1
|
Rahman SU, Han JC, Zhou Y, Li B, Huang Y, Farman A, Zhao X, Riaz L, Yasin G, Ullah S. Eco-resilience of China's mangrove wetlands: The impact of heavy metal pollution and dynamics. ENVIRONMENTAL RESEARCH 2025; 277:121552. [PMID: 40194676 DOI: 10.1016/j.envres.2025.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Mangrove forests in China have significantly degraded over the past several decades primarily due to rapid economic growth and land reclamation for aquaculture and infrastructure development. Among various threats, heavy metal pollution, primarily from urbanization, agricultural runoff, and industrial runoff, poses a substantial risk to mangroves in China. It impairs their ecological functions, limiting biodiversity and reducing their natural ability to sequester carbon and detoxify coastal areas. Despite these challenges, the mangrove ecosystem's resilience in China has not been completely compromised. Natural adaptations and phytoremediation mechanisms, such as limiting metal uptake, excreting metal binding proteins, upregulating antioxidants, forming Fe plague, excreting metals through salt glands, and tolerance to specific metal concentrations, help mitigate heavy metal toxicity. However, these adaptive strategies are limited by the extent of pollutants and the speed at which these pollution factors arise. This review highlights a need to shift restoration efforts from expanding mangrove areas to enhancing ecosystem integrity, with a specific focus on reducing heavy metal pollution through phytoremediation. It also examines how heavy metal interactions at the sediment-water interface impact microbial communities and local fauna, contributing to climate change. Addressing these challenges is critical to improving mangrove conservation in China and ensuring the long-term health and resilience of these critical ecosystems for future generations.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bing Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuefei Huang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, School of Civil Engineering and Water Resources, Qinghai University, Xining, 810016, China.
| | - Ali Farman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan.
| | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakaryia University, Multan, Pakistan.
| | - Sami Ullah
- Department of Forestry & Range Management, Kohsar University Murree, Murree, 47150, Pakistan.
| |
Collapse
|
2
|
Younis AM, Elkady EM, Soliman NF. Fractionation, chemometric analysis, and sophisticated risk assessment indices to appraise sediment contamination of a tropical mangrove forests, the Red Sea. MARINE POLLUTION BULLETIN 2025; 214:117792. [PMID: 40068426 DOI: 10.1016/j.marpolbul.2025.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
This paper adds a new perspective to Ras Mohamed Protectorate mangrove sediment quality studies in terms of bioavailability, mobility, human and eco-environmental risk of various potential toxic elements (PTEs). Fe > Mn > Pb > Cu > Cd was the order in which the PTE levels declined. Residual fraction controlled the geochemical speciation of all elements. The following was the order of the mean percentages of mobile elements in sediments: Mn > Fe > Pb > Cu > Cd. All sediment samples had low to moderate risk, according to synergistic indices (GCF, mRAC, PETI-A and PTEI-B). Mn was the primary ecological risk PTE contributor. According to the suggested individual indices, Mn is the most mobile and bioavailable element (0.4-1), whereas Cd, Cu, Fe, and Pb have moderate mobility and bioavailability (MI 0.1-0.4 and BI 0.1-0.4, respectively). The current PTE exposure in sediments did not constitute a significant health concern (THQ < 1 and LCR < 10-4).
Collapse
Affiliation(s)
- Alaa M Younis
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Eman M Elkady
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Naglaa F Soliman
- Department of Marine Ecology, Faculty of Aquaculture and Marine Fisheries, Arish University, Egypt.
| |
Collapse
|
3
|
Bai S, Liu Z, Xu J, Li Y, Zhang Z, Huang Z, Gustave W, Li B, Zhang X, He F. Challenges of Using Whole-Cell Bioreporter for Assessment of Heavy Metal Bioavailability in Soil/Sediment. BIOSENSORS 2025; 15:260. [PMID: 40277573 PMCID: PMC12025839 DOI: 10.3390/bios15040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/25/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Soil and sediment contamination with heavy metals (HMs) is a critical environmental issue, posing significant risks to both ecosystems and human health. Whole-cell bioreporter (WCB) technology offers a promising alternative to traditional detection techniques due to its ability to rapidly assess the bioavailability of pollutants. Specifically, lights-on WCBs quantify pollutant bioavailability by measuring bioluminescence or fluorescence in response to pollutant exposure, demonstrating comparable accuracy to traditional methods for quantitative pollutant detection. However, when applied to soil and sediment, the signal intensity directly measured by WCBs is often attenuated due to interference from solid particles, leading to the underestimation of bioavailability. Currently, no standardized method exists to correct for this signal attenuation. This review provides a critical analysis of the benefits and limitations of traditional detection methods and WCB technology in assessing HM bioavailability in soil and sediment. Based on the approaches used to address WCB signal attenuation, correction methods are categorized into four types: the assumed negligible method, the non-inducible luminescent control method, the addition of a standard to a reference soil, and a pre-exposure bioreporter. We provide a comprehensive analysis of each method's applicability, benefits, and limitations. Lastly, potential future directions for advancing WCB technology are proposed. This review seeks to establish a theoretical foundation for researchers and environmental professionals utilizing WCB technology for pollutant bioavailability assessment in soil and sediment.
Collapse
Affiliation(s)
- Shanshan Bai
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhipeng Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiazhi Xu
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Yongshuo Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zirun Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zefeng Huang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau 4912, Bahamas;
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215123, China;
- Meadows Center for Water and the Environment, Texas State University, San Marcos, TX 78666, USA
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Xing M, Yan D, Zhang X, Shen Z, Hai M, Zhang Y, Zhang Z, Li F. The effects of remediation under different substrate conditions and environmental behavior of heavy metals. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:1021-1031. [PMID: 39989192 DOI: 10.1080/15226514.2025.2468298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
This study analyzed changes in physicochemical properties of the soil under various substrate conditions, as well as the interactions between ryegrass and heavy metals. Results indicated that biochar significantly improved soil physicochemical properties, such as an increase in electrical conductivity by 34.8%, enhancement of pH from 7.13 to 7.32, and augmentation in organic matter by 152%. Moreover, readily available phosphorus and alkali-hydrolyzable nitrogen increased by 237% and 122% respectively, while soil cation exchange capacity rose by 135%. This contributes to plant growth and the maintenance of soil fertility. The biochar addition also led to a decrease in the proportion of fine soil particles by 20%, significantly enhancing structure and stability of soil aggregates and promoting the formation of larger aggregates, crucial for improving soil aeration, water retention, and root permeability. The addition of biochar notably altered the chemical forms of heavy metals in soil, promoting their transformation from bioavailable forms to more stable and less toxic forms, effectively reducing the bioavailability and mobility of heavy metals, and decreasing their environmental toxicity. The addition of biochar, by changing the chemical forms of heavy metals, not only enhanced germination rate of ryegrass seeds but also improved the overall growth state of ryegrass.
Collapse
Affiliation(s)
- Menglong Xing
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Dajiang Yan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Zhiyuan Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Mengmeng Hai
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Zhibin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Ma X, Song Z, Wang YP, Wang S, Zhan ZW, He D. Heavy metal dynamics in riverine mangrove systems: A case study on content, migration, and enrichment in surface sediments, pore water, and plants in Zhanjiang, China. MARINE ENVIRONMENTAL RESEARCH 2025; 203:106832. [PMID: 39531745 DOI: 10.1016/j.marenvres.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Mangroves serve a crucial role as metal accumulators in tropical and subtropical marine ecosystems, particularly in riverine mangroves, which frequently interact with terrestrial sources. In this study, we focused on the Gaoqiao and Jiuzhou Rivers within the Zhanjiang mangrove forest in Guangdong, China, and collected leaves and surface sediments from the dominant mangrove plant, Aegiceras corniculatum, near the riverbanks. We focused on seven heavy metals (Cr, Cu, Zn, As, Cd, Pb, and Hg) in mangrove leaves, surface sediments, and pore water due to their environmental significance and frequent occurrence in mangrove ecosystems. We employed multivariate statistical methods and pollution indicators to assess the potential sources and risk levels of heavy metals in these sediments. Our results reveal that the concentrations of the seven heavy metals in the sediments of the Gaoqiao and Jiuzhou Rivers varied significantly, ranging from 0.03 mg/kg to 100.00 mg/kg. Cd posed the highest ecological risk, followed by Hg and As. The comprehensive potential ecological risk in the Gaoqiao River was lower than that in the Jiuzhou River, likely due to the distribution of industrial enterprises (such as printing and cement plants) in the upper reaches of the Jiuzhou River. Additionally, the heavy metal content in the leaves of A. corniculatum and in pore water within surface sediments ranged from 0.01 to 51.58 mg/kg and 0.001 to 133.70 μg/L, respectively. A significant correlation was observed between the heavy metal concentrations in the A. corniculatum leaves and those in the pore water. Notably, the leaves of A. corniculatum exhibited a remarkable Hg-enrichment capability, highlighting its potential as a mercury accumulator. Most heavy metals in A. corniculatum leaves, pore water, and sediment were concentrated in the middle and upper reaches of the river, primarily due to anthropogenic terrestrial inputs from residential production activities upstream. Consequently, heavy metal pollution in riverine mangroves is primarily associated with human activities such as aquaculture, agricultural planting, and industrial production.
Collapse
Affiliation(s)
- Xuemei Ma
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhiguang Song
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Yao-Ping Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| | - Sibo Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhao-Wen Zhan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ding He
- Department of Ocean Science and the Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Dey G, Maity JP, Banerjee P, Sharma RK, Das K, Gnanachandrasamy G, Wang CW, Lin PY, Wang SL, Chen CY. Evaluation and mitigation of potentially toxic elements contamination in mangrove ecosystem: Insights into phytoremediation and microbial perspective. MARINE POLLUTION BULLETIN 2024; 209:117035. [PMID: 39393228 DOI: 10.1016/j.marpolbul.2024.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Mangroves, essential coastal ecosystems, are threatened by human-induced Potentially-toxic-elements (PTEs) pollution. This study analyzed PTEs distribution, phytoremediation potential, and rhizosphere microbial communities in Taiwan's Xinfeng mangrove forest. Significant variations in physicochemical and PTEs concentrations were observed across adjacent water bodies, with moderate contamination in the river, estuary, and overlying water of mangroves sediment. The partition-coefficient showed the mobility of Bi, Pb, Co, and Sr at the water-sediment interface. The geochemical-indices revealed high Bi and Pb contamination and moderate Zn, Sr, Cu, and Cd contamination in sediment. The overall pollution indices indicated the significant contamination, while moderate ecological risk was found for Cd (40 ≤ Eri < 80). Mangroves Kandelia obovata and Avicennia marina exhibited promising PTEs phytoremediation potential (Bi, Cd, Mn, Sr, and Co). Metagenomics indicated a diverse microbial community with N-fixation, P-solubilization, IAA synthesis, and PTEs-resistance genes. These findings underscore the need for targeted conservation to protect these critical habitats.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, Biological Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Gopalakrishnan Gnanachandrasamy
- Department of Earth Sciences, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry 605104, India
| | - Chin-Wen Wang
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan.
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan; You-Cheng Engineering & Technology Co., Ltd, Chiayi 62102, Taiwan.
| |
Collapse
|
7
|
Elgendy AR, El Daba AEMS, El-Sawy MA, Alprol AE, Zaghloul GY. A comparative study of the risk assessment and heavy metal contamination of coastal sediments in the Red sea, Egypt, between the cities of El-Quseir and Safaga. GEOCHEMICAL TRANSACTIONS 2024; 25:3. [PMID: 38700580 PMCID: PMC11069267 DOI: 10.1186/s12932-024-00086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
This study aimed to assess the influence of pollution on the quality of sediments and the risks associated with El-Qusier and Safaga Cities, Red Sea, Egypt, during 2021, divided into four sectors, using multiple pollution indices. To achieve that, we evaluated the metal pollution index (MPI), contamination factor (Cf), pollution load index (PLI), contamination security index (CSI), and anthropogenicity (Anp%). Moreover, carcinogenic and non-carcinogenic risks are used for human health hazards. Results indicated that Mn and Fe recorded the highest concentrations, whereas Cd had the lowest. El-Quseir City sediments were found the following metal ions: Fe > Mn > Ni > Zn > Cu > Co > Pb > Cd, where the order in the Safaga City was: Fe > Mn > Zn > Ni > Cu > Pb > Co > Cd. MPI > 1, this is alarming in the study area due to heavy metal pollution. In addition, Cf < 1 in all metals except Cd with contamination degree CD ranged from low to considerable contamination in El-Qusier city. In contrast, contamination ranged from significant to very high in Safaga city. PLI < 1 is lower than the reference at all monitored stations. CSI values ranged from relatively low to moderate. Besides Cd, data reflect each element's low environmental danger (EriMe40). This study's risk index (RI) is low to moderate in Sector 1 and high to extremely high in Sector 2. HQ and HI index < 1 means it is safe for human health in order: HI ingestion > HI dermal. CSR for different pathways was recorded as dermal > ingestion, in which total CSR for all paths is considered harmful, and the cancer risk is troublesome and higher than the reference ranges of 1 × 10-6-1 × 10-4. In conclusion, the examined heavy metals provide environmental hazards across the assessed locations.
Collapse
Affiliation(s)
- Ahmed R Elgendy
- Geology Lab National Institute of Oceanography and Fisheries, Ashmoun, Egypt
| | | | - Mohamed A El-Sawy
- Marine Chemistry Lab National Institute of Oceanography and Fisheries, Hurghada, Egypt
| | - Ahmed E Alprol
- Marine Pollution Lab National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Ghada Y Zaghloul
- Marine Chemistry Lab National Institute of Oceanography and Fisheries, Hurghada, Egypt.
| |
Collapse
|
8
|
Chowdhury A, Naz A, Maiti SK. Distribution, speciation, and bioaccumulation of potentially toxic elements in the grey mangroves at Indian Sundarbans, in relation to vessel movements. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106042. [PMID: 37329607 DOI: 10.1016/j.marenvres.2023.106042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
Sundarban is the world's largest mangrove wetland and home of 4.6 million people (Indian part), whose principal mode of communication is motorized boats (ferries). This study shed light on the role played by ferry movement in the speciation (following the BCR three-step sequential extraction method), ecological impact and bioaccumulation of potentially toxic elements (PTEs) in plant tissues (root and lamina) of grey mangrove (Avicennia marina) found near the five ferry ghats (ports). One-way ANOVA showed variation in major soil parameters (silt, clay, organic carbon, pH, Electrical conductivity) and PTEs (As, Cd, Cr, Cu, Hg, and Pb) between sites. Sequential extraction revealed that Cd was present in the 'exchangeable' form across the sites, Pb was in the 'reducible' form, and the rest of the PTEs were majorly found in 'residual' phase. Pollution indices revealed moderate to heavy contamination and considerable potential ecological risk due to Cd. Pearson correlation statistics and concentration variations indicate a relation between Pb and ferry movement frequency in the sites. Higher bioconcentration of Pb in the roots of A. marina, indicates phytostabilization action. Translocation factor for Cd in the leaves, indicates phytoextraction by A. marina. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed a close association between vehicle movement and Hg, Pb, Silt fraction, electrical conductivity, Cr, and As. This study recommends regular pollution monitoring across Sundarbans, as the PTEs in sediment-plant matrix can impact the higher trophic levels, human health through possible biomagnification in the detritus food chain, and can adversely impact the existing conservation initiatives.
Collapse
Affiliation(s)
- Abhiroop Chowdhury
- Jindal School of Environment and Sustainability, O.P. Jindal Global University, Sonipat, Haryana 131001, India; Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India.
| | - Aliya Naz
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India; Jindal School of Liberal Arts and Humanities, O.P. Jindal Global University, Sonipat, Haryana, 131001, India
| | - Subodh Kumar Maiti
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
9
|
Smal H, Ligęza S, Pranagal J, Gmitrowicz-Iwan J. Speciation and risk assessment of Zn, Pb, and Cd in bottom sediments of two small upland dam reservoirs, Poland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116041. [PMID: 36041307 DOI: 10.1016/j.jenvman.2022.116041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Sediments of two small dam reservoirs in Poland, Zalew Zemborzycki (ZZ) and Brody Iłżeckie (BI), were studied. Sediments from both reservoirs were sampled at 17 sites in the transects perpendicular to the shoreline, at the river inflow and the frontal dam and analysed using the BCR procedure for speciation of zinc (Zn), lead (Pb) and cadmium (Cd). The risk assessment code (RAC) and the individual contamination factor (ICF) were determined. In BI, the sediments were removed from the considerable part of the reservoir, creating an opportunity to study the effect of dredging on the speciation of trace metals. Trace metals partitioning was differentiated according to the transect/site and in the case of BI sediments also on the transect location in the dredged or undredged part of the reservoir. Considering ZZ sediments, the order of fractions for Zn, Pb and Cd according to a decreasing overall mean percentage contribution to total metal content was the same: F4 (residual) >F3 (oxidisable) >F2 (reducible) >F1 (acid soluble). In sediments of ZZ at most sites, the RAC for Zn, Pb and Cd revealed low or medium risk and ICF low or moderate contamination. For BI sediments, the order of fractions for Pb was similar while for Zn and Cd quite the opposite compared to the sediments of ZZ and it was: Pb-F4>F3>F1>F2, Zn-F1>F3>F2>F4, Cd-F1>F2>F3>F4. For BI sediments, RAC values for Zn, on average, indicated high and very high ecological risk; for Pb low and moderate risk and for Cd - high risk in the initial part and dredged part and according to the average value in the reservoir, while a medium risk in undredged part sediments. The ICF index showed high contamination with Cd for all BI sediments. The sequential analysis showed that Pb is poorly mobile as in sediments of both reservoirs residual fractions accounted, on average, for about 60% of the total content.
Collapse
Affiliation(s)
- Halina Smal
- Institute of Soil Science, Engineering and Environment Management, University of Life Sciences in Lublin, Leszczyńskiego St. 7, 20-069, Lublin, Poland
| | - Sławomir Ligęza
- Institute of Soil Science, Engineering and Environment Management, University of Life Sciences in Lublin, Leszczyńskiego St. 7, 20-069, Lublin, Poland.
| | - Jacek Pranagal
- Institute of Soil Science, Engineering and Environment Management, University of Life Sciences in Lublin, Leszczyńskiego St. 7, 20-069, Lublin, Poland
| | - Joanna Gmitrowicz-Iwan
- Institute of Soil Science, Engineering and Environment Management, University of Life Sciences in Lublin, Leszczyńskiego St. 7, 20-069, Lublin, Poland
| |
Collapse
|
10
|
Alamri DA, Al-Solaimani SG, Abohassan RA, Rinklebe J, Shaheen SM. Assessment of water contamination by potentially toxic elements in mangrove lagoons of the Red Sea, Saudi Arabia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4819-4830. [PMID: 34041655 PMCID: PMC8528742 DOI: 10.1007/s10653-021-00956-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/20/2021] [Indexed: 05/13/2023]
Abstract
Mangrove (Avicennia marina) forests in the Red Sea cost have great concern from environmental, biological, economic, and social points of view. Therefore, assessing water contamination in this ecosystem is worth to be investigated. Consequently, here we aimed to examine the levels of salinity, acidity, and the total content of Fe, Mn, Cu, Zn, Cd, Cr, Ni, and Pb in water samples collected from the upper, middle, and lower part of three mangrove lagoons (i.e., Al-Shuaiba, Yanbu, and Jeddah), Red Sea, Saudi Arabia. The total metal content (µg L-1) in water samples differed significantly among the studied areas and ranged from 286.2 to 4815.0 for Fe, 86.4-483.0 for Mn, 22.9-468.8 for Cu, 199.2-366.6 for Zn, 44.1-99.8 for Cd, 25.6-80.3 for Cr, 11.6-41.5 for Ni, and from 17.7 to 102.0 for Pb. The mean values of Cu, Zn, Cd, and Pb were higher than the WHO water quality standards for fisheries. Water samples in Yanbu were more contaminated and contained higher concentrations of all metals than Jeddah and Al-Shuaiba, due to the petrochemical industries in this industrial area. Our findings suggest that the high metal content in the water of these mangrove sites, particularly in Yanbu, should be considered due to the high potential environmental and human health risks in these ecosystems. These results may help for demonstrating effective approaches for the management of these lagoons. More studies will be carried out on the sediment and mangrove plants in this ecosystem.
Collapse
Affiliation(s)
- Dhafer Ali Alamri
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Samir G. Al-Solaimani
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Refaat A. Abohassan
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Jörg Rinklebe
- Laboratory of Soil and Groundwater-Management, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany
- Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006 Republic of Korea
| | - Sabry M. Shaheen
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Laboratory of Soil and Groundwater-Management, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany
- Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh, 33516 Egypt
| |
Collapse
|
11
|
Ecological Risk Due to Heavy Metal Contamination in Sediment and Water of Natural Wetlands with Tourist Influence in the Central Region of Peru. WATER 2021. [DOI: 10.3390/w13162256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, the quality of sediment and surface water in two natural wetlands, Paca and Tragadero, in the central region of Peru was evaluated using pollution indices, including the geoaccumulation index, pollutant load index, modified pollution degree, potential ecological risk index, and site rank index, for four heavy metals. Principal component analysis was used to identify potential metal contaminant sources. The determination of Fe, Zn, Pb, and As was performed by flame atomic absorption spectrophotometry. The average concentrations of metals in the sediments of both lagoons decreased in the order Fe > Zn > Pb > As. The analysis of the contamination indices determined that As and Pb are the elements that contribute the most to environmental degradation in both wetlands. There is a strong correlation between the values of potential ecological risk and the modified degree of contamination, revealing that the Paca wetland has a moderate degree of contamination and potential ecological risk, while Tragadero presents a high degree of contamination and considerable potential ecological risk. The application of the site rank index showed that more than 50% of the sampling sites have between high and severe contamination. The principal component analysis presented 79.2% of the total variance. Finally, the results of this study are essential in order to carry out preventive actions for environmental protection in these lake ecosystems of great importance for many activities, such as bird watching.
Collapse
|
12
|
Maurya P, Kumari R. Toxic metals distribution, seasonal variations and environmental risk assessment in surficial sediment and mangrove plants (A. marina), Gulf of Kachchh (India). JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125345. [PMID: 33930943 DOI: 10.1016/j.jhazmat.2021.125345] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 05/22/2023]
Abstract
Toxic metal pollution in the coastal ecosystem is becoming a serious problem, particularly in developing countries as a result of the industrial revolution. In recent years, mangroves are continuously contaminating with toxic metals and receiving global attention due to its toxicity, non-degradability, abundance, subsequent bioaccumulation, and biomagnification through successive trophic levels. This study aims to investigate the toxic metal content and pollution status in mangroves surface sediment and plants. Results showed that toxic metals in sediments were higher than natural background levels indicate anthropogenic sources. Fe, Mn, Sb, Ti found higher in concentration among all toxic metals, and site 9, 15, 18, 19, 21, 31 found the highest total metal load. Contamination indices like enrichment and contamination factor, geo-accumulation index, suggest minimal to extremely high level of contamination, and sediments have found extremely contaminated with Sb and As. Contamination degree and modified contamination degree suggest very high degree of contamination at all sites. Pollution load index indicates significant deterioration of sediment quality. Ecological risk and potential ecological risk index also indicate about 72% of sites come under higher ecological risk. Toxic metal in Avicennia marina was found higher in root than leaf. High bioconcentration factor has observed for Pb, Cu, Mo, Zn. Translocation factor for Cu and Zn at all sites, and As, Ni, Pb, Fe, Sr, Mn at some sites indicate high-efficiency in plants for toxic metal translocation.
Collapse
Affiliation(s)
- Parul Maurya
- Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| | - Rina Kumari
- Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
13
|
Jiang R, Huang S, Wang W, Liu Y, Pan Z, Sun X, Lin C. Heavy metal pollution and ecological risk assessment in the Maowei sea mangrove, China. MARINE POLLUTION BULLETIN 2020; 161:111816. [PMID: 33157505 DOI: 10.1016/j.marpolbul.2020.111816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The level and ecological impact of heavy metal pollution in the Maowei Sea mangrove are poorly understood. This work first investigated the distribution and ecological risk of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Maowei Sea mangrove sediments. The results showed that heavy metals were mainly concentrated in the top 10 cm of mangrove stands, declined up to 20 cm deep, and were constant afterwards. Exceptionally, Mn concentration increased significantly with depth in the mudflat. Multiple environmental risk indices indicated that the investigated area was broadly contaminated by heavy metals and that Cd was the dominant contributor to potential ecological risks. However, the biological toxicity posed by these metals was negligible. Multivariate analyses implied that Cd, Co, Cr, Cu, Ni, Pb, and Zn originated mainly from anthropogenic sources, whereas Mn was primarily from natural processes. These findings could provide insightful information for future management of this mangrove.
Collapse
Affiliation(s)
- Ronggen Jiang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shuyuan Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Xiuwu Sun
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Cai Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
14
|
Spatial and Temporal Variation in Microbial Diversity and Community Structure in a Contaminated Mangrove Wetland. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Field and laboratory investigations were conducted to characterize bacterial diversity and community structure in a badly contaminated mangrove wetland adjacent to the metropolitan area of a megacity in subtropical China. Next-generation sequencing technique was used for sequencing the V4–V5 region of the 16s rRNA gene on the Illumina system. Collectively, Proteobacteria, Chloroflexi, Planctomycetes, Actinobacteria and Bacteroidetes were the predominant phyla identified in the investigated soils. A significant spatial variation in bacterial diversity and community structure was observed for the investigated mangrove soils. Heavy metal pollution played a key role in reducing the bacterial diversity. The spatial variation in soil-borne heavy metals shaped the spatial variation in bacterial diversity and community structure in the study area. Other environmental factors such as total carbon and total nitrogen in the soils that are affected by seasonal change in temperature could also influence the bacterial abundance, diversity and community structure though the temporal variation was relatively weaker, as compared to spatial variation. The bacterial diversity index was lower in the investigated site than in the comparable reference site with less contaminated status. The community structure in mangrove soils at the current study site was, to a remarkable extent, different from those in the tropical mangrove wetlands around the world.
Collapse
|
15
|
Alsamadany H, Al-Zahrani HS, Selim EMM, El-Sherbiny MM. Spatial distribution and potential ecological risk assessment of some trace elements in sediments and grey mangrove (Avicennia marina) along the Arabian Gulf coast, Saudi Arabia. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractTo assess trace element concentrations (Zn, Cu, Pb, Cr, Cd and Ni) in the mangrove swamps along the Saudi coast of the Arabian Gulf, thirteen samples of surface sediment and leaves of grey mangrove, Avicennia marina were collected and analyzed. The detected trace element contents (μg g-1) in surface sediments were in the following descending order according to their mean values; Cr (49.18) > Zn (48.48) > Cu (43.06) > Pb (26.61) > Ni (22.88) > Cd (3.21). The results showed that the average concentrations of Cd and Pb exceeded their world average concentration of shale. The geo-accumulation, potential ecological risk and toxicity response indices demonstrated that trace elements have posed a considerable ecological risk, especially Cd. The inter-relationships between physico-chemical characters and trace elements suggests that grained particles of mud represent a noteworthy character in the distribution of trace elements compared to organic materials. Moreover, the results revealed that Zn was clearly bioaccumulated in leaf tissues A. marina. Dredging, landfilling, sewage effluents and oil pollution can be the paramount sources of pollution in the area under investigation.
Collapse
Affiliation(s)
- Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hassan S. Al-Zahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - El-Metwally M. Selim
- Department of Soil Sciences, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohsen M. El-Sherbiny
- Marine Biology Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah21589, Saudi Arabia
- Marine Biology Department, Faculty of Science, Suez Canal University, Ismailia41552, Egypt
| |
Collapse
|
16
|
El-Alfy MA, El-Amier YA, El-Eraky TE. Land use/cover and eco-toxicity indices for identifying metal contamination in sediments of drains, Manzala Lake, Egypt. Heliyon 2020; 6:e03177. [PMID: 31938752 PMCID: PMC6953707 DOI: 10.1016/j.heliyon.2020.e03177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/19/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022] Open
Abstract
Six heavy metals in three main drains along the East Nile Delta were estimated to assess the environmental risk and employ land use/cover map of each drain. Composite sediment samples (n = 3) were collected from each drain. The elements were analyzed by Atomic Absorption Spectrophotometer. The order of metal ions in the sediments of three drains of Manzala lake take the following order: Fe > Co > Ni > Cr > Cd > Pb in El-Serw drain, Fe > Ni > Co > Cd > Cr > Pb in Hadous drain and Fe > Cd > Ni > Co > Pb > Cr in Bahr El-Baqar drain. Studied Pollution indices indicate that drains discharged into Manzala Lake are mostly contaminated by metals. Geo-accumulation index showed contamination by Cd in all sites especially in site 13 of Bahr El-Baqar drain and low values to others. The mean probable effect level quotient showed percent of 21% in Hadous and El-Serw drains and 73% probability of being toxic in Bahr El-Baqar drain. The mean effect range median quotient also showed 21% in Hadous and El-Serw to 49% probability of being toxic in Bahr El-Baqar drains. Index of anthropogenicity impact indicate that the man-made activity either agricultural, industrial or fisheries impacted in the appearance of metal ions in the following sequence; Cd > Co > Pb > Ni > Cr. Hazard severity according to hazard quotient and modified hazard quotient of Ni and Cd take the following sequence; El-Serw < Hadous < Bahr El-Baqar drains. For Cr is; Hadous < Bahr El-Baqar < El-Serw and Pb is; Hadous < Elserw < Bahr El-Baqar drains. According to contamination severity index showed low for Pb, Ni and Cr and severe for Co and Cd which take the sequence of; Bahr El-Baqar > El-Serw > Hadous.
Collapse
Affiliation(s)
- Muhammad A El-Alfy
- Marine Pollution Department, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | | | - Toka E El-Eraky
- Botany Department, Faculty of Science, Mansoura University, Egypt
| |
Collapse
|
17
|
Dunivin TK, Yeh SY, Shade A. A global survey of arsenic-related genes in soil microbiomes. BMC Biol 2019; 17:45. [PMID: 31146755 PMCID: PMC6543643 DOI: 10.1186/s12915-019-0661-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/02/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Environmental resistomes include transferable microbial genes. One important resistome component is resistance to arsenic, a ubiquitous and toxic metalloid that can have negative and chronic consequences for human and animal health. The distribution of arsenic resistance and metabolism genes in the environment is not well understood. However, microbial communities and their resistomes mediate key transformations of arsenic that are expected to impact both biogeochemistry and local toxicity. RESULTS We examined the phylogenetic diversity, genomic location (chromosome or plasmid), and biogeography of arsenic resistance and metabolism genes in 922 soil genomes and 38 metagenomes. To do so, we developed a bioinformatic toolkit that includes BLAST databases, hidden Markov models and resources for gene-targeted assembly of nine arsenic resistance and metabolism genes: acr3, aioA, arsB, arsC (grx), arsC (trx), arsD, arsM, arrA, and arxA. Though arsenic-related genes were common, they were not universally detected, contradicting the common conjecture that all organisms have them. From major clades of arsenic-related genes, we inferred their potential for horizontal and vertical transfer. Different types and proportions of genes were detected across soils, suggesting microbial community composition will, in part, determine local arsenic toxicity and biogeochemistry. While arsenic-related genes were globally distributed, particular sequence variants were highly endemic (e.g., acr3), suggesting dispersal limitation. The gene encoding arsenic methylase arsM was unexpectedly abundant in soil metagenomes (median 48%), suggesting that it plays a prominent role in global arsenic biogeochemistry. CONCLUSIONS Our analysis advances understanding of arsenic resistance, metabolism, and biogeochemistry, and our approach provides a roadmap for the ecological investigation of environmental resistomes.
Collapse
Affiliation(s)
- Taylor K Dunivin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
- Environmental and Integrative Toxicological Sciences Doctoral Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Susanna Y Yeh
- Institute for Cyber-Enabled Research, Michigan State University, East Lansing, MI, 48824, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48834, USA.
| |
Collapse
|
18
|
de Anda J, Gradilla-Hernández MS, Díaz-Torres O, de Jesús Díaz-Torres J, de la Torre-Castro LM. Assessment of heavy metals in the surface sediments and sediment-water interface of Lake Cajititlán, Mexico. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:396. [PMID: 31123902 DOI: 10.1007/s10661-019-7524-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Lake Cajititlán is an endorheic tropical lake located in the state of Jalisco, Mexico, which has suffered the consequences of high levels of eutrophication. This study assessed the presence of heavy metals and metalloids in Lake Cajititlán to ascertain possible risks to its aquatic biota and the environment. Eleven monitoring sites were selected throughout the lake; from each site, one sample was taken from the sediments and another from the sediment-water interface by using an Ekman dredger and a Van Dorn bottle, respectively. The measured metals in each sample were As, Cd, Cr, Hg, Pb, Zn, Cu, Ni, Fe, Mn, and Al. The results showed the following sequence of heavy metal concentrations Al > Fe > Mn > Zn > Cu > Cr, wherein Al had the highest average concentration and Cr had the lowest. As, Cd, Hg, and Pb were practically undetectable. Because the predominant rock in the lake basin is volcanic tuff and the soil is vertisol, the high quantities of Al and Fe suggest the weathering of the basin's minerals. The analyses of the sediment-water samples contained small amounts of dissolved Al, Fe, and Mn. According to the Håkanson equations with Hg, Cd, As, Cu, Pb, Cr, and Zn, the calculations of the contamination degree and ecological risk revealed that the presence of metals and metalloids does not present a potential risk to the aquatic biota; nonetheless, the water is not suitable for local human consumption due to an unrelated factor associated with nutrient and bacteriological contamination. The results show that heavy metals in the sediments were dispersed throughout the lake mostly because of the weathering of minerals from the local basin and not because of the punctual discharges of the pollutants from the municipal wastewater treatment plants (WWTPs). However, to ensure that the small amounts of dissolved metals (Al, Fe, and Mn) do not affect the aquatic biota, the fish species and phytoplankton need to be internally analyzed.
Collapse
Affiliation(s)
- José de Anda
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C. Normalistas 800, 44270, Guadalajara, Jalisco, Mexico.
| | | | - Osiris Díaz-Torres
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C. Normalistas 800, 44270, Guadalajara, Jalisco, Mexico
| | - José de Jesús Díaz-Torres
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C. Normalistas 800, 44270, Guadalajara, Jalisco, Mexico
| | - Lissie Marcela de la Torre-Castro
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C. Normalistas 800, 44270, Guadalajara, Jalisco, Mexico
| |
Collapse
|
19
|
Dung TTT, Linh TM, Chau TB, Hoang TM, Swennen R, Cappuyns V. Contamination status and potential release of trace metals in a mangrove forest sediment in Ho Chi Minh City, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9536-9551. [PMID: 30729439 DOI: 10.1007/s11356-019-04355-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Can Gio district is located in the coastal area of Ho Chi Minh City, southern Vietnam. Discharge of wastewater from Ho Chi Minh City and neighboring provinces to the rivers of Can Gio has led to concerns about the accumulation of trace metals (As, Cu, Cr, Ni, Pb, and Zn) in the coastal sediments. The main objective of this study was to assess the distribution of As, Cu, Cr, Ni, Pb, and Zn in surface and core sediments and to evaluate the contamination status in relation to local background values, as well as the potential release of these selected trace metals from sediments to the water environment. Sediment characteristization, including determination of fine fraction, pH, organic matter, and major elements (Al, Fe, Ca, K, Mg, and S), was carried out to investigate which parameters affect the trace metal enrichment. Fine fraction and Al contents were found to be the controlling proxies affecting the distribution of trace metals while other sediment characteristics did not show any clear influence on trace metals' distribution. Although As concentrations in the sediments were much higher compared to its reference value in other areas, the enrichment factor based on local background values suggests minor contamination of this element as well as for Cr, Cu, and Pb. Risk assessment suggested a medium to very high risk of Mn, Zn, and Ni under acidification. Of importance is also that trace metals in sediments were not easily mobilized by organic complexation based on their low extractabilities by ammonium-EDTA extraction.
Collapse
Affiliation(s)
- Tran Thi Thu Dung
- University of Science, Faculty of Environment, Vietnam National University Ho Chi Minh City (VNUHCMC), 227 Nguyen Van Cu St., W4, D5, Ho Chi Minh City, Vietnam.
| | - Tong My Linh
- University of Science, Faculty of Environment, Vietnam National University Ho Chi Minh City (VNUHCMC), 227 Nguyen Van Cu St., W4, D5, Ho Chi Minh City, Vietnam
| | - Tran Bích Chau
- University of Science, Faculty of Environment, Vietnam National University Ho Chi Minh City (VNUHCMC), 227 Nguyen Van Cu St., W4, D5, Ho Chi Minh City, Vietnam
| | - Truong Minh Hoang
- University of Science, Faculty of Geology, Vietnam National University Ho Chi Minh City (VNUHCMC), 227 Nguyen Van Cu St., W4, D5, Ho Chi Minh City, Vietnam
| | - Rudy Swennen
- Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001, Leuven, Belgium
| | - Valerie Cappuyns
- Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001, Leuven, Belgium
- Centre for Economics and Corporate Sustainability, KU Leuven, Warmoesberg 26, 1000, Brussels, Belgium
| |
Collapse
|
20
|
Chai M, Li R, Ding H, Zan Q. Occurrence and contamination of heavy metals in urban mangroves: A case study in Shenzhen, China. CHEMOSPHERE 2019; 219:165-173. [PMID: 30537589 DOI: 10.1016/j.chemosphere.2018.11.160] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Urban mangroves are affected by surrounding anthropogenic activities. Heavy metals in urban mangroves lack systematic evaluation, and their relationships with surrounding anthropogenic activities have not been explored with quantified data. In this study, urban mangroves with different urban functional zonings were selected in Shenzhen, South China, including: Shajing mangrove (SJM) and Xixiang mangrove (XXM) featured with industry district, Futian mangrove (FTM) and Baguang mangrove (BGM) featured with central business district and ecological preserve, respectively. The distribution, ecological risk, and pollution sources of heavy metals were determined. Heavy metals' relationships with surrounding functional zonings were also explored. The levels of Cu, Zn, Pb, Ni and Cr in SJM were significantly higher than the other mangrove stands, which may be related to its proximity to point-source discharges of Maozhou River in Pearl River Estuary, China. Potential ecological risk index, pollution load index, mean PEL quotient, mean effect range median quotient, and total toxic unit showed the highest ecological risk in SJM, followed by XXM, FTM, and BGM. With the order of BGM - FTM - XXM - SJM, Zn, Ni, and Cr presented dominantly in the labile fraction, demonstrating increased anthropogenic impacts. Heavy metals in FTM and BGM were mainly from anthropogenic and lithogenic originations, with only anthropogenic origination of heavy metals to be detected in SJM and XXM. Heavy metal pollution was highest in SJM featured with industry district, and metal products industry in surrounding district should attract special attention due to its affinity for heavy metal accumulation in urban mangroves.
Collapse
Affiliation(s)
- Minwei Chai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Ruili Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China.
| | - Huan Ding
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Qijie Zan
- Guangdong Neilingding Futian National Nature Reserve, Shenzhen, 518000, China
| |
Collapse
|
21
|
Niu Z, Cao Y, Zhao W, Li R. Distribution and assessment of mercury (Hg) in surface sediments of Futian mangrove forest, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:125-134. [PMID: 30003448 DOI: 10.1007/s10653-018-0151-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
To investigate the distribution of mercury (Hg) in Futian mangrove wetland, surface sediments from land to sea were collected, including Kandelia obovata, Avicennia marina, Sonneratia caseolaris, and mud flat. The ecological risks of Hg in sediments were also assessed. The results showed that mangrove forests acidified sediments and promoted the accumulation of salinity and organic matter in sediments. Hg concentrations in both mangrove forests (154.7-218.4 ng g-1) and mud flat sediments (226.3-251.9 ng g-1) surpassed the background level (71.0 ng g-1). Furthermore, Hg concentrations in sediments decreased gradually from sea to land at all depth. From the bottom to the top layer sediment, Hg concentration decreased gradually in the sediments near land, while it kept vertically stable in the coastal area, indicating its pollution may mainly come from the coastal area rather than the land to some extent. Although the mean values of geo-accumulation indexes revealed uncontaminated to moderately contaminated levels, the mean values of potential ecological risk coefficients revealed considerable ecological risk of Hg to the environment, deserving further attention.
Collapse
Affiliation(s)
- Zhiyuan Niu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Ye Cao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Wenli Zhao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Ruili Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
22
|
Li R, Qiu GY, Chai M, Shen X, Zan Q. Effects of conversion of mangroves into gei wai ponds on accumulation, speciation and risk of heavy metals in intertidal sediments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:159-174. [PMID: 29936672 DOI: 10.1007/s10653-018-0130-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Mangroves are often converted into gei wai ponds for aquaculture, but how such conversion affects the accumulation and behavior of heavy metals in sediments is not clear. The present study aims to quantify the concentration and speciation of heavy metals in sediments in different habitats, including gei wai pond, mangrove marsh dominated by Avicennia marina and bare mudflat, in a mangrove nature reserve in South China. The results showed that gei wai pond acidified the sediment and reduced its electronic conductivity and total organic carbon (TOC) when compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all sediment depths in gei wai pond were lower than the other habitats, indicating gei wai pond reduced the fertility and the ability to retain heavy metals in sediment. Gei wai pond sediment also had a lower heavy metal pollution problem according to multiple evaluation methods, including potential ecological risk coefficient, potential ecological risk index, geo-accumulation index, mean PEL quotients, pollution load index, mean ERM quotients and total toxic unit. Heavy metal speciation analysis showed that gei wai pond increased the transfer of the immobilized fraction of Cd and Cr to the mobilized one. According to the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) analysis, the conversion of mangroves into gei wai pond reduced values of ([SEM] - [AVS])/foc, and the role of TOC in alleviating heavy metal toxicity in sediment. This study demonstrated the conversion of mangrove marsh into gei wai pond not only reduced the ecological purification capacity on heavy metal contamination, but also enhanced the transfer of heavy metals from gei wai pond sediment to nearby habitats.
Collapse
Affiliation(s)
- Rongyu Li
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Guo Yu Qiu
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China.
| | - Minwei Chai
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Xiaoxue Shen
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Qijie Zan
- Guangdong Neilingding Futian National Nature Reserve, Shenzhen, 518000, China
| |
Collapse
|
23
|
MacLeod F, Kindler GS, Wong HL, Chen R, Burns BP. Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes. AIMS Microbiol 2019; 5:48-61. [PMID: 31384702 PMCID: PMC6646929 DOI: 10.3934/microbiol.2019.1.48] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 01/08/2023] Open
Abstract
Elucidating the diversity of the Archaea has many important ecological and evolutionary implications. The Asgard superphylum of the archaea, described recently from metagenomic data, has reignited the decades-old debate surrounding the topology of the tree of life. This review synthesizes recent findings through publicly available genomes and literature to describe the current ecological and evolutionary significance of the Asgard superphylum. Asgard archaea have been found in a diverse range of microbiomes across the globe, primarily from sedimentary environments. Within these environments, positive correlations between specific members of the Asgard archaea and Candidate Division TA06 bacteria have been observed, opening up the possibility of symbiotic interactions between the groupings. Asgard archaeal genomes encode functionally diverse metabolic pathways, including the Wood-Ljungdahl pathway as a carbon-fixation strategy, putative nucleotide salvaging pathways, and novel mechanisms of phototrophy including new rhodopsins. Asgard archaea also appear to be active in nitrogen cycling. Asgard archaea encode genes involved in both dissimilatory nitrate reduction and denitrification, and for the potential to use atmospheric nitrogen or nitrite as nitrogen sources. Asgard archaea also may be involved in the transformation of sulfur compounds, indicating a putative role in sulfur cycling. To date, all Asgard archaeal genomes identified were described as obligately anaerobic. The Asgard archaea also appear to have important evolutionary implications. The presence of eukaryotic signature proteins and the affiliation of Asgard archaea in phylogenetic analyses appears to support two-domain topologies of the tree of life with eukaryotes emerging from within the domain of archaea, as opposed to the eukaryotes being a separate domain of life. Thus far, Heimdallarchaeota appears as the closest archaeal relative of eukaryotes.
Collapse
Affiliation(s)
- Fraser MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.,Australian Centre for Astrobiology, The University of New South Wales, Sydney, Australia
| | - Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.,Australian Centre for Astrobiology, The University of New South Wales, Sydney, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.,Australian Centre for Astrobiology, The University of New South Wales, Sydney, Australia
| | - Ray Chen
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.,Australian Centre for Astrobiology, The University of New South Wales, Sydney, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.,Australian Centre for Astrobiology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
24
|
ELTurk M, Abdullah R, Rozainah MZ, Abu Bakar NK. Evaluation of heavy metals and environmental risk assessment in the Mangrove Forest of Kuala Selangor estuary, Malaysia. MARINE POLLUTION BULLETIN 2018; 136:1-9. [PMID: 30509789 DOI: 10.1016/j.marpolbul.2018.08.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 06/09/2023]
Abstract
This study was carried out to evaluate the distribution, enrichment and ecological risk of heavy metals (arsenic (As), zinc (Zn), manganese (Mn), copper (Cu) and lead (Pb)) concentration in Kuala Selangor estuary at the Kuala Selangor Nature Park. The results suggested that As and Pb in sediment were as high as the background value, suggesting the presence of anthropogenic contamination. The risk assessment of sediment Igeo, CD, and PERI, on the other hand, showed low risk of heavy metals in Kuala Selangor estuary. Meanwhile, risk assessment code (RAC) results showed that Mn, As and Zn presented medium to high level of environmental risk. The translocation factor and bioaccumulation factors of heavy metal concentration by mangrove vegetation showed a variety of trends, which indicates the different partitioning and uptake ability of heavy metal in the tissues of different mangrove species. Therefore, underscores the importance of preserving the high diversity of mangroves at securing the health and productivity of the coastal region. These results may play a critical role in facilitating decision makers in managing the sustainability of mangrove forests.
Collapse
Affiliation(s)
- Mohammed ELTurk
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - M Z Rozainah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Roy D, Pramanik A, Banerjee S, Ghosh A, Chattopadhyay D, Bhattacharyya M. Spatio-temporal variability and source identification for metal contamination in the river sediment of Indian Sundarbans, a world heritage site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31326-31345. [PMID: 30194579 DOI: 10.1007/s11356-018-3092-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Metal pollution is a subject of growing concern as it affects the whole food chain of an ecosystem by bioaccumulation. Growing industrialization and anthropogenic intervention have put tremendous pressure on self-sustaining ecosystems worldwide. Sundarbans mangrove estuary, being a UNESCO World Heritage site, suffers severely from anthropogenic stress, urbanization, ecotourism, overexploitation of natural resources and discharges of industrial as well as municipal waste products. Our study unfolds the extent of metal pollution in the sediment of this estuarine mangrove ecosystem and also investigates the source and distribution of these metals. Extensive samplings were performed during three major seasons, namely pre-monsoon, monsoon, and post-monsoon for two consecutive years at ten sampling stations along the major river networks of the mangrove estuary. Seasonal variations of these metals, physicochemical properties, and soil texture studies were performed to explore the sediment quality of the study area. Positive correlation was observed between the pollutants and siltation. Several environmental indices were investigated to explore the degree of metal pollution which revealed contamination of Cd, Cr, and Pb to cross the permitted safe index in the study area. Pollution load index indicates the spatial as well as seasonal variation of eco toxic metal load along the course of the rivers. Statistical analyses such as principal component analysis and correlation matrix identified different sources for metal contamination. Almost 700 tannery industries are located in the upstream region of the rivers, and several small- and large-scale battery industries seem to be the main possible source for Cd, Cr, and Pb pollution. Analysis of the results indicates the alarming condition of this heritage site. The metal concentrations beyond toxicity thresholds are responsible for gradual deterioration of this estuarine mangrove which may only be protected by developing sustainable management planning.
Collapse
Affiliation(s)
- Debojyoti Roy
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Arnab Pramanik
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Kolkata, West Bengal, 700107, India
| | - Satabdi Banerjee
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, P 1/12, C.I.T Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Dhrubajyoti Chattopadhyay
- Amity University, Major Arterial Road, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700156, India
| | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Kolkata, West Bengal, 700107, India.
| |
Collapse
|
26
|
Pan L, Fang G, Wang Y, Wang L, Su B, Li D, Xiang B. Potentially Toxic Element Pollution Levels and Risk Assessment of Soils and Sediments in the Upstream River, Miyun Reservoir, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112364. [PMID: 30366451 PMCID: PMC6267611 DOI: 10.3390/ijerph15112364] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/11/2023]
Abstract
This study focused on the Chao River and Baimaguan River located upstream of the Miyun Reservoir in Miyun District (Beijing, China). Soil and sediment samples were collected from the river and drainage basin. Total nitrogen, total phosphorus, and six potentially toxic elements including cadmium, zinc, lead, chromium, arsenic, and copper, were analyzed in terms of concentration, potential ecological risk, and human health risk. The average concentrations of the six potentially toxic elements were all below the soil environmental quality standards for China. Cadmium was the most serious pollutant in both soils and sediments, at 2.58 and 3.40 times its background values. The contents of Cd and Pb were very closely related (p < 0.01) to total nitrogen concentrations in both soil and sediment samples. The potential ecological risks posed by Cd in the Chao and Baimaguan River soils were considerable and moderate, respectively. The historical iron ore mining and agricultural activity were identified as the primary sources of potentially toxic element pollution of soil and sediment in the Chao-Bai River in Miyun District. Human health risk assessment indicated that non-carcinogenic risks all fell below threshold values. The total carcinogenic risks due to Cr and As were within the acceptable range for both adults and children. This conclusion provides a scientific basis for the control of potentially toxic element pollution and environmental protection of the Miyun Reservoir in Beijing.
Collapse
Affiliation(s)
- Libo Pan
- Chinese Research Academy of Environmental Sciences, Agricultural Environmental Research Center, Beijing 100012, China.
- Chinese Research Academy of Environmental Sciences, State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China.
| | - Guangling Fang
- Chinese Research Academy of Environmental Sciences, Agricultural Environmental Research Center, Beijing 100012, China.
- Chinese Research Academy of Environmental Sciences, State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China.
| | - Yue Wang
- Chinese Research Academy of Environmental Sciences, Agricultural Environmental Research Center, Beijing 100012, China.
- Chinese Research Academy of Environmental Sciences, State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China.
| | - Lei Wang
- Chinese Research Academy of Environmental Sciences, Agricultural Environmental Research Center, Beijing 100012, China.
- Chinese Research Academy of Environmental Sciences, State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China.
| | - Benying Su
- Chinese Research Academy of Environmental Sciences, Agricultural Environmental Research Center, Beijing 100012, China.
- Chinese Research Academy of Environmental Sciences, State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China.
| | - Dan Li
- Chinese Research Academy of Environmental Sciences, State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China.
| | - Bao Xiang
- Chinese Research Academy of Environmental Sciences, Agricultural Environmental Research Center, Beijing 100012, China.
- Chinese Research Academy of Environmental Sciences, State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China.
| |
Collapse
|
27
|
Wang Z, Hou L, Liu Y, Wang Y, Ma LQ. Metal contamination in a riparian wetland: Distribution, fractionation and plant uptake. CHEMOSPHERE 2018; 200:587-593. [PMID: 29505931 DOI: 10.1016/j.chemosphere.2018.02.159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Heavy metal pollution in aquatic system is of concern due its ecologic risk. In this study, we investigated the distribution, fractionation and plant uptake of heavy metals (As, Cd, Cr, Co, Cu, Ni, Pb and Zn) in a riparian wetland impacted by mining activities in Yunnan, southwest China. The results showed that excluding Cr, metal contents in sediment were higher than the background values, especially for As, which was 100-fold higher. While Cd showed high levels in the acid-soluble fraction with high availability, As, Cr, Cu, Ni and Pb mainly existed in the residual fraction with low availability. Two native aquatic plants including Phragmites australis (common reed) and Typha orientalis (bullrush) showed different uptake ability. T. orientalis accumulated more As, while P. australis accumulated more other metals. Based on geoaccumulation index (Igeo), As, Cd and Zn were more contaminated (Igeo> 3), followed by Cu, Pb and Co (Igeo<3), with Cr and Ni being slightly polluted (Igeo<1). According to risk assessment code, Cd showed high availability, followed by Zn and Co, with As exhibiting the lowest. The data suggested that both total and bioavailable metals should be considered for risk assessment of metal pollution in a wetland.
Collapse
Affiliation(s)
- Ziquan Wang
- Research Institute of Rocky Desertification, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Lei Hou
- Research Institute of Rural Sewage Treatment, Southwest Forestry University, Kunming, 650224, China
| | - Yungen Liu
- Research Institute of Rural Sewage Treatment, Southwest Forestry University, Kunming, 650224, China.
| | - Yan Wang
- Research Institute of Rocky Desertification, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Lena Q Ma
- Research Center of Soil Contamination and Remediation, Southwest Forestry University, Kunming, 650224, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
28
|
Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME JOURNAL 2018; 12:1021-1031. [PMID: 29445130 DOI: 10.1038/s41396-018-0060-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022]
Abstract
Thorarchaeota are a new archaeal phylum within the Asgard superphylum, whose ancestors have been proposed to play possible ecological roles in cellular evolution. However, little is known about the lifestyles of these uncultured archaea. To provide a better resolution of the ecological roles and metabolic capacity of Thorarchaeota, we obtained Thorarchaeota genomes reconstructed from metagenomes of different depth layers in mangrove and mudflat sediments. These genomes from deep anoxic layers suggest the presence of Thorarchaeota with the potential to degrade organic matter, fix inorganic carbon, reduce sulfur/sulfate and produce acetate. In particular, Thorarchaeota may be involved in ethanol production, nitrogen fixation, nitrite reduction, and arsenic detoxification. Interestingly, these Thorarchaeotal genomes are inferred to contain the tetrahydromethanopterin and tetrahydrofolate Wood-Ljungdahl (WL) pathways for CO2 reduction, and the latter WL pathway appears to have originated from bacteria. These archaea are predicted to be able to use various inorganic and organic carbon sources, possessing genes inferred to encode ribulose bisphosphate carboxylase-like proteins (normally without RuBisCO activity) and a near-complete Calvin-Benson-Bassham cycle. The existence of eukaryotic selenocysteine insertion sequences and many genes for proteins previously considered eukaryote-specific in Thorarchaeota genomes provide new insights into their evolutionary roles in the origin of eukaryotic cellular complexity. Resolving the metabolic capacities of these enigmatic archaea and their origins will enhance our understanding of the origins of eukaryotes and their roles in ecosystems.
Collapse
|
29
|
Isimekhai KA, Garelick H, Watt J, Purchase D. Heavy metals distribution and risk assessment in soil from an informal E-waste recycling site in Lagos State, Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17206-17219. [PMID: 28589272 DOI: 10.1007/s11356-017-8877-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
Informal E-waste recycling can pose a risk to human health and the environment which this study endeavours to evaluate. The distribution of a number of heavy metals in soil from an informal recycling site in the largest market for used and new electronics and electrical equipment in West Africa was investigated. The potential bioavailability of heavy metals, extent of contamination, potential risk due to the recycling activities and impact of external factors such as rainfall were also assessed. The concentrations of all the heavy metals tested were higher in the area where burning of the waste occurred than at the control site, suggesting an impact of the recycling activities on the soil. The order of total metal concentrations was Cu > Pb > Zn > Mn > Ni > Sb > Cr > Cd for both the dry and wet seasons. The total concentrations of Cd, Cu, Mn, Ni and Zn were all significantly higher (p < 0.001) in the dry season than in the wet season. The concentrations of Cu (329-7106 mg kg-1), Pb (115-9623 mg kg-1) and Zn (508-8178 mg kg-1) were consistently higher than international soil guideline values. Using a sequential extraction method, the potential bioavailability of the heavy metals was indicated as Cd > Sb > Zn > Cu > Ni > Pb > Cr. When the risk was assessed using the Potential Ecological Risk Index (PERI), Cu was found to contribute the most to the potential ecological risk and Cd gave rise to the greatest concern due to its high toxic-response factor within the study site. Similarly, utilising the Risk Assessment Code (RAC) suggested that Cd posed the most risk in this site. This research establishes a high level of contamination in the study site and underscores the importance of applying the appropriate chemical speciation in risk assessment.
Collapse
Affiliation(s)
- Khadijah A Isimekhai
- Centre for Decision Analysis and Risk Management, Department of Natural Science, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Hemda Garelick
- Centre for Decision Analysis and Risk Management, Department of Natural Science, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - John Watt
- Centre for Decision Analysis and Risk Management, Department of Natural Science, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Diane Purchase
- Centre for Decision Analysis and Risk Management, Department of Natural Science, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK.
| |
Collapse
|
30
|
Geochemical assessment and fractionation of trace metals in estuarine sedimentary sub-environments, in Mumbai, India. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.enmm.2016.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|