1
|
NandaKafle G, Blasius LA, Seale T, Brözel VS. Escherichia coli Strains Display Varying Susceptibility to Grazing by the Soil Amoeba Dictyostelium discoideum. Microorganisms 2023; 11:1457. [PMID: 37374960 DOI: 10.3390/microorganisms11061457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies have shown that Escherichia coli can survive in different environments, including soils, and they can maintain populations in sterile soil for a long period of time. This indicates that growth-supporting nutrients are available; however, when grown in non-sterile soils, populations decline, suggesting that other biological factors play a role in controlling E. coli populations in soil. Free-living protozoa can affect the bacterial population by grazing. We hypothesized that E. coli strains capable of surviving in non-sterile soil possess mechanisms to protect themselves from amoeba predation. We determined the grazing rate of E. coli pasture isolates by using Dictyostelium discoideum. Bacterial suspensions applied to lactose agar as lines were allowed to grow for 24 h, when 4 μL of D. discoideum culture was inoculated in the center of each bacterial line. Grazing distances were measured after 4 days. The genomes of five grazing-susceptible and five grazing-resistant isolates were sequenced and compared. Grazing distance varied among isolates, which indicated that some E. coli are more susceptible to grazing by protozoa than others. When presented with a choice between grazing-susceptible and grazing-resistant isolates, D. discoideum grazed only on the susceptible strain. Grazing susceptibility phenotype did not align with the phylogroup, with both B1 and E strains found in both grazing groups. They also did not align by core genome phylogeny. Whole genome comparisons revealed that the five most highly grazed strains had 389 shared genes not found in the five least grazed strains. Conversely, the five least grazed strains shared 130 unique genes. The results indicate that long-term persistence of E. coli in soil is due at least in part to resistance to grazing by soil amoeba.
Collapse
Affiliation(s)
- Gitanjali NandaKafle
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Lane A Blasius
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Tarren Seale
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
| | - Volker S Brözel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
| |
Collapse
|
2
|
Zhang N, Liang C, Kan P, Yangyao J, Lu D, Yao Z, Gan H, Zhu DZ. Indigenous microbial community governs the survival of Escherichia coli O157:H7 in constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117524. [PMID: 36801692 DOI: 10.1016/j.jenvman.2023.117524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The survival pattern of Escherichia coli O157:H7 (E. coli O157:H7) and its regulatory factors in natural environments have been widely studied. However, there is little information about the survival of E. coli O157:H7 in artificial environments, especially in wastewater treatment facilities. In this study, a contamination experiment was performed to explore the survival pattern of E. coli O157:H7 and its central control factors in two constructed wetlands (CWs) under different hydraulic loading rates (HLRs). The results showed that the survival time of E. coli O157:H7 was longer in the CW under the higher HLR. Substrate ammonium nitrogen and available phosphorus were the main factors that influenced the survival of E. coli O157:H7 in CWs. Despite the minimal effect of microbial α-diversity, some keystone taxa, such as Aeromonas, Selenomonas, and Paramecium, governed the survival of E. coli O157:H7. In addition, the prokaryotic community had a more significant impact on the survival of E. coli O157:H7 than the eukaryotic community. The biotic properties had a more substantial direct power on the survival of E. coli O157:H7 than the abiotic factors in CWs. Collectively, this study comprehensively disclosed the survival pattern of E. coli O157:H7 in CWs, which is an essential addition to the environmental behavior of E. coli O157:H7, providing a theoretical basis for the prevention and control of biological contamination in wastewater treatment processes.
Collapse
Affiliation(s)
- Nan Zhang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Chunling Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Peiying Kan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Jiannan Yangyao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Dingnan Lu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China.
| | - Huihui Gan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
A novel aggregation-induced emission probe-linked phage sorbent assay for virulent bacteria strain imaging and on-site detection. Anal Chim Acta 2022; 1237:340611. [DOI: 10.1016/j.aca.2022.340611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/12/2022]
|
4
|
Davis MT, Canning AD, Midwinter AC, Death RG. Nitrate enrichment does not affect enteropathogenic Escherichia coli in aquatic microcosms but may affect other strains present in aquatic habitats. PeerJ 2022; 10:e13914. [PMID: 36187747 PMCID: PMC9524367 DOI: 10.7717/peerj.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/27/2022] [Indexed: 01/19/2023] Open
Abstract
Eutrophication of the planet's aquatic systems is increasing at an unprecedented rate. In freshwater systems, nitrate-one of the nutrients responsible for eutrophication-is linked to biodiversity losses and ecosystem degradation. One of the main sources of freshwater nitrate pollution in New Zealand is agriculture. New Zealand's pastoral farming system relies heavily on the application of chemical fertilisers. These fertilisers in combination with animal urine, also high in nitrogen, result in high rates of nitrogen leaching into adjacent aquatic systems. In addition to nitrogen, livestock waste commonly carries human and animal enteropathogenic bacteria, many of which can survive in freshwater environments. Two strains of enteropathogenic bacteria found in New Zealand cattle, are K99 and Shiga-toxin producing Escherichia coli (STEC). To better understand the effects of ambient nitrate concentrations in the water column on environmental enteropathogenic bacteria survival, a microcosm experiment with three nitrate-nitrogen concentrations (0, 1, and 3 mg NO3-N /L), two enteropathogenic bacterial strains (STEC O26-human, and K99-animal), and two water types (sterile and containing natural microbiota) was run. Both STEC O26 and K99 reached 500 CFU/10 ml in both water types at all three nitrate concentrations within 24 hours and remained at those levels for the full 91 days of the experiment. Although enteropathogenic strains showed no response to water column nitrate concentrations, the survival of background Escherichia coli, imported as part of the in-stream microbiota did, surviving longer in 1 and 3 mg NO3-N/Lconcentrations (P < 0.001). While further work is needed to fully understand how nitrate enrichment and in-stream microbiota may affect the viability of human and animal pathogens in freshwater systems, it is clear that these two New Zealand strains of STEC O26 and K99 can persist in river water for extended periods alongside some natural microbiota.
Collapse
Affiliation(s)
- Meredith T. Davis
- School of Natural Sciences, Massey University, Palmerston North, Manawatu, New Zealand,Molecular Epidemiology and Veterinary Public Health Laboratory—Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, Manawatu, New Zealand
| | - Adam D. Canning
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University of North Queensland, Townsville, Queensland, Australia
| | - Anne C. Midwinter
- Molecular Epidemiology and Veterinary Public Health Laboratory—Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, Manawatu, New Zealand
| | - Russell G. Death
- School of Natural Sciences, Massey University, Palmerston North, Manawatu, New Zealand
| |
Collapse
|
5
|
Amoebae as Targets for Toxins or Effectors Secreted by Mammalian Pathogens. Toxins (Basel) 2021; 13:toxins13080526. [PMID: 34437397 PMCID: PMC8402458 DOI: 10.3390/toxins13080526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/28/2022] Open
Abstract
Numerous microorganisms, pathogenic for mammals, come from the environment where they encounter predators such as free-living amoebae (FLA). The selective pressure due to this interaction could have generated virulence traits that are deleterious for amoebae and represents a weapon against mammals. Toxins are one of these powerful tools that are essential for bacteria or fungi to survive. Which amoebae are used as a model to study the effects of toxins? What amoeba functions have been reported to be disrupted by toxins and bacterial secreted factors? Do bacteria and fungi effectors affect eukaryotic cells similarly? Here, we review some studies allowing to answer these questions, highlighting the necessity to extend investigations of microbial pathogenicity, from mammals to the environmental reservoir that are amoebae.
Collapse
|
6
|
Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 2021; 10:404. [PMID: 33805526 PMCID: PMC8065619 DOI: 10.3390/pathogens10040404] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Shiga toxins (Stx) of Shiga toxin-producing Escherichia coli (STEC) are generally encoded in the genome of lambdoid bacteriophages, which spend the most time of their life cycle integrated as prophages in specific sites of the bacterial chromosome. Upon spontaneous induction or induction by chemical or physical stimuli, the stx genes are co-transcribed together with the late phase genes of the prophages. After being assembled in the cytoplasm, and after host cell lysis, mature bacteriophage particles are released into the environment, together with Stx. As members of the group of lambdoid phages, Stx phages share many genetic features with the archetypical temperate phage Lambda, but are heterogeneous in their DNA sequences due to frequent recombination events. In addition to Stx phages, the genome of pathogenic STEC bacteria may contain numerous prophages, which are either cryptic or functional. These prophages may carry foreign genes, some of them related to virulence, besides those necessary for the phage life cycle. Since the production of one or more Stx is considered the major pathogenicity factor of STEC, we aim to highlight the new insights on the contribution of Stx phages and other STEC phages to pathogenicity.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Nadja Haarmann
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maike Schwidder
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| |
Collapse
|
7
|
George AS, Rehfuss MYM, Parker CT, Brandl MT. The transcriptome of Escherichia coli O157: H7 reveals a role for oxidative stress resistance in its survival from predation by Tetrahymena. FEMS Microbiol Ecol 2020; 96:5721237. [PMID: 32009174 DOI: 10.1093/femsec/fiaa014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 11/14/2022] Open
Abstract
Pathogenic E. coli remains undigested upon phagocytosis by Tetrahymena and is egested from the ciliate as viable cells in its fecal pellets. Factors that are involved in the survival of Shiga toxin-producing E. coli serovar O157: H7 (EcO157) from digestion by Tetrahymena were identified by microarray analysis of its transcriptome in the protozoan phagosome. Numerous genes belonging to anaerobic metabolism and various stress responses were upregulated significantly ≥ 2-fold in EcO157 cells in the food vacuoles compared with in planktonic cells that remained uningested by the protist. Among these were the oxidative stress response genes, ahpF and katG. Fluorescence microscopy and staining with CellROX® Orange confirmed the presence of reactive oxygen species in food vacuoles containing EcO157 cells. Frequency distribution analysis of the percentage of EcO157 viable cells in Tetrahymena fecal pellets revealed that the ΔahpCF and ΔahpCFΔkatG mutants were less fit than the wild type strain and ΔkatG mutant after passage through the protist. Given the broad use of oxidants as sanitizers in the food industry, our observation of the oxidative stress response in EcO157 during its interaction with Tetrahymena emphasizes the importance of furthering our knowledge of the physiology of this human pathogen in environments relevant to its ecology and to food safety.
Collapse
Affiliation(s)
- Andree Sherlon George
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Marc Yi Ming Rehfuss
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Craig Thomas Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Maria Theresa Brandl
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| |
Collapse
|
8
|
Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins (Basel) 2020; 12:toxins12090607. [PMID: 32967277 PMCID: PMC7551371 DOI: 10.3390/toxins12090607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Many cattle are persistently colonized with Shiga toxin-producing Escherichia coli (STEC) and represent a major source of human infections with human-pathogenic STEC strains (syn. enterohemorrhagic E. coli (EHEC)). Intervention strategies most effectively protecting humans best aim at the limitation of bovine STEC shedding. Mechanisms enabling STEC to persist in cattle are only partialy understood. Cattle were long believed to resist the detrimental effects of Shiga toxins (Stxs), potent cytotoxins acting as principal virulence factors in the pathogenesis of human EHEC-associated diseases. However, work by different groups, summarized in this review, has provided substantial evidence that different types of target cells for Stxs exist in cattle. Peripheral and intestinal lymphocytes express the Stx receptor globotriaosylceramide (Gb3syn. CD77) in vitro and in vivo in an activation-dependent fashion with Stx-binding isoforms expressed predominantly at early stages of the activation process. Subpopulations of colonic epithelial cells and macrophage-like cells, residing in the bovine mucosa in proximity to STEC colonies, are also targeted by Stxs. STEC-inoculated calves are depressed in mounting appropriate cellular immune responses which can be overcome by vaccination of the animals against Stxs early in life before encountering STEC. Considering Stx target cells and the resulting effects of Stxs in cattle, which significantly differ from effects implicated in human disease, may open promising opportunities to improve existing yet insufficient measures to limit STEC carriage and shedding by the principal reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, D-07743 Jena, Germany
| |
Collapse
|
9
|
Abstract
Escherichia coli is a commensal of the vertebrate gut that is increasingly involved in various intestinal and extra-intestinal infections as an opportunistic pathogen. Numerous pathotypes that represent groups of strains with specific pathogenic characteristics have been described based on heterogeneous and complex criteria. The democratization of whole-genome sequencing has led to an accumulation of genomic data that render possible a population phylogenomic approach to the emergence of virulence. Few lineages are responsible for the pathologies compared with the diversity of commensal strains. These lineages emerged multiple times during E. coli evolution, mainly by acquiring virulence genes located on mobile elements, but in a specific chromosomal phylogenetic background. This repeated emergence of stable and cosmopolitan lineages argues for an optimization of strain fitness through epistatic interactions between the virulence determinants and the remaining genome.
Collapse
|
10
|
Zuppi M, Tozzoli R, Chiani P, Quiros P, Martinez-Velazquez A, Michelacci V, Muniesa M, Morabito S. Investigation on the Evolution of Shiga Toxin-Converting Phages Based on Whole Genome Sequencing. Front Microbiol 2020; 11:1472. [PMID: 32754128 PMCID: PMC7366253 DOI: 10.3389/fmicb.2020.01472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
Bacteriophages are pivotal elements in the dissemination of virulence genes. The main virulence determinants of Shiga Toxin producing E. coli, Shiga Toxins (Stx), are encoded by genes localized in the genome of lambdoid bacteriophages. Stx comprise two antigenically different types, Stx1 and Stx2, further divided into subtypes. Among these, certain Stx2 subtypes appear to be more commonly occurring in the most severe forms of the STEC disease, haemorrhagic colitis and haemolytic uremic syndrome (HUS). This study aimed at obtaining insights on the evolution of Stx2 bacteriophages, due to their relevance in public health, and we report here on the analysis of the genomic structure of Stx2 converting phages in relation with the known reservoir of the E. coli strains harboring them. Stx2-converting phages conveying the genes encoding different stx2 subtypes have been isolated from STEC strains and their whole genomes have been sequenced, analyzed and compared to those of other Stx2 phages available in the public domain. The phages' regions containing the stx2 genes have been analyzed in depth allowing to make inference on the possible mechanisms of selection and maintenance of certain Stx2 phages in the reservoir. The "stx regions" of different stx2 gene subtypes grouped into three different evolutionary lines in the comparative analysis, reflecting the frequency with which these subtypes are found in different animal niches, suggesting that the colonization of specific reservoir by STEC strains could be influenced by the Stx phage that they carry. Noteworthy, we could identify the presence of nanS-p gene exclusively in the "stx regions" of the phages identified in STEC strains commonly found in cattle. As a matter of fact, this gene encodes an esterase capable of metabolizing sialic acids produced by submaxillary glands of bovines and present in great quantities in their gastrointestinal tract.
Collapse
Affiliation(s)
- Michele Zuppi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Rosangela Tozzoli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Chiani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Pablo Quiros
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Adan Martinez-Velazquez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Valeria Michelacci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Stefano Morabito
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
11
|
Sapountzis P, Segura A, Desvaux M, Forano E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms 2020; 8:microorganisms8060877. [PMID: 32531983 PMCID: PMC7355788 DOI: 10.3390/microorganisms8060877] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
For approximately 10,000 years, cattle have been our major source of meat and dairy. However, cattle are also a major reservoir for dangerous foodborne pathogens that belong to the Shiga toxin-producing Escherichia coli (STEC) group. Even though STEC infections in humans are rare, they are often lethal, as treatment options are limited. In cattle, STEC infections are typically asymptomatic and STEC is able to survive and persist in the cattle GIT by escaping the immune defenses of the host. Interactions with members of the native gut microbiota can favor or inhibit its persistence in cattle, but research in this direction is still in its infancy. Diet, temperature and season but also industrialized animal husbandry practices have a profound effect on STEC prevalence and the native gut microbiota composition. Thus, exploring the native cattle gut microbiota in depth, its interactions with STEC and the factors that affect them could offer viable solutions against STEC carriage in cattle.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Correspondence:
| | - Audrey Segura
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Chr. Hansen Animal Health & Nutrition, 2970 Hørsholm, Denmark
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| |
Collapse
|
12
|
Mathieu A, Dion M, Deng L, Tremblay D, Moncaut E, Shah SA, Stokholm J, Krogfelt KA, Schjørring S, Bisgaard H, Nielsen DS, Moineau S, Petit MA. Virulent coliphages in 1-year-old children fecal samples are fewer, but more infectious than temperate coliphages. Nat Commun 2020; 11:378. [PMID: 31953385 PMCID: PMC6969025 DOI: 10.1038/s41467-019-14042-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages constitute an important part of the human gut microbiota, but their impact on this community is largely unknown. Here, we cultivate temperate phages produced by 900 E. coli strains isolated from 648 fecal samples from 1-year-old children and obtain coliphages directly from the viral fraction of the same fecal samples. We find that 63% of strains hosted phages, while 24% of the viromes contain phages targeting E. coli. 150 of these phages, half recovered from strain supernatants, half from virome (73% temperate and 27% virulent) were tested for their host range on 75 E. coli strains isolated from the same cohort. Temperate phages barely infected the gut strains, whereas virulent phages killed up to 68% of them. We conclude that in fecal samples from children, temperate coliphages dominate, while virulent ones have greater infectivity and broader host range, likely playing a role in gut microbiota dynamics. The impact of bacteriophages in the human gut microbiome remains poorly understood. Here, the authors characterize coliphages isolated from a large cohort of 1-year-old infants and show that temperate coliphages dominate, while virulent ones have greater infectivity and broader host range.
Collapse
Affiliation(s)
- Aurélie Mathieu
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Moïra Dion
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Ling Deng
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Denise Tremblay
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Elisabeth Moncaut
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Karen A Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej5, 2300S, Copenhagen, Denmark
| | - Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej5, 2300S, Copenhagen, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
13
|
Filipiak M, Łoś JM, Łoś M. Efficiency of induction of Shiga-toxin lambdoid prophages in Escherichia coli due to oxidative and antibiotic stress depends on the combination of prophage and the bacterial strain. J Appl Genet 2019; 61:131-140. [PMID: 31808108 PMCID: PMC6968986 DOI: 10.1007/s13353-019-00525-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022]
Abstract
In the study presented here, we tested, how large a fraction of lysogenic culture was undergoing filamentation, which could indicate triggering of the SOS response or SOS-independent prophage induction that is also known to cause cell filamentation. Here, antibiotic stress was triggered by adding mitomycin C and oxidative stress was induced by hydrogen peroxide. Observation of bacterial cells under an optical microscope revealed more filamenting cells for lysogenic Escherichia coli than for strains not carrying a prophage. Moreover, the amount of filamenting cells depended not only on the stress agents used and the type of the prophage, but also on the host. During induction of the 933W prophage, the resulting phage titer and the amount of elongating cells were different when using E. coli O157:H7 EDL933 clinical isolate and the E. coli MG1655 laboratory strain. The amount of filamenting cells correlates well with the observed phage titers.
Collapse
Affiliation(s)
- Michalina Filipiak
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza Street 59, 80-308, Gdansk, Poland
| | - Joanna M Łoś
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza Street 59, 80-308, Gdansk, Poland.
- Phage Consultants, Partyzantow Street 10/18, 80-254, Gdansk, Poland.
| | - Marcin Łoś
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza Street 59, 80-308, Gdansk, Poland
- Phage Consultants, Partyzantow Street 10/18, 80-254, Gdansk, Poland
| |
Collapse
|
14
|
Gaines A, Ludovice M, Xu J, Zanghi M, Meinersmann RJ, Berrang M, Daley W, Britton D. The dialogue between protozoa and bacteria in a microfluidic device. PLoS One 2019; 14:e0222484. [PMID: 31596855 PMCID: PMC6784911 DOI: 10.1371/journal.pone.0222484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/30/2019] [Indexed: 01/28/2023] Open
Abstract
In nature, protozoa play a major role in controlling bacterial populations. This paper proposes a microfluidic device for the study of protozoa behaviors change due to their chemotactic response in the presence of bacterial cells. A three-channel microfluidic device was designed using a nitrocellulose membrane into which channels were cut using a laser cutter. The membrane was sandwiched between two glass slides; a Euglena suspension was then allowed to flow through the central channel. The two side channels were filled with either, 0.1% peptone as a negative control, or a Listeria suspension respectively. The membrane design prevented direct interaction but allowed Euglena cells to detect Listeria cells as secretions diffused through the nitrocellulose membrane. A significant number of Euglena cells migrated toward the chambers near the bacterial cells, indicating a positive chemotactic response of Euglena toward chemical cues released from Listeria cells. Filtrates collected from Listeria suspension with a series of molecular weight cutoffs (3k, 10k and 100k) were examined in Euglena chemotaxis tests. Euglena cells were attracted to all filtrates collected from the membrane filtration with different molecular weight cutoffs, suggesting small molecules from Listeria might be the chemical cues to attract protozoa. Headspace volatile organic compounds (VOC) released from Listeria were collected, spiked to 0.1% peptone and tested as the chemotactic effectors. It was discovered that the Euglena cells responded quickly to Listeria VOCs including decanal, 3,5- dimethylbenzaldehyde, ethyl acetate, indicating bacterial VOCs were used by Euglena to track the location of bacteria.
Collapse
Affiliation(s)
- Anna Gaines
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Miranda Ludovice
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jie Xu
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Marc Zanghi
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Richard J. Meinersmann
- Richard B. Russell Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| | - Mark Berrang
- Richard B. Russell Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| | - Wayne Daley
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Doug Britton
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
15
|
Fitzgerald SF, Beckett AE, Palarea-Albaladejo J, McAteer S, Shaaban S, Morgan J, Ahmad NI, Young R, Mabbott NA, Morrison L, Bono JL, Gally DL, McNeilly TN. Shiga toxin sub-type 2a increases the efficiency of Escherichia coli O157 transmission between animals and restricts epithelial regeneration in bovine enteroids. PLoS Pathog 2019; 15:e1008003. [PMID: 31581229 PMCID: PMC6776261 DOI: 10.1371/journal.ppat.1008003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin (Stx) can be a threat to human health, with cattle being an important natural reservoir. In many countries the most severe pathology is associated with enterohaemorrhagic E. coli (EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT) 21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC infections and this phage type commonly encodes both Stx2a and Stx2c toxin types. PT21/28 is also epidemiologically linked to super-shedding (>103 cfu/g of faeces) which is significant for inter-animal transmission and human infection as demonstrated using modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+ PT21/28 strains induced with mitomycin C and this is associated with more rapid induction of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction when toxin production was not induced or prevented by mutation. Isogenic strains that differed in their capacity to produce Stx2a were selected for experimental oral colonisation of calves to assess the significance of Stx2a for both super-shedding and transmission between animals. Restoration of Stx2a expression in a PT21/28 background significantly increased animal-to-animal transmission and the number of sentinel animals that became super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157 colonisation of in-contact animals by restricting regeneration and turnover of the colonised gastrointestinal epithelium. Enterohaemorrhagic E. coli (EHEC) O157 strains are found in cattle where they are asymptomatic, while human exposure can lead to severe symptoms including bloody diarrhoea and kidney damage due to the activity of Shiga toxin (Stx). The most serious symptoms in humans are associated with isolates that encode Stx subtype 2a. The advantage of these toxins in the animal reservoir is still not clear, however there is experimental evidence implicating Stx with increased bacterial adherence, immune modulation and suppression of predatory protozoa. In this study, the hypothesis that Stx2a is important for super-shedding and calf-to-calf transmission was tested by comparing excretion and transmission dynamics of E. coli O157 strains with and without Stx2a. While Stx2a did not alter excretion levels when calfs were orally challenge, it enabled colonisation of more in contact ‘sentinel’ animals in our transmission model. We show that Stx2a is generally induced more rapidly than Stx2c, resulting in increased levels of Stx2a expression. Both Stx2a and Stx2c were able to restrict cellular proliferation of epithelial cells in cultured bovine enteroids. Taken together, we propose that rapid production of Stx2a and its role in establishing E. coli O157 colonisation in the bovine gastrointestinal tract facilitate effective transmission and have led to its expansion in the cattle E. coli O157 population.
Collapse
Affiliation(s)
- Stephen F. Fitzgerald
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | - Amy E. Beckett
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Sean McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Sharif Shaaban
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Jason Morgan
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Rachel Young
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Neil A. Mabbott
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Liam Morrison
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - James L. Bono
- United States Department of Agriculture, Agricultural Research Service, Nebraska, United States of America
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (DLG); (TNM)
| | - Tom N. McNeilly
- Moredun Research Institute, Penicuik, United Kingdom
- * E-mail: (DLG); (TNM)
| |
Collapse
|
16
|
Zebrafish ( Danio rerio) as a Vertebrate Model Host To Study Colonization, Pathogenesis, and Transmission of Foodborne Escherichia coli O157. mSphere 2017; 2:mSphere00365-17. [PMID: 28959735 PMCID: PMC5607324 DOI: 10.1128/mspheredirect.00365-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Foodborne infections with enterohemorrhagic Escherichia coli (EHEC) are a major cause of diarrheal illness in humans and can lead to severe complications such as hemolytic uremic syndrome. Cattle and other ruminants are the main reservoir of EHEC, which enters the food chain through contaminated meat, dairy, or vegetables. Here, we describe the establishment of a vertebrate model for foodborne EHEC infection, using larval zebrafish (Danio rerio) as a host and the protozoan prey Paramecium caudatum as a vehicle. We follow pathogen release from the vehicle, intestinal colonization, microbe-host interactions, and microbial gene induction within a live vertebrate host, in real time, throughout the course of infection. We demonstrate that foodborne EHEC colonizes the gastrointestinal tract faster and establishes a higher burden than waterborne infection. Expression of the locus of enterocyte effacement (LEE), a key EHEC virulence factor, was observed early during infection, mainly at sites that experience fluid shear, and required tight control to enable successful host colonization. EHEC infection led to strain- and LEE-dependent mortality in the zebrafish host. Despite the presence of the endogenous microbiota limiting EHEC colonization levels, EHEC colonization and virulence can be studied either under gnotobiotic conditions or against the backdrop of an endogenous (and variable) host microbiota. Finally, we show that the model can be used for investigation of factors affecting shedding and transmission of bacteria to naive hosts. Overall, this constitutes a useful model, which ideally complements the strengths of existing EHEC vertebrate models. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen which can cause diarrhea, vomiting, and, in some cases, severe complications such as kidney failure in humans. Up to 30% of cattle are colonized with EHEC, which can enter the food chain through contaminated meat, dairy, and vegetables. In order to control infections and stop transmission, it is important to understand what factors allow EHEC to colonize its hosts, cause virulence, and aid transmission. Since this cannot be systematically studied in humans, it is important to develop animal models of infection and transmission. We developed a model which allows us to study foodborne infection in zebrafish, a vertebrate host that is transparent and genetically tractable. Our results show that foodborne infection is more efficient than waterborne infection and that the locus of enterocyte effacement is a key virulence determinant in the zebrafish model. It is induced early during infection, and loss of tight LEE regulation leads to a decreased bacterial burden and decreased host mortality. Overall, the zebrafish model allows us to study foodborne infection, including pathogen release from the food vehicle and gene regulation and its context of host-microbe interactions, as well as environmental shedding and transmission to naive hosts.
Collapse
|