1
|
Perez FP, Bandeira JP, Perez Chumbiauca CN, Lahiri DK, Morisaki J, Rizkalla M. Multidimensional insights into the repeated electromagnetic field stimulation and biosystems interaction in aging and age-related diseases. J Biomed Sci 2022; 29:39. [PMID: 35698225 PMCID: PMC9190166 DOI: 10.1186/s12929-022-00825-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
We provide a multidimensional sequence of events that describe the electromagnetic field (EMF) stimulation and biological system interaction. We describe this process from the quantum to the molecular, cellular, and organismal levels. We hypothesized that the sequence of events of these interactions starts with the oscillatory effect of the repeated electromagnetic stimulation (REMFS). These oscillations affect the interfacial water of an RNA causing changes at the quantum and molecular levels that release protons by quantum tunneling. Then protonation of RNA produces conformational changes that allow it to bind and activate Heat Shock Transcription Factor 1 (HSF1). Activated HSF1 binds to the DNA expressing chaperones that help regulate autophagy and degradation of abnormal proteins. This action helps to prevent and treat diseases such as Alzheimer's and Parkinson's disease (PD) by increasing clearance of pathologic proteins. This framework is based on multiple mathematical models, computer simulations, biophysical experiments, and cellular and animal studies. Results of the literature review and our research point towards the capacity of REMFS to manipulate various networks altered in aging (Reale et al. PloS one 9, e104973, 2014), including delay of cellular senescence (Perez et al. 2008, Exp Gerontol 43, 307-316) and reduction in levels of amyloid-β peptides (Aβ) (Perez et al. 2021, Sci Rep 11, 621). Results of these experiments using REMFS at low frequencies can be applied to the treatment of patients with age-related diseases. The use of EMF as a non-invasive therapeutic modality for Alzheimer's disease, specifically, holds promise. It is also necessary to consider the complicated and interconnected genetic and epigenetic effects of the REMFS-biological system's interaction while avoiding any possible adverse effects.
Collapse
Affiliation(s)
- Felipe P Perez
- Indiana University School of Medicine, Indianapolis, IN, USA.
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Joseph P Bandeira
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cristina N Perez Chumbiauca
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Rheumatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K Lahiri
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Indiana University-Purdue University, Indianapolis, IN, USA
| |
Collapse
|
2
|
Sun A, Zhao X, Li Z, Gao Y, Liu Q, Zhou H, Dong G, Wang C. Effects of Long-Term and Multigeneration Exposure of Caenorhabditis elegans to 9.4 GHz Microwaves. Bioelectromagnetics 2022; 43:336-346. [PMID: 35544783 DOI: 10.1002/bem.22409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/23/2022] [Accepted: 04/24/2022] [Indexed: 11/11/2022]
Abstract
A large number of studies on the biological effects of microwaves are carried out using rodents and cells, but the conditions are difficult to control, and the irradiation period is short; the results obtained have always been controversial and difficult to reproduce. In this study, we expose nematodes to an electromagnetic environment for a long-term and multigeneration period to explore the possible biological effects. Wild-type N2 strains of Caenorhabditis elegans are exposed to 9.4 GHz microwaves at a specific adsorption rate of 4 W/kg for 10 h per day from L1 larvae to adults. Then, adult worms are washed off, and the laid eggs are kept to hatch L1 larvae, which are continuously exposed to microwaves until passing through 20 generations. The worms of the 10th, 15th, and 20th generations are collected for index detection. Interestingly, we found that the fecundity of C. elegans decreased significantly in the exposed group from the 15th generation. At the same time, we found that the growth of C. elegans decreased, motility decreased, and oxidative stress occurred in the exposed group from the 10th generation, which may play roles in the decreased spawning in worms. We preliminarily believe that the microwave energy received by worms leads to oxidative stress, which causes a decrease in the spawning rate, and the underlying mechanism needs to be further studied. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Aihua Sun
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Xuelong Zhao
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Zhihui Li
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Yan Gao
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Qi Liu
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Hongmei Zhou
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Guofu Dong
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Changzhen Wang
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| |
Collapse
|
3
|
Sun A, Li Z, Zhao X, Zhou H, Gao Y, Liu Q, Zhou S, Zhang C, Dong G, Wang C. Pulsed High-Peak Power Microwaves at 9.4 GHz Do Not Affect Basic Endpoints in Caenorhabditis elegans. Bioelectromagnetics 2021; 43:5-13. [PMID: 34962293 DOI: 10.1002/bem.22383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 07/14/2021] [Accepted: 12/06/2021] [Indexed: 11/07/2022]
Abstract
Because of the extensive application of electromagnetic technology, its health impact on humans has attracted widespread attention. Due to the lack of a model organism with a stable response to electromagnetic waves, the research conclusions on the biological effects of electromagnetic waves have been vague. Therefore, the aim of this study was to investigate the effects of irradiation by pulsed 9.4 GHz high-power microwaves with a peak power density of 2126 W/cm2 using Caenorhabditis elegans. The development, movement, egg production, ROS, and lifespan of C. elegans were detected at different times after irradiation with different repetitive frequencies of 10, 20, and 50 Hz for 30 min. The results indicated that no obvious changes in basic life indices were induced compared with the sham radiation group, but the survival rate of positive control was significantly decreased compared with other groups, which is of interest for microwave protection research based on C. elegans and provides data for updating safety standards with respect to pulsed high-peak power microwave. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Aihua Sun
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Zhihui Li
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Xuelong Zhao
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Hongmei Zhou
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Yan Gao
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Qi Liu
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Sen Zhou
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Chenggang Zhang
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Guofu Dong
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Changzhen Wang
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| |
Collapse
|
4
|
Regalbuto E, Anselmo A, De Sanctis S, Franchini V, Lista F, Benvenuto M, Bei R, Masuelli L, D’Inzeo G, Paffi A, Trodella E, Sgura A. Human Fibroblasts In Vitro Exposed to 2.45 GHz Continuous and Pulsed Wave Signals: Evaluation of Biological Effects with a Multimethodological Approach. Int J Mol Sci 2020; 21:E7069. [PMID: 32992895 PMCID: PMC7584027 DOI: 10.3390/ijms21197069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing exposure to radiofrequency electromagnetic fields (RF-EMF), especially from wireless communication devices, raises questions about their possible adverse health effects. So far, several in vitro studies evaluating RF-EMF genotoxic and cytotoxic non-thermal effects have reported contradictory results that could be mainly due to inadequate experimental design and lack of well-characterized exposure systems and conditions. Moreover, a topic poorly investigated is related to signal modulation induced by electromagnetic fields. The aim of this study was to perform an analysis of the potential non-thermal biological effects induced by 2.45 GHz exposures through a characterized exposure system and a multimethodological approach. Human fibroblasts were exposed to continuous (CW) and pulsed (PW) signals for 2 h in a wire patch cell-based exposure system at the specific absorption rate (SAR) of 0.7 W/kg. The evaluation of the potential biological effects was carried out through a multimethodological approach, including classical biological markers (genotoxic, cell cycle, and ultrastructural) and the evaluation of gene expression profile through the powerful high-throughput next generation sequencing (NGS) RNA sequencing (RNA-seq) approach. Our results suggest that 2.45 GHz radiofrequency fields did not induce significant biological effects at a cellular or molecular level for the evaluated exposure parameters and conditions.
Collapse
Affiliation(s)
- Elisa Regalbuto
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy
| | - Anna Anselmo
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Stefania De Sanctis
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Valeria Franchini
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Florigio Lista
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy;
| | - Guglielmo D’Inzeo
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Eugenio Trodella
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Antonella Sgura
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy
| |
Collapse
|