1
|
Gahm K, Nguyen R, Acácio M, Anglister N, Vaadia G, Spiegel O, Pinter-Wollman N. A wrap-around movement path randomization method to distinguish social and spatial drivers of animal interactions. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220531. [PMID: 39230446 PMCID: PMC11449205 DOI: 10.1098/rstb.2022.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 09/05/2024] Open
Abstract
Studying the spatial-social interface requires tools that distinguish between social and spatial drivers of interactions. Testing hypotheses about the factors determining animal interactions often involves comparing observed interactions with reference or 'null' models. One approach to accounting for spatial drivers of social interactions in reference models is randomizing animal movement paths to decouple spatial and social phenotypes while maintaining environmental effects on movements. Here, we update a reference model that detects social attraction above the effect of spatial constraints. We explore the use of our 'wrap-around' method and compare its performance to the previous approach using agent-based simulations. The wrap-around method provides reference models that are more similar to the original tracking data, while still distinguishing between social and spatial drivers. Furthermore, the wrap-around approach results in fewer false-positives than its predecessor, especially when animals do not return to one place each night but change movement foci, either locally or directionally. Finally, we show that interactions among GPS-tracked griffon vultures (Gyps fulvus) emerge from social attraction rather than from spatial constraints on their movements. We conclude by highlighting the biological situations in which the updated method might be most suitable for testing hypotheses about the underlying causes of social interactions. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Kaija Gahm
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Ryan Nguyen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Marta Acácio
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Nili Anglister
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Gideon Vaadia
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Orr Spiegel
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Macdonald KJ, Driscoll DA, Macdonald KJ, Hradsky B, Doherty TS. Meta-analysis reveals impacts of disturbance on reptile and amphibian body condition. GLOBAL CHANGE BIOLOGY 2023; 29:4949-4965. [PMID: 37401520 DOI: 10.1111/gcb.16852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
Ecosystem disturbance is increasing in extent, severity and frequency across the globe. To date, research has largely focussed on the impacts of disturbance on animal population size, extinction risk and species richness. However, individual responses, such as changes in body condition, can act as more sensitive metrics and may provide early warning signs of reduced fitness and population declines. We conducted the first global systematic review and meta-analysis investigating the impacts of ecosystem disturbance on reptile and amphibian body condition. We collated 384 effect sizes representing 137 species from 133 studies. We tested how disturbance type, species traits, biome and taxon moderate the impacts of disturbance on body condition. We found an overall negative effect of disturbance on herpetofauna body condition (Hedges' g = -0.37, 95% CI: -0.57, -0.18). Disturbance type was an influential predictor of body condition response and all disturbance types had a negative mean effect. Drought, invasive species and agriculture had the largest effects. The impact of disturbance varied in strength and direction across biomes, with the largest negative effects found within Mediterranean and temperate biomes. In contrast, taxon, body size, habitat specialisation and conservation status were not influential predictors of disturbance effects. Our findings reveal the widespread effects of disturbance on herpetofauna body condition and highlight the potential role of individual-level response metrics in enhancing wildlife monitoring. The use of individual response metrics alongside population and community metrics would deepen our understanding of disturbance impacts by revealing both early impacts and chronic effects within affected populations. This could enable early and more informed conservation management.
Collapse
Affiliation(s)
- Kristina J Macdonald
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Don A Driscoll
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Kimberley J Macdonald
- Biodiversity Protection and Information Branch, Biodiversity Division, Department of Energy, Environment and Climate Action, East Melbourne, Victoria, Australia
| | - Bronwyn Hradsky
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Tim S Doherty
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Payne E, Spiegel O, Sinn DL, Leu ST, Gardner MG, Godfrey SS, Wohlfeil C, Sih A. Intrinsic traits, social context, and local environment shape home range size and fidelity of sleepy lizards. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- E. Payne
- Department of Environmental Science and Policy University of California Davis Davis USA
| | - O. Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University Tel Aviv Israel
| | - D. L. Sinn
- Department of Environmental Science and Policy University of California Davis Davis USA
- Department of Biological Sciences University of Tasmania, Hobart Tasmania Australia
| | - S. T. Leu
- School of Animal and Veterinary Sciences, University of Adelaide Adelaide Australia
| | - M. G. Gardner
- College of Science and Engineering, Flinders University Adelaide Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace Adelaide Australia
| | - S. S. Godfrey
- Department of Zoology University of Otago Dunedin New Zealand
| | - C. Wohlfeil
- College of Science and Engineering, Flinders University Adelaide Australia
| | - A. Sih
- Department of Environmental Science and Policy University of California Davis Davis USA
| |
Collapse
|
4
|
Michelangeli M, Payne E, Spiegel O, Sinn DL, Leu ST, Gardner MG, Sih A. Personality, spatiotemporal ecological variation and resident/explorer movement syndromes in the sleepy lizard. J Anim Ecol 2021; 91:210-223. [PMID: 34679184 DOI: 10.1111/1365-2656.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/04/2021] [Indexed: 01/26/2023]
Abstract
Individual variation in movement is profoundly important for fitness and offers key insights into the spatial and temporal dynamics of populations and communities. Nonetheless, individual variation in fine-scale movement behaviours is rarely examined even though animal tracking devices offer the long-term, high-resolution, repeatable data in natural conditions that are ideal for studying this variation. Furthermore, of the few studies that consider individual variation in movement, even fewer also consider the internal traits and environmental factors that drive movement behaviour which are necessary for contextualising individual differences in movement patterns. In this study, we GPS tracked a free-ranging population of sleepy lizards Tiliqua rugosa, each Austral spring over 5 years to examine consistent among-individual variation in movement patterns, as well as how these differences were mediated by key internal and ecological factors. We found that individuals consistently differed in a suite of weekly movement traits, and that these traits strongly covaried among-individuals, forming movement syndromes. Lizards fell on a primary movement continuum, from 'residents' that spent extended periods of time residing within smaller core areas of their home range, to 'explorers' that moved greater distances and explored vaster areas of the environment. Importantly, we also found that these consistent differences in lizard movement were related to two ecologically important animal personality traits (boldness and aggression), their sex, key features of the environment (including food availability, and a key water resource), habitat type and seasonal variation (cool/moist vs. hot/drier) in environmental conditions. Broadly, these movement specialisations likely reflect variation in life-history tactics including foraging and mating tactics that ultimately underlie key differences in space use. Such information can be used to connect phenotypic population structure to key ecological and evolutionary processes, for example social networks and disease-transmission pathways, further highlighting the value of examining individual variation in movement behaviour.
Collapse
Affiliation(s)
- Marcus Michelangeli
- Department of Environmental Science and Policy, University of California, Davis, CA, USA.,School of Biological Sciences, Monash University, Melbourne, Vic., Australia.,Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Eric Payne
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Orr Spiegel
- Department of Environmental Science and Policy, University of California, Davis, CA, USA.,The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - David L Sinn
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Stephan T Leu
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, Australia
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Noonan MJ, Martinez‐Garcia R, Davis GH, Crofoot MC, Kays R, Hirsch BT, Caillaud D, Payne E, Sih A, Sinn DL, Spiegel O, Fagan WF, Fleming CH, Calabrese JM. Estimating encounter location distributions from animal tracking data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michael J. Noonan
- Department of Biology, The Irving K. Barber Faculty of Science The University of British Columbia Kelowna BC Canada
- Smithsonian Conservation Biology InstituteNational Zoological Park Front Royal VA USA
| | - Ricardo Martinez‐Garcia
- ICTP South American Institute for Fundamental Research & Instituto de Fisica Teorica – UNESP Sao Paulo Brazil
| | - Grace H. Davis
- Department of Anthropology University of California Davis CA USA
- Smithsonian Tropical Research Institute Panama City Panama
- Department for the Ecology of Animal Societies Max Planck Institute of Animal Behavior Konstanz Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Margaret C. Crofoot
- Department of Anthropology University of California Davis CA USA
- Smithsonian Tropical Research Institute Panama City Panama
- Department for the Ecology of Animal Societies Max Planck Institute of Animal Behavior Konstanz Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Roland Kays
- North Carolina Museum of Natural Sciences and North Carolina State University Raleigh NC USA
| | - Ben T. Hirsch
- Smithsonian Tropical Research Institute Panama City Panama
- College of Science and Engineering James Cook University Townsville Qld Australia
| | - Damien Caillaud
- Department of Anthropology University of California Davis CA USA
| | - Eric Payne
- Department of Environmental Science and Policy University of California Davis Davis CA USA
| | - Andrew Sih
- Department of Environmental Science and Policy University of California Davis Davis CA USA
| | - David L. Sinn
- Department of Environmental Science and Policy University of California Davis Davis CA USA
| | - Orr Spiegel
- School of Zoology Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - William F. Fagan
- Department of Biology University of Maryland College Park MD USA
| | - Christen H. Fleming
- Smithsonian Conservation Biology InstituteNational Zoological Park Front Royal VA USA
- Department of Biology University of Maryland College Park MD USA
| | - Justin M. Calabrese
- Smithsonian Conservation Biology InstituteNational Zoological Park Front Royal VA USA
- Department of Biology University of Maryland College Park MD USA
- Center for Advanced Systems Understanding (CASUS) Görlitz Germany
- Helmholtz‐Zentrum Dresden Rossendorf (HZDR) Dresden Germany
- Department of Ecological Modelling Helmholtz Centre for Environmental Research (UFZ) Leipzig Germany
| |
Collapse
|
6
|
Wohlfeil CK, Godfrey SS, Leu ST, Clayton J, Gardner MG. Spatial proximity and asynchronous refuge sharing networks both explain patterns of tick genetic relatedness among lizards, but in different years. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Caroline K. Wohlfeil
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | | | - Stephan T. Leu
- School of Animal and Veterinary Sciences University of Adelaide Adelaide South Australia Australia
| | - Jessica Clayton
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | - Michael G. Gardner
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
- Evolutionary Biology Unit South Australian Museum Adelaide South Australia Australia
| |
Collapse
|
7
|
Norval G, Gardner MG. The natural history of the sleepy lizard, Tiliqua rugosa
(Gray, 1825) - Insight from chance observations and long-term research on a common Australian skink species. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerrut Norval
- College of Science and Engineering; Flinders University; GPO Box 2100 Adelaide South Australia 5001 Australia
| | - Michael G. Gardner
- College of Science and Engineering; Flinders University; GPO Box 2100 Adelaide South Australia 5001 Australia
- Evolutionary Biology Unit; South Australian Museum; Adelaide South Australia Australia
| |
Collapse
|
8
|
Taggart PL, Leu ST, Spiegel O, Godfrey SS, Sih A, Bull CM. Endure your parasites: Sleepy Lizard (Tiliqua rugosa) movement is not affected by their ectoparasites. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Movement is often used to indicate host vigour, as it has various ecological and evolutionary implications, and has been shown to be affected by parasites. We investigate the relationship between tick load and movement in the Australian Sleepy Lizard (Tiliqua rugosa (Gray, 1825)) using high resolution GPS tracking. This allowed us to track individuals across the entire activity season. We hypothesized that tick load negatively affects host movement (mean distance moved per day). We used a multivariate statistical model informed by the ecology and biology of the host and parasite, their host–parasite relationship, and known host movement patterns. This allowed us to quantify the effects of ticks on lizard movement above and beyond effects of other factors such as time in the activity season, lizard body condition, and stress. We did not find any support for our hypothesis. Instead, our results provide evidence that lizard movement is strongly driven by internal state (sex and body condition independent of tick load) and by external factors (environmental conditions). We suggest that the Sleepy Lizard has largely adapted to natural levels of tick infection in this system. Our results conform to host–parasite arms race theory, which predicts varying impacts of parasites on hosts in natural systems.
Collapse
Affiliation(s)
- Patrick L. Taggart
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Stephan T. Leu
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stephanie S. Godfrey
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin 9054, New Zealand
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, 1023 Wickson Hall, One Shields Avenue, Davis, CA 95616, USA
| | - C. Michael Bull
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| |
Collapse
|
9
|
Kearney MR, Munns SL, Moore D, Malishev M, Bull CM. Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1326] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael R. Kearney
- School of BioSciences; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Suzanne L. Munns
- College of Public Health, Medical and Veterinary Sciences; James Cook University; Townsville Queensland 4810 Australia
| | - Danae Moore
- Department of Biological Sciences; Macquarie University; North Ryde New South Wales 2109 Australia
- Australian Wildlife Conservancy; Newhaven Wildlife Sanctuary; P.M.B. 146 Alice Springs Northern Territory 0872 Australia
| | - Matthew Malishev
- School of BioSciences; The University of Melbourne; Parkville Victoria 3010 Australia
- Centre of Excellence for Biosecurity Risk Analysis; School of BioSciences; The University of Melbourne; Parkville Victoria 3010 Australia
| | - C. Michael Bull
- School of Biological Sciences; Flinders University; Adelaide South Australia 5001 Australia
| |
Collapse
|
10
|
Bull CM, Gardner MG, Sih A, Spiegel O, Godfrey SS, Leu ST. Why Is Social Behavior Rare in Reptiles? Lessons From Sleepy Lizards. ADVANCES IN THE STUDY OF BEHAVIOR 2017. [DOI: 10.1016/bs.asb.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|