1
|
Mao R, Wang J, Xu Y, Wang Y, Wu M, Mao L, Chen Y, Li D, Zhang T, Diao E, Chi Z, Wang Y, Chang X. Oral delivery of bi-autoantigens by bacterium-like particles (BLPs) against autoimmune diabetes in NOD mice. Drug Deliv 2023; 30:2173339. [PMID: 36719009 PMCID: PMC9891168 DOI: 10.1080/10717544.2023.2173339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023] Open
Abstract
Induction of oral tolerance by vaccination with type 1 diabetes mellitus (T1DM)-associated autoantigens exhibits great potential in preventing and treating this autoimmune disease. However, antigen degradation in the gastrointestinal tract (GIT) limits the delivery efficiency of oral antigens. Previously, bacterium-like particles (BLPs) have been used to deliver a single-chain insulin (SCI-59) analog (BLPs-SCI-59) or the intracellular domain of insulinoma-associated protein 2 (IA-2ic) (BLPs-IA-2ic). Both monovalent BLPs vaccines can suppress T1DM in NOD mice by stimulating the corresponding antigen-specific oral tolerance, respectively. Here, we constructed two bivalent BLPs vaccines which simultaneously deliver SCI-59 and IA-2ic (Bivalent vaccine-mix or Bivalent vaccine-SA), and evaluated whether there is an additive beneficial effect on tolerance induction and suppression of T1DM by treatment with BLPs-delivered bi-autoantigens. Compared to the monovalent BLPs vaccines, oral administration of the Bivalent vaccine-mix could significantly reduce morbidity and mortality in T1DM. Treatment with the bivalent BLPs vaccines (especially Bivalent vaccine-mix) endowed the mice with a stronger ability to regulate blood glucose and protect the integrity and function of pancreatic islets than the monovalent BLPs vaccines treatment. This additive effect of BLPs-delivered bi-autoantigens on T1DM prevention may be related to that SCI-59- and IA-2-specific Th2-like immune responses could be induced, which was more beneficial for the correction of Th1/Th2 imbalance. In addition, more CD4+CD25+Foxp3+ regulatory T cells (Tregs) were induced by treatment with the bivalent BLPs vaccines than did the monovalent BLPs vaccines. Therefore, multiple autoantigens delivered by BLPs maybe a promising strategy to prevent T1DM by efficiently inducing antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Ruifeng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Jin Wang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing211200, China
| | - Ying Xu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Yuqi Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Mengmeng Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Lixia Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Yingying Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Dengchao Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Tong Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Zhenjing Chi
- Huai’an First People’s Hospital, Nanjing Medical University, Huai’an223300, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Xin Chang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing211200, China
| |
Collapse
|
2
|
Mao R, Yang M, Yang R, Chen Y, Diao E, Zhang T, Li D, Chang X, Chi Z, Wang Y. Oral delivery of the intracellular domain of the insulinoma-associated protein 2 (IA-2ic) by bacterium-like particles (BLPs) prevents type 1 diabetes mellitus in NOD mice. Drug Deliv 2022; 29:925-936. [PMID: 35311607 PMCID: PMC8942491 DOI: 10.1080/10717544.2022.2053760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Antigen-specific immune tolerance, which possesses great potential in preventing or curing type 1 diabetes mellitus (T1DM), can be induced by oral vaccination with T1DM-related autoantigens. However, direct administration of autoantigens via oral route exhibits a low tolerance-inducing effect as a result of the digestion of protein antigens in the gastrointestinal tract (GIT) and therefore, a large dosage of autoantigens may be needed. In this study, bacterium-like particles (BLPs) made from food-grade lactic acid bacteria were used to deliver the intracellular domain of the insulinoma-associated protein 2 (IA-2ic). For this purpose, BLPs-IA-2ic vaccine in which IA-2ic bound to the surface of BLPs was constructed. BLPs enhanced the stability of the delivered IA-2ic based on the stability analysis in vitro. Oral administration of BLPs-IA-2ic significantly reduced T1DM incidence in NOD mice. The mice fed BLPs-IA-2ic exhibited a significant reduction in insulitis and preserved the ability to secrete insulin. Immunologic analysis showed that oral vaccination with BLPs-IA-2ic induced antigen-specific T cell tolerance. The results revealed that the successful induction of immune tolerance was dependent on the immune deviation (in favor of T helper 2 responses) and CD4+CD25+FoxP3+ regulatory T cells. Hence, oral vaccination with BLPs-IA-2ic shows potential for application in preventing T1DM.
Collapse
Affiliation(s)
- Ruifeng Mao
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Menglan Yang
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Rui Yang
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Yingying Chen
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Enjie Diao
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Tong Zhang
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Dengchao Li
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Xin Chang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Zhenjing Chi
- Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus. Biotechnol Lett 2022; 44:643-669. [DOI: 10.1007/s10529-022-03247-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
|
4
|
Mao RF, Chen YY, Zhang J, Chang X, Wang YF. Type 1 diabetes mellitus and its oral tolerance therapy. World J Diabetes 2020; 11:400-415. [PMID: 33133388 PMCID: PMC7582116 DOI: 10.4239/wjd.v11.i10.400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
As a T cell-mediated autoimmune disease, type 1 diabetes mellitus (T1DM) is marked by insulin defect resulting from the destruction of pancreatic β-cells. The understanding of various aspects of T1DM, such as its epidemiology, pathobiology, pathogenesis, clinical manifestations, and complications, has been greatly promoted by valuable research performed during the past decades. However, these findings have not been translated into an effective treatment. The ideal treatment should safely repair the destroyed immune balance in a long-lasting manner, preventing or stopping the destruction of β-cells. As a type of immune hypo-responsiveness to the orally administrated antigen, oral tolerance may be induced by enhancement of regulatory T cells (Tregs) or by anergy/deletion of T cells, depending on the dosage of orally administrated antigen. Acting as an antigen-specific immunotherapy, oral tolerance therapy for T1DM has been mainly performed using animal models and some clinical trials have been completed or are still ongoing. Based on the review of the proposed mechanism of the development of T1DM and oral tolerance, we give a current overview of oral tolerance therapy for T1DM conducted in both animal models and clinical trials.
Collapse
Affiliation(s)
- Rui-Feng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Ying-Ying Chen
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Xin Chang
- Department of Ultrasound Medicine, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu Province, China
| | - Ye-Fu Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| |
Collapse
|
5
|
Mao R, Chen Y, Wu Q, Zhang T, Diao E, Wu D, Wang M, Liu Y, Lu L, Chang X, Zheng Y, Wang Y. Oral delivery of single-chain insulin (SCI-59) analog by bacterium-like particles (BLPs) induces oral tolerance and prevents autoimmune diabetes in NOD mice. Immunol Lett 2019; 214:37-44. [PMID: 31473255 DOI: 10.1016/j.imlet.2019.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/18/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
Oral tolerance, induced by oral administration of autoantigens, is a promising therapeutic approach to treat type 1 diabetes mellitus (T1DM). However, the degradation of antigens passing through the gastrointestinal tract (GIT) leads to low induction efficiency. Based on our previous study, a single-chain insulin (SCI-59) analog, bound to the surface of lactic acid bacteria (LAB) bacterium-like particles (BLPs), was more stable in the simulated gastric fluid, compared to free SCI-59 and insulin. Based on the analysis of diabetes progression, a significant decrease in the incidence of diabetes was observed in mice fed BLPs-SCI-59. Oral administration of BLPs-SCI-59 can enhance glucose tolerance in NOD mice and this effect may result from the protection of pancreatic islet beta cells, as compared to the free SCI-59 group and BLPs group. Oral administration of BLPs-SCI-59 can significantly reduce insulitis and preserve the ability of insulin secretion in treated mice. Oral vaccination with BLPs-SCI-59 induced SCI-59 specific T cell tolerance in treated mice, which may due to the repair of Th1/Th2 imbalance and increased CD4+CD25+FoxP3+ regulatory T cells (Tregs). These results show that oral vaccination with BLPs-SCI-59 is a promising way to prevent T1DM in NOD mice.
Collapse
Affiliation(s)
- Ruifeng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an, 223300, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yingying Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an, 223300, China
| | - Qian Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an, 223300, China
| | - Tong Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an, 223300, China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an, 223300, China
| | - Dongli Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Man Wang
- Institute of Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Yu Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an, 223300, China
| | - Lu Lu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an, 223300, China
| | - Xin Chang
- Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Ying Zheng
- Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|