5937523 DOI: 10.1021/acs.biochem.7b00270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysine deacetylases (KDACs) are enzymes that reverse the post-translational modification of lysine acetylation. Thousands of potential substrates, acetylated protein sequences, have been identified in mammalian cells. Properly regulated acetylation and deacetylation have been linked to many biological processes, while aberrant KDAC activity has also been linked to numerous diseases. Commercially available peptide substrates that are conjugated to fluorescent dye molecules, such as 7-amino-4-methylcoumarin (AMC), are commonly used to monitor deacetylation in studies addressing both substrate specificity and small molecule modulators of activity. Here, we have compared the activity of several KDACs, representing all major classes of KDACs, with substrates in the presence and absence of AMC as well as peptides for which tryptophan has been substituted for AMC. Our results unequivocally demonstrate that AMC has a significant effect on activity for all KDACs tested. Furthermore, in neither the nature of the effect nor the magnitude is consistent across KDACs, making it impossible to predict the effect of AMC on a particular enzyme-substrate pair. AMC did not affect acetyllysine preference in a multiply acetylated substrate. In contrast, AMC significantly enhanced KDAC6 substrate affinity, greatly reduced Sirt1 activity, eliminated the substrate sequence specificity of KDAC4, and had no consistent effect with KDAC8 substrates. These results indicate that profiling of KDAC activity with labeled peptides is unlikely to produce biologically relevant data.
Collapse
Affiliation(s)
- Tasha B. Toro
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125-1098, United States
| | - Jenae R. Bryant
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125-1098, United States
| | - Terry J. Watt
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125-1098, United States
| |
Collapse
|
7
|
Deardorff MA, Porter NJ, Christianson DW. Structural aspects of HDAC8 mechanism and dysfunction in Cornelia de Lange syndrome spectrum disorders. Protein Sci 2016; 25:1965-1976. [PMID: 27576763 PMCID: PMC5079251 DOI: 10.1002/pro.3030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 11/08/2022]
Abstract
Cornelia de Lange Syndrome (CdLS) encompasses a broad spectrum of phenotypes characterized by distinctive craniofacial abnormalities, limb malformations, growth retardation, and intellectual disability. CdLS spectrum disorders are referred to as cohesinopathies, with ∼70% of patients having a mutation in a gene encoding a core cohesin protein (SMC1A, SMC3, or RAD21) or a cohesin regulatory protein (NIPBL or HDAC8). Notably, the regulatory function of HDAC8 in cohesin biology has only recently been discovered. This Zn2+ -dependent hydrolase catalyzes the deacetylation of SMC3, a necessary step for cohesin recycling during the cell cycle. To date, 23 different missense mutants in the gene encoding HDAC8 have been identified in children with developmental features that overlap those of CdLS. Enzymological, biophysical, and structural studies of CdLS HDAC8 protein mutants have yielded critical insight on compromised catalysis in vitro. Most CdLS HDAC8 mutations trigger structural changes that directly or indirectly impact substrate binding and catalysis. Additionally, several mutations significantly compromise protein thermostability. Intriguingly, catalytic activity in many HDAC8 mutants can be partially or fully restored by an N-acylthiourea activator, suggesting a plausible strategy for the chemical rescue of compromised HDAC8 catalysis in vivo.
Collapse
Affiliation(s)
- Matthew A Deardorff
- Division of Human Genetics and Molecular Biology, The Children's Hospital of Philadelphia, Pennsylvania, 19104.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.
| | - Nicholas J Porter
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323.
| |
Collapse
|