1
|
Yang C, Veit NC, McKenzie KA, Aalla S, Kishta A, Embry K, Roth EJ, Lieber RL, Jayaraman A. The effects of stimulation waveform and carrier frequency on tolerance and motor thresholds elicited by transcutaneous spinal cord stimulation in stroke. Clin Neurophysiol Pract 2025; 10:150-158. [PMID: 40336510 PMCID: PMC12056781 DOI: 10.1016/j.cnp.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Objective With growing interest in translating transcutaneous spinal cord stimulation (tSCS) into rehabilitation for different neurologic injuries, understanding the effects of various combinations of stimulation parameters becomes essential. Methods Twenty-one participants post-stroke completed an assessment to determine their resting motor threshold (RMT) (minimum current required to elicit a muscle response) and tolerance levels (uncomfortable current intensity) to 12 stimulation configurations: two square waveforms, biphasic and monophasic, paired with six carrier frequencies (unmodulated: 0, and modulated: 1, 3, 5, 7, and 10 kHz). Results The results demonstrated that increasing carrier frequency increased participants' tolerance level and RMTs. Carrier frequency nor waveform type significantly altered discomfort when tolerance was normalized to the motor threshold, with 57 ± 23 % tolerated across all configurations. However, higher carrier frequencies, particularly biphasic waveforms at frequencies > 5 kHz, required more charge to reach a muscle activation and activated fewer muscles compared to unmodulated waveforms. No significant differences in discomfort relative to RMT were found between monophasic and biphasic waveforms. Conclusions Higher carrier frequency allows stimulation to be more comfortable at a given intensity, but it also requires more current to reach RMTs. Significance This study provides an essential feasibility assessment of tSCS configurations in a neurological population.
Collapse
Affiliation(s)
- Chen Yang
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nicole C. Veit
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Biomedical Engineering Department, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | - Kyle Embry
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elliot J. Roth
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Richard L. Lieber
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Hines VA Medical Center, Maywood, IL 60141, USA
| | - Arun Jayaraman
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Rimac J, Jančuljak D, Kovač B, Jovičić M, Forjan J. Reflex Responses in Muscles of the Lower Extremities Elicited by Transcutaneous Stimulation of Cauda Equina: Part 1. Methodology and Normative Data. J Clin Neurophysiol 2025; 42:176-183. [PMID: 38857374 DOI: 10.1097/wnp.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION Transcutaneous electrical stimulation is used to stimulate the dorsal roots of the cauda equina. Multiple elicited responses recorded in the lower extremity muscles are called posterior root muscle reflexes (PRMRs). Normal PRMR values in the muscles of healthy lower extremities have yet to be determined. METHODS Thirty subjects without known lumbosacral spinal root illness were included in this study. Subsequently, they were subjected to transcutaneous electrical stimulation of the cauda equina. Posterior root muscle reflex was recorded in the four muscle groups of both lower extremities. We elicited multiple PRMR and examined their characteristics in order to establish normal electrophysiological parameter values. RESULTS Posterior root muscle reflex was successfully elicited in the tibialis anterior (96.7%), gastrocnemius (100%), quadriceps femoris (93.3%), and hamstring (96.7%). No statistically significant differences were found in the intensity of stimulation, latencies, or area under the PRMR between the right and left leg muscles. The area under PRMR varied significantly among the participants. Higher body weight and abdominal girth showed a significant positive correlation with stimulation intensity for eliciting PRMR, and a significant negative correlation with the area under PRMR. Older age showed a significant negative correlation with the success of eliciting PRMR and the area under the PRMR. CONCLUSIONS Posterior root muscle reflex is a noninvasive and successful method for eliciting selective reflex responses of cauda equina posterior roots. Obtained values could be used in future studies to evaluate the utility of this methodology in clinical practice. This methodology could improve testing of the proximal lumbosacral nervous system functional integrity.
Collapse
Affiliation(s)
- Julija Rimac
- Department of Neurology, National Memorial Hospital "Dr. Juraj Njavro" Vukovar, Vukovar, Croatia
| | - Davor Jančuljak
- Neurology Clinic, Osijek Clinical Hospital Center, Osijek, Croatia
- Department of Neurology and Neurosurgery, Faculty of Medicine Osijek, University of Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Biserka Kovač
- Neurology Clinic, Osijek Clinical Hospital Center, Osijek, Croatia
- Department of Neurology, Faculty of Dental Medicine and Health Osijek, University of Josip Juraj Strossmayer in Osijek, Osijek, Croatia; and
| | - Miloš Jovičić
- Department of Neurology, National Memorial Hospital "Dr. Juraj Njavro" Vukovar, Vukovar, Croatia
| | - Josipa Forjan
- Department of Quantitative Methods and Informatics, Faculty of Economics in Osijek, Josip Juraj Strossmayer University in Osijek, Osijek, Croatia
| |
Collapse
|
3
|
Romeni S, Losanno E, Emedoli D, Albano L, Agnesi F, Mandelli C, Barzaghi LR, Pompeo E, Mura C, Alemanno F, Tettamanti A, Castellazzi P, Ciucci C, Fossati V, Toni L, Caravati H, Bandini A, Del Carro U, Agosta F, Filippi M, Iannaccone S, Mortini P, Micera S. High-frequency epidural electrical stimulation reduces spasticity and facilitates walking recovery in patients with spinal cord injury. Sci Transl Med 2025; 17:eadp9607. [PMID: 39772775 DOI: 10.1126/scitranslmed.adp9607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/28/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025]
Abstract
Spinal cord injury (SCI) causes severe motor and sensory deficits, and there are currently no approved treatments for recovery. Nearly 70% of patients with SCI experience pathological muscle cocontraction and spasticity, accompanied by clinical signs such as patellar hyperreflexia and ankle clonus. The integration of epidural electrical stimulation (EES) of the spinal cord with rehabilitation has substantial potential to improve recovery of motor functions; however, abnormal muscle cocontraction and spasticity may limit the benefit of these interventions and hinder the effectiveness of EES in promoting functional movements. High-frequency excitation block introduced in peripheral nerve stimulation could reduce abnormal activity and lead to more physiological activation patterns. Here, we evaluated the application of high-frequency EES (HF-EES) in alleviating undesired muscular cocontraction and spasticity in two patients with motor incomplete SCI implanted with a commercial 32-channel EES paddle commonly used for pain therapy. To design custom HF-EES protocols, we first mapped the muscles targeted by different EES configurations. Our results showed that HF-EES substantially reduced patellar reflex in one participant and eliminated both patellar reflex and ankle clonus in the other participant. By combining HF-EES and low-frequency EES (LF-EES) to enhance functional movements with intensive rehabilitation, we observed notable improvements in lower limb kinematics, muscle strength, and clinical lower limb motor assessments over the trial period. This study suggests that HF-EES could be an important supplementary tool in SCI treatment, emphasizing the importance of personalized rehabilitation approaches and advanced tools to optimize EES treatments and offering hope for individuals with SCI-related motor deficits.
Collapse
Affiliation(s)
- Simone Romeni
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Translational Neural Engineering Laboratory, Neuro-X Institute, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Elena Losanno
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- BioRobotics Institute, Health Science Interdisciplinary Research Center, and Department of Excellence Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Daniele Emedoli
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Department of Rehabilitation and Functional Recovery, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Luigi Albano
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Filippo Agnesi
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- BioRobotics Institute, Health Science Interdisciplinary Research Center, and Department of Excellence Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Carlo Mandelli
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Lina Raffaella Barzaghi
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Edoardo Pompeo
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Cinzia Mura
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Federica Alemanno
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Department of Rehabilitation and Functional Recovery, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Andrea Tettamanti
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Department of Rehabilitation and Functional Recovery, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Paola Castellazzi
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Department of Rehabilitation and Functional Recovery, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Chiara Ciucci
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- BioRobotics Institute, Health Science Interdisciplinary Research Center, and Department of Excellence Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Veronica Fossati
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- BioRobotics Institute, Health Science Interdisciplinary Research Center, and Department of Excellence Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Laura Toni
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- BioRobotics Institute, Health Science Interdisciplinary Research Center, and Department of Excellence Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Heike Caravati
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Neurophysiology Service, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Andrea Bandini
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- BioRobotics Institute, Health Science Interdisciplinary Research Center, and Department of Excellence Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Ubaldo Del Carro
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Neurophysiology Service, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Federica Agosta
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Massimo Filippi
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Neurophysiology Service, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Sandro Iannaccone
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Department of Rehabilitation and Functional Recovery, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Pietro Mortini
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Silvestro Micera
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, 20132 Milan, Italy
- Translational Neural Engineering Laboratory, Neuro-X Institute, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- BioRobotics Institute, Health Science Interdisciplinary Research Center, and Department of Excellence Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| |
Collapse
|
4
|
Thatcher KL, Nielsen KE, Sandler EB, Daliet OJ, Iddings JA, Field-Fote EC. Optimizing transcutaneous spinal stimulation: excitability of evoked spinal reflexes is dependent on electrode montage. J Neuroeng Rehabil 2025; 22:2. [PMID: 39762915 PMCID: PMC11702053 DOI: 10.1186/s12984-024-01524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages. Additionally, we assessed tolerability of the stimulation during PRM reflex testing. METHODS Fifteen adults with intact neurological systems participated in this randomized crossover study. PRM reflexes were evoked transcutaneously using electrode montages with dorsal-ventral (DV) or dorsal-midline (DM) current flow. DV montages included: [1] cathode over T11/T12, anodes over iliac crests (DV-I), [2] cathode over T11/T12, anodes over umbilicus (DV-U), [3] dual paraspinal cathodes at T11/12, anodes over iliac crests (DV-PI), and [4] dual paraspinal cathodes at T11/12, anodes over umbilicus (DV-PU). DM montages included: [5] cathode over T11/12, anode 5 cm caudal (DM-C), and [6] cathode over T11/12, anode 5 cm rostral (DM-R). PRM reflex recruitment curves were obtained in the soleus muscle of both lower extremities. RESULTS Lower reflex thresholds (mA) for dominant (D) and nondominant (ND) soleus muscles were elicited in DV-U (D: 46.7[33.9, 59.4], ND: 45.4[32.5, 58.2]) and DV-I (D: 48.1[35.3, 60.8], ND: 45.4[32.5, 58.2]) montages compared to DV-PU (D: 64.3[51.4, 77.1], ND:61.7[48.8, 74.6]), DV-PI (D:64.9[52.1, 77.7], ND:61.4[48.5, 75.5]), DM-C(D:60.0[46.9, 73.1], ND:63.6[50.8, 76.5]), and DM-R(D:63.1[50.3, 76.0], ND:62.6[49.8, 75.5]). DV-U and DV-I montages demonstrated larger recruitment curve area than other montages. There were no differences in response amplitude at 120% of RT(1.2xRT) or tolerability among montages. CONCLUSIONS Differences in spinal circuit recruitment are reflected in the response amplitude of the PRM reflexes. DV-I and DV-U montages were associated with lower reflex thresholds, indicating that motor responses can be evoked with lower stimulation intensity. DV-I and DV-U montages therefore have the potential for lower and more tolerable interventional stimulation intensities. Our findings optimize electrode placement for interventional TSS and PRM reflex assessments. CLINICAL TRIAL NUMBER NCT04243044.
Collapse
Affiliation(s)
- Kelly Lynn Thatcher
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
| | - Karen Emily Nielsen
- Department of Population Health Sciences, Georgia State University, 140 Decatur Street, Atlanta, GA, USA
| | - Evan Blake Sandler
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
- Department of Applied Physiology, Georgia Institute of Technology, 555 14th Street NW, Atlanta, GA, USA
| | - Oliver John Daliet
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
| | - Jennifer Ann Iddings
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
| | - Edelle Carmen Field-Fote
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
- Department of Applied Physiology, Georgia Institute of Technology, 555 14th Street NW, Atlanta, GA, USA.
- Department of Physical Therapy, Emory University, 1462 Clifton Road NE, Atlanta, GA, USA.
| |
Collapse
|
5
|
Stępień G, Jelonek W, Goodall S, McNeil CJ, Łochyński D. Corticospinal excitability and voluntary activation of the quadriceps muscle is not affected by a single session of anodal transcutaneous spinal direct current stimulation in healthy, young adults. Eur J Neurosci 2024; 60:7103-7123. [PMID: 39572029 DOI: 10.1111/ejn.16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
The aim of the present study was to determine if anodal transcutaneous spinal direct current stimulation (tsDCS) affects corticospinal excitability (CSE) and voluntary activation (VA) of the quadriceps femoris muscle (QM). This was a double-blind, randomized study in which spine-shoulder anodal tsDCS (active electrode centered over T11-12, 2.5 mA, 20 min) was applied in a seated position. Transcranial magnetic stimulation (TMS) was used to measure motor evoked potentials (MEP) and construct stimulus-response curves in healthy participants (eight females and five males, Experiment 1). VA was measured via the interpolated twitch technique, whereby muscle twitches were evoked using electrical femoral nerve stimulation and TMS (seven females and six males, Experiment 2). Measurements were carried out before, directly, and 30 min after sham and anodal tsDCS (with ≥4 days between sessions). There was no interaction between stimulation × time on stimulus-response curve expressed by slope, stimulus intensity corresponding to 50% of the maximal MEP, and peak-to-peak amplitude of the maximal MEP. Maximal voluntary isometric contraction (MVIC) torque did not change and VA was not affected regardless of the QM torque level (25, 50, or 100% of MVIC). A single, twenty-minute session of spine-shoulder anodal tsDCS did not increase CSE and VA of QM during submaximal and maximal contraction. This suggests that neither excitability to a known input nor responsiveness of motoneurons to submaximal and maximal cortical drive were affected by anodal tsDCS.
Collapse
Affiliation(s)
- Grzegorz Stępień
- Department of Neuromuscular Physiotherapy, Poznan University of Physical Education, Poznan, Poland
| | - Wojciech Jelonek
- Department of Neuromuscular Physiotherapy, Poznan University of Physical Education, Poznan, Poland
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Chris J McNeil
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Dawid Łochyński
- Department of Neuromuscular Physiotherapy, Poznan University of Physical Education, Poznan, Poland
| |
Collapse
|
6
|
Minassian K, Freundl B, Lackner P, Hofstoetter US. Transcutaneous spinal cord stimulation neuromodulates pre- and postsynaptic inhibition in the control of spinal spasticity. Cell Rep Med 2024; 5:101805. [PMID: 39532101 PMCID: PMC11604492 DOI: 10.1016/j.xcrm.2024.101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Aside from enabling voluntary control over paralyzed muscles, a key effect of spinal cord stimulation is the alleviation of spasticity. Dysfunction of spinal inhibitory circuits is considered a major cause of spasticity. These circuits are contacted by Ia muscle spindle afferents, which are also the primary targets of transcutaneous lumbar spinal cord stimulation (TSCS). We hypothesize that TSCS controls spasticity by transiently strengthening spinal inhibitory circuit function through their Ia-mediated activation. We show that 30 min of antispasticity TSCS improves activity in post- and presynaptic inhibitory circuits beyond the intervention in ten individuals with traumatic spinal cord injury to normative levels established in 20 neurologically intact individuals. These changes in circuit function correlate with improvements in muscle hypertonia, spasms, and clonus. Our study opens the black box of the carryover effects of antispasticity TSCS and underpins a causal role of deficient post- and presynaptic inhibitory circuits in spinal spasticity.
Collapse
Affiliation(s)
- Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Brigitta Freundl
- Neurological Center, Clinic Penzing, Vienna Health Association, 1140 Vienna, Austria
| | - Peter Lackner
- Neurological Center, Clinic Penzing, Vienna Health Association, 1140 Vienna, Austria; Department of Neurology, Clinic Floridsdorf, Vienna Health Association, 1210 Vienna, Austria
| | - Ursula S Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
7
|
Kaneko N, Sasaki A, Fok KL, Yokoyama H, Nakazawa K, Masani K. Motor point stimulation activates fewer Ia-sensory nerves than peripheral nerve stimulation in human soleus muscle. J Neurophysiol 2024; 132:1142-1155. [PMID: 39196676 DOI: 10.1152/jn.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 08/30/2024] Open
Abstract
Peripheral nerve stimulation (PNS) and motor point stimulation (MPS) are noninvasive techniques used to induce muscle contraction, aiding motor function restoration in individuals with neurological disorders. Understanding sensory inputs from PNS and MPS is crucial for facilitating neuroplasticity and restoring impaired motor function. Although previous studies suggest that MPS could induce Ia-sensory inputs less than PNS, experimental evidence supporting this claim is insufficient. Here, we implemented a conditioning paradigm combining transcutaneous spinal cord stimulation (tSCS) with PNS or MPS to investigate their Ia-sensory inputs. This paradigm induces postactivation depression of spinal reflexes associated with transient decreases in neurotransmitter release from Ia-afferent terminals, allowing us to examine the Ia-sensory input amount from PNS and MPS based on the depression degree. We hypothesized that MPS would induce less postactivation depression than PNS. Thirteen individuals underwent MPS and PNS on the soleus muscle as conditioning stimuli, with tSCS applied to the skin between the spinous processes (L1-L2) as test stimuli. PNS- and MPS-conditioned spinal reflexes were recorded at five interstimulus intervals (ISIs) and four intensities. Results revealed that all PNS conditioning showed significant decreases in spinal reflex amplitudes, indicating postactivation depression. Furthermore, PNS conditioning exhibited greater depression for shorter ISIs and higher conditioning intensities. In contrast, MPS conditioning demonstrated intensity-dependent depression, but without all-conditioning depression and clear ISI dependency as seen in PNS conditioning. In addition, PNS induced significantly greater depression than MPS across most conditions. Our findings provide experimental evidence supporting the conclusion that MPS activates Ia-sensory nerves less than PNS.NEW & NOTEWORTHY Peripheral nerve stimulation (PNS) and motor point stimulation (MPS) induce neuroplasticity, but differences in their effects on Ia-sensory inputs are unclear. We investigated their Ia-sensory inputs using a conditioning paradigm with spinal reflexes. Results showed that PNS conditioning significantly inhibited spinal reflexes than MPS conditioning, indicating greater postactivation depression due to Ia-sensory nerve activation. These findings provide experimental evidence that MPS activates Ia-sensory nerves to a lesser extent than PNS, enhancing our understanding of neuroplasticity.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Sasaki
- Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Kai Lon Fok
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute-University Health Network, Toronto, Ontario, Canada
| | - Hikaru Yokoyama
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute-University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Gorman BT, Gill C, Etzelmueller M, O'Keeffe C, Reilly RB, Fleming N. The Influence of Body Position on the Resting Motor Threshold of Posterior Root-Muscle Reflexes Evoked via Transcutaneous Spinal Cord Stimulation. J Clin Med 2024; 13:5008. [PMID: 39274221 PMCID: PMC11396462 DOI: 10.3390/jcm13175008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Thoracolumbar transcutaneous spinal cord stimulation (tSCS) non-invasively evokes posterior root-muscle reflexes (PRMR) with the aim of neuromodulating sensorimotor function following spinal cord injury. Research is still in its infancy regarding the effect of body position on the nature of these spinally evoked responses. Therefore, the aim of this study was to investigate the influence of body position on the nature of PRMR responses during tSCS. Methods: A total of 11 (6M, 5F) participants completed a full PRMR recruitment curve from 10 ma up to 120 ma (10 ma increments) at the T11/12 intervertebral space using a singular 3.2 cm diameter cathode. At each intensity, three paired pulses (50 ms inter-pulse interval), followed by three singular pulses with a six-second delay were applied in each body position (supine, supine 90-90, sitting and standing) in a randomised order. The PRMR responses in lower limb muscles were recorded using wireless electromyographic sensors placed on the Soleus, Tibialis Anterior, Rectus Femoris and Bicep Femoris long head. A two-way (body position × muscle) repeated measures analysis of variance was used to investigate the effect of body position on PRMR-evoked responses. Results: There was a significant main effect of body position on PRMR resting motor threshold (RMT) (p < 0.001), first response peak-to-peak amplitude (p = 0.003) and percentage post-activation depression (%PAD) (p = 0.012). Sitting had significantly higher RMT and significantly lower first response peak-to-peak amplitudes compared to all other positions, but significant differences in %PAD were only detectible between supine and standing. Conclusions: Body position influences the nature of PRMR-evoked responses during tSCS.
Collapse
Affiliation(s)
- Barry T Gorman
- Discipline of Anatomy, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Conor Gill
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Mark Etzelmueller
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Discipline of Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Clodagh O'Keeffe
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Discipline of Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Richard B Reilly
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Discipline of Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Neil Fleming
- Discipline of Anatomy, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
9
|
Veith DD, Gill ML, Beck LA, Whitmarsh CL, Fernandez KA, Linde MB, Asp AJ, Mills CJ, Bendel MA, Grahn PJ, Zhao KD. Functional outcomes and participants' perspectives during short-term application of spinal stimulation in individuals with spinal cord injury. J Spinal Cord Med 2024:1-12. [PMID: 39172032 DOI: 10.1080/10790268.2024.2383377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVE The primary objective of this study was to quantify changes in performance of task-specific motor activities over 12 motor rehabilitation sessions with lumbosacral spinal cord stimulation (SCS) via either transcutaneous stimulation or epidural stimulation. Both stimulation modalities have been used in recent years to restore functions lost to spinal cord injury (SCI). Secondary outcomes examine participants' perspectives captured via the User Experience Questionnaire (UEQ) upon study completion to further understand their perception of SCS. METHODS Six individuals with SCI completed 12 sessions with one modality of SCS during supine and/or side-lying, seated forward reaching, and standing activities. Changes in volitional lower extremity movement, the number of points of contact needed at hips and/or knees to facilitate standing, and changes in seated forward reaching distance were used to quantify performance. The UEQ was administered to gauge participants' perspectives following use of SCS to enable functions impaired due to SCI. RESULTS For all participants, performance of motor activities improved with SCS compared to without stimulation. Responses for the UEQ showed an overall positive perception of trialing SCS with rehabilitation to enhance motor functions impaired by SCI. CONCLUSIONS Regardless of injury severity, location of injury, time since SCI, or SCS modality, all participants experienced gains in motor function in the presence of SCS combined with a condensed rehabilitation program. However, no evidence of sustained motor functions was found in the absence of SCS. UEQ results highlight the positive perception of SCS with rehabilitation as well as the importance of consulting persons with lived experience of SCS during clinical trial design and protocol development.Trial registration: ClinicalTrials.gov identifier: NCT05095454.
Collapse
Affiliation(s)
- Daniel D Veith
- Rehabilitation Medicine Research Center, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Megan L Gill
- Rehabilitation Medicine Research Center, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa A Beck
- Rehabilitation Medicine Research Center, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Crystal L Whitmarsh
- Rehabilitation Medicine Research Center, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - K A Fernandez
- Rehabilitation Medicine Research Center, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester Minnesota, USA
| | - Margaux B Linde
- Rehabilitation Medicine Research Center, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Anders J Asp
- Rehabilitation Medicine Research Center, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Candee J Mills
- Rehabilitation Medicine Research Center, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark A Bendel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter J Grahn
- Rehabilitation Medicine Research Center, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristin D Zhao
- Rehabilitation Medicine Research Center, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Thatcher KL, Nielsen KE, Sandler EB, Daliet OJ, Iddings JA, Field-Fote EC. Optimizing Transcutaneous Spinal Stimulation: Excitability of Evoked Spinal Reflexes is Dependent on Electrode Montage. RESEARCH SQUARE 2024:rs.3.rs-4719031. [PMID: 39149487 PMCID: PMC11326363 DOI: 10.21203/rs.3.rs-4719031/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages. Additionally, we assessed tolerability of the stimulation during PRM reflex testing. Methods Fifteen adults with intact neurological systems participated in this randomized crossover study. PRM reflexes were evoked transcutaneously using electrode montages with dorsal-ventral (DV) or dorsal-midline (DM) current flow. DV montages included: [1] cathode over T11/T12, anodes over iliac crests (DV-I), [2] cathode over T11/T12, anodes over umbilicus (DV-U), [3] dual paraspinal cathodes at T11/12, anodes over iliac crests (DV-PI), and [4] dual paraspinal cathodes at T11/12, anodes over umbilicus (DV-PU). DM montages included: [5] cathode over T11/12, anode 5cm caudal (DM-C), and [6] cathode over T11/12, anode 5cm rostral (DM-R). PRM reflex recruitment curves were obtained in the soleus muscle of both lower extremities. Results DV-U and DV-I montages elicited bilateral reflexes with lower reflex thresholds and larger recruitment curve area than other montages. There were no differences in response amplitude at 120% of RT(1.2xRT) or tolerability among montages. Conclusions Differences in spinal circuit recruitment are reflected in the response amplitude of the PRM reflexes. DV-I and DV-U montages were associated with lower reflex thresholds, indicating that motor responses can be evoked with lower stimulation intensity. DV-I and DV-U montages therefore have the potential for lower and more tolerable interventional stimulation intensities. Our findings optimize electrode placement for interventional TSS and PRM reflex assessments.
Collapse
|
11
|
Soh JH, Kang YJ, Yoon WH, Park CS, Shin HW. Positional Obstructive Sleep Apnea and Periodic Limb Movements During Sleep: A Large Multicenter Study. Clin Exp Otorhinolaryngol 2024; 17:217-225. [PMID: 38693650 PMCID: PMC11375175 DOI: 10.21053/ceo.2024.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVES The relationships among positional obstructive sleep apnea (POSA), obstructive sleep apnea (OSA), and periodic limb movements during sleep (PLMS) remain unclear. We investigated these relationships with respect to the severity of OSA and explored the underlying mechanisms. METHODS We retrospectively reviewed 6,140 eligible participants who underwent full-night diagnostic polysomnography at four clinical centers over a 5-year period, utilizing event-synchronized analysis. We evaluated the periodic limb movement index (PLMI) and the periodic limb movement with arousal index (PLMAI). The impacts of POSA on the PLMI, PLMAI, and PLMS were analyzed in relation to the severity of OSA. RESULTS The mean PLMI, the mean PLMAI, and the prevalence of PLMS were significantly lower in participants with severe OSA compared to the mild and moderate OSA groups. The mean PLMI among those with mild OSA exceeded that of control participants. Furthermore, the mean PLMI (4.8±12.7 vs. 2.6±9.8 events/hr, P<0.001), the mean PLMAI (0.9±3.7 vs. 0.5±3.3 events/hr, P<0.001), and the prevalence of PLMS (11% vs. 5.3%, P<0.001) were higher in patients with POSA than in those with non-positional OSA. This PLMS finding was particularly pronounced among those with severe OSA (odds ratio [OR], 1.554; 95% confidence interval [CI], 1.065-2.267) and was less evident in the mild (OR, 0.559; 95% CI, 0.303-1.030) and moderate (OR, 1.822; 95% CI, 0.995-3.339) groups. CONCLUSION Patients with POSA, especially those with severe OSA, exhibit a comparatively high prevalence of PLMS. In cases involving prominent PLMS, the diagnosis and treatment of POSA and OSA should be considered.
Collapse
Affiliation(s)
- Jae Hyun Soh
- Seoul National University College of Medicine, Seoul, Korea
| | - Yun Jin Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | | | - Chan-Soon Park
- Department of Otorhinolaryngology-Head and Neck Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Hyun-Woo Shin
- OUaR LaB Inc., Seoul, Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Keesey R, Hofstoetter U, Hu Z, Lombardi L, Hawthorn R, Bryson N, Rowald A, Minassian K, Seáñez I. FUNDAMENTAL LIMITATIONS OF KILOHERTZ-FREQUENCY CARRIERS IN AFFERENT FIBER RECRUITMENT WITH TRANSCUTANEOUS SPINAL CORD STIMULATION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.603982. [PMID: 39211255 PMCID: PMC11361147 DOI: 10.1101/2024.07.26.603982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The use of kilohertz-frequency (KHF) waveforms has rapidly gained momentum in transcutaneous spinal cord stimulation (tSCS) to restore motor function after paralysis. However, the mechanisms by which these fast-alternating currents depolarize efferent and afferent fibers remain unknown. Our study fills this research gap by providing a hypothesis-and evidence-based investigation using peripheral nerve stimulation, lumbar tSCS, and cervical tSCS in 25 unimpaired participants together with computational modeling. Peripheral nerve stimulation experiments and computational modeling showed that KHF waveforms negatively impact the processes required to elicit action potentials, thereby increasing response thresholds and biasing the recruitment towards efferent fibers. While these results translate to tSCS, we also demonstrate that lumbar tSCS results in the preferential recruitment of afferent fibers, while cervical tSCS favors recruitment of efferent fibers. Given the assumed importance of proprioceptive afferents in motor recovery, our work suggests that the use of KHF waveforms should be reconsidered to maximize neurorehabilitation outcomes, particularly for cervical tSCS. We posit that careful analysis of the mechanisms that mediate responses elicited by novel approaches in tSCS is crucial to understanding their potential to restore motor function after paralysis.
Collapse
|
13
|
Gravholt A, Pfenninger C, Grospretre S, Martin A, Lapole T. Do soleus responses to transcutaneous spinal cord stimulation show similar changes to H-reflex in response to Achilles tendon vibration? Eur J Appl Physiol 2024; 124:1821-1833. [PMID: 38252303 DOI: 10.1007/s00421-023-05406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
INTRODUCTION/PURPOSE Recently, the use of transcutaneous spinal cord stimulation (TSCS) has been proposed as a viable alternative to the H-reflex. The aim of the current study was to investigate to what extent the two modes of spinal cord excitability investigation would be similarly sensitive to the well-known vibration-induced depression. METHODS Fourteen healthy participants (8 men and 6 women; age: 26.7 ± 4.8 years) were engaged in the study. The right soleus H-reflex and TSCS responses were recorded at baseline (PRE), during right Achilles tendon vibration (VIB) and following 20 min of vibration exposure (POST-VIB). Care was taken to match H-reflex and TSCS responses amplitude at PRE and to maintain effective stimulus intensities constant throughout time points. RESULTS The statistical analysis showed a significant effect of time for the H-reflex, with VIB (13 ± 5% of maximal M-wave (Mmax) and POST-VIB (36 ± 4% of Mmax) values being lower than PRE-values (48 ± 6% of Mmax). Similarly, TSCS responses changed over time, VIB (9 ± 5% of Mmax) and POST-VIB (27 ± 5% of Mmax) values being lower than PRE-values (46 ± 6% of Mmax). Pearson correlation analyses revealed positive correlation between H-reflex and TSCS responses PRE-to-VIB changes, but not for PRE- to POST-VIB changes. CONCLUSION While the sensitivity of TSCS seems to be similar to the gold standard H-reflex to highlight the vibratory paradox, both responses showed different sensitivity to the effects of prolonged vibration, suggesting slightly different pathways may actually contribute to evoked responses of both stimulation modalities.
Collapse
Affiliation(s)
- Anders Gravholt
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, 42023, Saint-Etienne, France
| | - Clara Pfenninger
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, 42023, Saint-Etienne, France
| | - Sidney Grospretre
- C3S Laboratory (Culture, Sport, , Health and Society; EA 4660), Department Sport & Performance, University of Franche-Comté, Besançon, France
| | - Alain Martin
- Laboratoire INSERM U1093, Université de Bourgogne, Faculté des Sciences du Sport (UFR Staps), BP 27877, 21078, Dijon, France
| | - Thomas Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, 42023, Saint-Etienne, France.
| |
Collapse
|
14
|
Gordineer EA, Stokic DS, Krenn MJ. Distinguishing reflex from non-reflex responses elicited by transcutaneous spinal stimulation targeting the lumbosacral cord in healthy individuals. Exp Brain Res 2024:10.1007/s00221-024-06790-2. [PMID: 38416179 DOI: 10.1007/s00221-024-06790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
Transcutaneous spinal stimulation (TSS) studies rely on the depolarization of afferent fibers to provide input to the spinal cord; however, this has not been routinely ascertained. Thus, we aimed to characterize the types of responses evoked by TSS and establish paired-pulse ratio cutoffs that distinguish posterior root reflexes, evoked by stimulation of afferent nerve fibers, from motor responses, evoked by stimulation of efferent nerve fibers. Twelve neurologically intact participants (six women) underwent unipolar TSS (cathode over T11-12 spinal processes, anode paraumbilically) while resting supine. In six participants, unipolar TSS was repeated 2-3 months later and also compared to a bipolar TSS configuration (cathode 2.5 cm below T11-12, anode 5 cm above cathode). EMG signals were recorded from 16 leg muscles. A paired-pulse paradigm was applied at interstimulus intervals (ISIs) of 25, 50, 100, 200, and 400 ms. Responses were categorized by three assessors into reflexes, motor responses, or their combination (mixed responses) based on the visual presence/absence of paired-pulse suppression across ISIs. The paired-pulse ratio that best discriminated between response types was derived for each ISI. These cutoffs were validated by repeating unipolar TSS 2-3 months later and with bipolar TSS. Unipolar TSS evoked only reflexes (90%) and mixed responses (10%), which were mainly recorded in the quadriceps muscles (25-42%). Paired-pulse ratios of 0.51 (25-ms ISI) and 0.47 (50-ms ISI) best distinguished reflexes from mixed responses (100% sensitivity, > 99.2% specificity). These cutoffs performed well in the repeated unipolar TSS session (100% sensitivity, > 89% specificity). Bipolar TSS exclusively elicited reflexes which were all correctly classified. These results can be utilized in future studies to ensure that the input to the spinal cord originates from the depolarization of large afferents. This knowledge can be applied to improve the design of future neurophysiological studies and increase the fidelity of neuromodulation interventions.
Collapse
Affiliation(s)
- Elizabeth A Gordineer
- School of Graduate Studies in the Health Sciences, Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Matthias J Krenn
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA.
- Department of Neurosurgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
15
|
Bryson N, Lombardi L, Hawthorn R, Fei J, Keesey R, Peiffer J, Seáñez I. Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration. J Neural Eng 2023; 20:10.1088/1741-2552/ace552. [PMID: 37419109 PMCID: PMC10481387 DOI: 10.1088/1741-2552/ace552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Objective.Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation.Approach.In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals. We hypothesized that due to the segmental innervation of lower limb muscles, we could identify muscle-specific optimal stimulation locations that would enable improved recruitment selectivity over conventional tSCS. We elicited leg muscle responses by delivering biphasic pulses of electrical stimulation to the lumbosacral enlargement using conventional and multielectrode tSCS.Results.Analysis of recruitment curve responses confirmed that multielectrode configurations could improve the rostrocaudal and lateral selectivity of tSCS. To investigate whether motor responses elicited by spatially selective tSCS were mediated by posterior root-muscle reflexes, each stimulation event was a paired pulse with a conditioning-test interval of 33.3 ms. Muscle responses to the second stimulation pulse were significantly suppressed, a characteristic of post-activation depression suggesting that spatially selective tSCS recruits proprioceptive fibers that reflexively activate muscle-specific motor neurons in the spinal cord. Moreover, the combination of leg muscle recruitment probability and segmental innervation maps revealed a stereotypical spinal activation map in congruence with each electrode's position.Significance. Improvements in muscle recruitment selectivity could be essential for the effective translation into stimulation protocols that selectively enhance single-joint movements in neurorehabilitation.
Collapse
Affiliation(s)
- Noah Bryson
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Lorenzo Lombardi
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Rachel Hawthorn
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Jie Fei
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Rodolfo Keesey
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - J.D. Peiffer
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
- Biomedical Engineering, Northwestern University
| | - Ismael Seáñez
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
- Neurosurgery, Washington University School of Medicine in St. Louis
| |
Collapse
|
16
|
Calvert JS, Darie R, Parker SR, Shaaya E, Syed S, McLaughlin BL, Fridley JS, Borton DA. Spatiotemporal Distribution of Electrically Evoked Spinal Compound Action Potentials During Spinal Cord Stimulation. Neuromodulation 2023; 26:961-974. [PMID: 35551869 PMCID: PMC9643656 DOI: 10.1016/j.neurom.2022.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Recent studies using epidural spinal cord stimulation (SCS) have demonstrated restoration of motor function in individuals previously diagnosed with chronic spinal cord injury (SCI). In parallel, the spinal evoked compound action potentials (ECAPs) induced by SCS have been used to gain insight into the mechanisms of SCS-based chronic pain therapy and to titrate closed-loop delivery of stimulation. However, the previous characterization of ECAPs recorded during SCS was performed with one-dimensional, cylindrical electrode leads. Herein, we describe the unique spatiotemporal distribution of ECAPs induced by SCS across the medial-lateral and rostral-caudal axes of the spinal cord, and their relationship to polysynaptic lower-extremity motor activation. MATERIALS AND METHODS In each of four sheep, two 24-contact epidural SCS arrays were placed on the lumbosacral spinal cord, spanning the L3 to L6 vertebrae. Spinal ECAPs were recorded during SCS from nonstimulating contacts of the epidural arrays, which were synchronized to bilateral electromyography (EMG) recordings from six back and lower-extremity muscles. RESULTS We observed a triphasic P1, N1, P2 peak morphology and propagation in the ECAPs during midline and lateral stimulation. Distinct regions of lateral stimulation resulted in simultaneously increased ECAP and EMG responses compared with stimulation at adjacent lateral contacts. Although EMG responses decreased during repetitive stimulation bursts, spinal ECAP amplitude did not significantly change. Both spinal ECAP responses and EMG responses demonstrated preferential ipsilateral recruitment during lateral stimulation compared with midline stimulation. Furthermore, EMG responses were correlated with stimulation that resulted in increased ECAP amplitude on the ipsilateral side of the electrode array. CONCLUSIONS These results suggest that ECAPs can be used to investigate the effects of SCS on spinal sensorimotor networks and to inform stimulation strategies that optimize the clinical benefit of SCS in the context of managing chronic pain and the restoration of sensorimotor function after SCI.
Collapse
Affiliation(s)
- Jonathan S Calvert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Radu Darie
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Samuel R Parker
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Elias Shaaya
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Sohail Syed
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | | | - Jared S Fridley
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - David A Borton
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA; Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
17
|
Finn HT, Bye EA, Elphick TG, Boswell-Ruys CL, Gandevia SC, Butler JE, Héroux ME. Transcutaneous spinal stimulation in people with and without spinal cord injury: Effect of electrode placement and trains of stimulation on threshold intensity. Physiol Rep 2023; 11:e15692. [PMID: 37269156 PMCID: PMC10238786 DOI: 10.14814/phy2.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023] Open
Abstract
Transcutaneous spinal cord stimulation (TSS) is purported to improve motor function in people after spinal cord injury (SCI). However, several methodology aspects are yet to be explored. We investigated whether stimulation configuration affected the intensity needed to elicit spinally evoked motor responses (sEMR) in four lower limb muscles bilaterally. Also, since stimulation intensity for therapeutic TSS (i.e., trains of stimulation, typically delivered at 15-50 Hz) is sometimes based on the single-pulse threshold intensity, we compared these two stimulation types. In non-SCI participants (n = 9) and participants with a SCI (n = 9), three different electrode configurations (cathode-anode); L1-midline (below the umbilicus), T11-midline and L1-ASIS (anterior superior iliac spine; non-SCI only) were compared for the sEMR threshold intensity using single pulses or trains of stimulation which were recorded in the vastus medialis, medial hamstring, tibialis anterior, medial gastrocnemius muscles. In non-SCI participants, the L1-midline configuration showed lower sEMR thresholds compared to T11-midline (p = 0.002) and L1-ASIS (p < 0.001). There was no difference between T11-midline and L1-midline for participants with SCI (p = 0.245). Spinally evoked motor response thresholds were ~13% lower during trains of stimulation compared to single pulses in non-SCI participants (p < 0.001), but not in participants with SCI (p = 0.101). With trains of stimulation, threshold intensities were slightly lower and the incidence of sEMR was considerably lower. Overall, stimulation threshold intensities were generally lower with the L1-midline electrode configuration and is therefore preferred. While single-pulse threshold intensities may overestimate threshold intensities for therapeutic TSS, tolerance to trains of stimulation will be the limiting factor in most cases.
Collapse
Affiliation(s)
- Harrison T Finn
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Elizabeth A Bye
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Thomas G Elphick
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Claire L Boswell-Ruys
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, New South Wales, Kensington, Australia
| | - Jane E Butler
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Martin E Héroux
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| |
Collapse
|
18
|
Bryson N, Lombardi L, Hawthorn R, Fei J, Keesey R, Peiffer JD, Seáñez I. Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534835. [PMID: 37034788 PMCID: PMC10081184 DOI: 10.1101/2023.03.30.534835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Objective Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation. Approach In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals. We hypothesized that due to the segmental innervation of lower limb muscles, we could identify muscle-specific optimal stimulation locations that would enable improved recruitment selectivity over conventional tSCS. We elicited leg muscle responses by delivering biphasic pulses of electrical stimulation to the lumbosacral enlargement using conventional and multielectrode tSCS. Results Analysis of recruitment curve responses confirmed that multielectrode configurations could improve the rostrocaudal and lateral selectivity of tSCS. To investigate whether motor responses elicited by spatially selective tSCS were mediated by posterior root-muscle reflexes, each stimulation event was a paired pulse with a conditioning-test interval of 33.3 ms. Muscle responses to the second stimulation pulse were significantly suppressed, a characteristic of post-activation depression suggesting that spatially selective tSCS recruits proprioceptive fibers that reflexively activate muscle-specific motor neurons in the spinal cord. Moreover, the combination of leg muscle recruitment probability and segmental innervation maps revealed a stereotypical spinal activation map in congruence with each electrode's position. Significance Improvements in muscle recruitment selectivity could be essential for the effective translation into stimulation protocols that selectively enhance single-joint movements in neurorehabilitation.
Collapse
|
19
|
Dalrymple AN, Hooper CA, Kuriakose MG, Capogrosso M, Weber DJ. Using a high-frequency carrier does not improve comfort of transcutaneous spinal cord stimulation. J Neural Eng 2023; 20. [PMID: 36595241 DOI: 10.1088/1741-2552/acabe8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective.Spinal cord neuromodulation has gained much attention for demonstrating improved motor recovery in people with spinal cord injury, motivating the development of clinically applicable technologies. Among them, transcutaneous spinal cord stimulation (tSCS) is attractive because of its non-invasive profile. Many tSCS studies employ a high-frequency (10 kHz) carrier, which has been reported to reduce stimulation discomfort. However, these claims have come under scrutiny in recent years. The purpose of this study was to determine whether using a high-frequency carrier for tSCS is more comfortable at therapeutic amplitudes, which evoke posterior root-muscle (PRM) reflexes.Approach.In 16 neurologically intact participants, tSCS was delivered using a 1 ms long monophasic pulse with and without a high-frequency carrier. Stimulation amplitude and pulse duration were varied and PRM reflexes were recorded from the soleus, gastrocnemius, and tibialis anterior muscles. Participants rated their discomfort during stimulation from 0 to 10 at PRM reflex threshold.Main Results.At PRM reflex threshold, the addition of a high-frequency carrier (0.87 ± 0.2) was equally comfortable as conventional stimulation (1.03 ± 0.18) but required approximately double the charge to evoke the PRM reflex (conventional: 32.4 ± 9.2µC; high-frequency carrier: 62.5 ± 11.1µC). Strength-duration curves for tSCS with a high-frequency carrier had a rheobase that was 4.8× greater and a chronaxie that was 5.7× narrower than the conventional monophasic pulse, indicating that the addition of a high-frequency carrier makes stimulation less efficient in recruiting neural activity in spinal roots.Significance.Using a high-frequency carrier for tSCS is equally as comfortable and less efficient as conventional stimulation at amplitudes required to stimulate spinal dorsal roots.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Charli Ann Hooper
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Minna G Kuriakose
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Marco Capogrosso
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America.,Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States of America
| |
Collapse
|
20
|
McIntosh JR, Joiner EF, Goldberg JL, Murray LM, Yasin B, Mendiratta A, Karceski SC, Thuet E, Modik O, Shelkov E, Lombardi JM, Sardar ZM, Lehman RA, Mandigo C, Riew KD, Harel NY, Virk MS, Carmel JB. Intraoperative electrical stimulation of the human dorsal spinal cord reveals a map of arm and hand muscle responses. J Neurophysiol 2023; 129:66-82. [PMID: 36417309 PMCID: PMC9799146 DOI: 10.1152/jn.00235.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Although epidural stimulation of the lumbar spinal cord has emerged as a powerful modality for recovery of movement, how it should be targeted to the cervical spinal cord to activate arm and hand muscles is not well understood, particularly in humans. We sought to map muscle responses to posterior epidural cervical spinal cord stimulation in humans. We hypothesized that lateral stimulation over the dorsal root entry zone would be most effective and responses would be strongest in the muscles innervated by the stimulated segment. Twenty-six people undergoing clinically indicated cervical spine surgery consented to mapping of motor responses. During surgery, stimulation was performed in midline and lateral positions at multiple exposed segments; six arm and three leg muscles were recorded on each side of the body. Across all segments and muscles tested, lateral stimulation produced stronger muscle responses than midline despite similar latency and shape of responses. Muscles innervated at a cervical segment had the largest responses from stimulation at that segment, but responses were also observed in muscles innervated at other cervical segments and in leg muscles. The cervical responses were clustered in rostral (C4-C6) and caudal (C7-T1) cervical segments. Strong responses to lateral stimulation are likely due to the proximity of stimulation to afferent axons. Small changes in response sizes to stimulation of adjacent cervical segments argue for local circuit integration, and distant muscle responses suggest activation of long propriospinal connections. This map can help guide cervical stimulation to improve arm and hand function.NEW & NOTEWORTHY A map of muscle responses to cervical epidural stimulation during clinically indicated surgery revealed strongest activation when stimulating laterally compared to midline and revealed differences to be weaker than expected across different segments. In contrast, waveform shapes and latencies were most similar when stimulating midline and laterally, indicating activation of overlapping circuitry. Thus, a map of the cervical spinal cord reveals organization and may help guide stimulation to activate arm and hand muscles strongly and selectively.
Collapse
Affiliation(s)
- James R McIntosh
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Evan F Joiner
- Department of Neurological Surgery, Columbia University, New York, New York
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Lynda M Murray
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
- James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Bushra Yasin
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Anil Mendiratta
- Department of Neurology, Columbia University, New York, New York
| | - Steven C Karceski
- Department of Neurology, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Earl Thuet
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Oleg Modik
- Department of Neurology, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Evgeny Shelkov
- Department of Neurology, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Joseph M Lombardi
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Zeeshan M Sardar
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Ronald A Lehman
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Christopher Mandigo
- Department of Neurological Surgery, Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - K Daniel Riew
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Noam Y Harel
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
- James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Michael S Virk
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Jason B Carmel
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurology, Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| |
Collapse
|
21
|
Skiadopoulos A, Pulverenti TS, Knikou M. Physiological effects of cathodal electrode configuration for transspinal stimulation in humans. J Neurophysiol 2022; 128:1663-1682. [PMID: 36416443 PMCID: PMC9762966 DOI: 10.1152/jn.00342.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Transspinal stimulation modulates neuronal excitability and promotes recovery in upper motoneuron lesions. The recruitment input-output curves of transspinal evoked potentials (TEPs) recorded from knee and ankle muscles, and their susceptibility to spinal inhibition, were recorded when the position, size, and number of the cathode electrode were arranged in four settings or protocols (Ps). The four Ps were the following: 1) one rectangular electrode placed at midline (KNIKOU-LAB4Recovery or K-LAB4Recovery; P-KLAB), 2) one square electrode placed at midline (P-2), 3) two square electrodes 1 cm apart placed at midline (P-3), and 4) one square electrode placed on each paravertebral side (P-4). P-KLAB and P-3 required less current to reach TEP threshold or maximal amplitudes. A rightward shift in TEP recruitment curves was evident for P-4, whereas the slope was increased for P-2 and P-4 compared with P-KLAB and P-3. TEP depression upon single and paired transspinal stimuli was pronounced in ankle TEPs but was less prominent in knee TEPs. TEP depression induced by single transspinal stimuli at 1.0 Hz was similar for most TEPs across protocols, but TEP depression induced by paired transspinal stimuli was different between protocols and was replaced by facilitation at 100-ms interstimulus interval for P-4. Our results suggest that P-KLAB and P-3 are preferred based on excitability threshold of motoneurons. P-KLAB produced more TEP depression, thereby maximizing the engagement of spinal neuronal pathways. We recommend P-KLAB to study neurophysiological mechanisms underlying transspinal stimulation or when used as a neuromodulation method for recovery in neurological disorders.NEW & NOTEWORTHY Transspinal stimulation with a rectangular cathode electrode (P-KLAB) requires less current to produce transspinal evoked potentials and maximizes spinal inhibition. We recommend P-KLAB for neurophysiological studies or when used as a neuromodulation method to enhance motor output and normalize muscle tone in neurological disorders.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- Klab4Recovery Research Program, The City University of New York, New York, New York
| | - Timothy S Pulverenti
- Klab4Recovery Research Program, The City University of New York, New York, New York
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, New York
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, Staten Island, New York
| |
Collapse
|
22
|
Flett S, Garcia J, Cowley KC. Spinal electrical stimulation to improve sympathetic autonomic functions needed for movement and exercise after spinal cord injury: a scoping clinical review. J Neurophysiol 2022; 128:649-670. [PMID: 35894427 PMCID: PMC9668071 DOI: 10.1152/jn.00205.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) results in sensory, motor, and autonomic dysfunction. Obesity, cardiovascular disease, and metabolic disease are highly prevalent after SCI. Although inadequate voluntary activation of skeletal muscle contributes, it is absent or inadequate activation of thoracic spinal sympathetic neural circuitry and suboptimal activation of homeostatic (cardiovascular and temperature) and metabolic support systems that truly limits exercise capacity, particularly for those with cervical SCI. Thus, when electrical spinal cord stimulation (SCS) studies aimed at improving motor functions began mentioning effects on exercise-related autonomic functions, a potential new area of clinical application appeared. To survey this new area of potential benefit, we performed a systematic scoping review of clinical SCS studies involving these spinally mediated autonomic functions. Nineteen studies were included, 8 used transcutaneous and 11 used epidural SCS. Improvements in blood pressure regulation at rest or in response to orthostatic challenge were investigated most systematically, whereas reports of improved temperature regulation, whole body metabolism, and peak exercise performance were mainly anecdotal. Effective stimulation locations and parameters varied between studies, suggesting multiple stimulation parameters and rostrocaudal spinal locations may influence the same sympathetic function. Brainstem and spinal neural mechanisms providing excitatory drive to sympathetic neurons that activate homeostatic and metabolic tissues that provide support for movement and exercise and their integration with locomotor neural circuitry are discussed. A unifying conceptual framework for the integrated neural control of locomotor and sympathetic function is presented which may inform future research needed to take full advantage of SCS for improving these spinally mediated autonomic functions.
Collapse
Affiliation(s)
- Sarah Flett
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Juanita Garcia
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kristine C Cowley
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
23
|
Fleming N, Taylor C, Etzelmueller M, Gill C, O'Keeffe C, Mahony N, Reilly RB. Selectivity of upper limb posterior root muscle reflexes via cervicothoracic spinal cord stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3077-3080. [PMID: 36085735 DOI: 10.1109/embc48229.2022.9871841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent studies have reported that transcutaneous spinal stimulation (tSCS) may facilitate improved upper limb motor function in those with incomplete tetraplesia. However, little is known about how tSCS engages upper limb motor pools. This study aimed to explore the extent to which discrete upper limb motor pools can be selectively engaged via altering stimulus location and intensity. 14 participants with intact nervous systems completed two test visits, during which posterior root-muscle reflexes (PRMR) were evoked via a 3x3 cathode matrix applied over the cervicothoracic spine. An incremental recruitment curve at C7 vertebral level was initially performed to attain minimal threshold intensity (MTI) in each muscle. Paired pulses (1ms square monophasic with inter-pulse interval of 50ms) were subsequently delivered at a frequency of 0.25Hz at two intensities (MTI and [Formula: see text]) across all nine locations. in a random order. Evoked response to the 1st (PRMR1) and 2nd (PRMR2) stimuli were recorded from four upper limb muscles. A significant effect of spinal level was observed in all muscles for PRMR1 with greater responses recorded more caudally. Unexpectedly, contralateral cathode placement significantly increased PRMR1 in Biceps Brachii (P=0.012), Flexor Carpi Radialis (P=0.035) and Abductor Pollicis Brevis (P=0.001). Post-activation depression (PAD) was also significantly increased with contralateral cathode placement in Biceps Brachii (P=0.001), Triceps Brachii (P=0.012) and Flexor Carpi Radialis (P=0.001). These results suggest that some level of unilateral motor pool selectivity may be attained via altering stimulus intensity and location during cervicothoracic tSCS.
Collapse
|
24
|
Steele AG, Manson GA, Horner PJ, Sayenko DG, Contreras-Vidal JL. Effects of transcutaneous spinal stimulation on spatiotemporal cortical activation patterns: A proof-of-concept EEG study. J Neural Eng 2022; 19. [PMID: 35732141 DOI: 10.1088/1741-2552/ac7b4b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Transcutaneous spinal cord stimulation (TSS) has been shown to be a promising non-invasive alternative to epidural spinal cord stimulation (ESS) for improving outcomes of people with spinal cord injury (SCI). However, studies on the effects of TSS on cortical activation are limited. Our objectives were to evaluate the spatiotemporal effects of TSS on brain activity, and determine changes in functional connectivity under several different stimulation conditions. As a control, we also assessed the effects of functional electrical stimulation (FES) on cortical activity. APPROACH Non-invasive scalp electroencephalography (EEG) was recorded during TSS or FES while five neurologically intact participants performed one of three lower-limb tasks while in the supine position: (1) A no contraction control task, (2) a rhythmic contraction task, or (3) a tonic contraction task. After EEG denoising and segmentation, independent components were clustered across subjects to characterize sensorimotor networks in the time and frequency domains. Independent components of the event related potentials (ERPs) were calculated for each cluster and condition. Next, a Generalized Partial Directed Coherence (gPDC) analysis was performed on each cluster to compare the functional connectivity between conditions and tasks. RESULTS Independent Component analysis of EEG during TSS resulted in three clusters identified at Brodmann areas (BA) 9, BA 6, and BA 4, which are areas associated with working memory, planning, and movement control. Lastly, we found significant (p < 0.05, adjusted for multiple comparisons) increases and decreases in functional connectivity of clusters during TSS, but not during FES when compared to the no stimulation conditions. SIGNIFICANCE The findings from this study provide evidence of how TSS recruits cortical networks during tonic and rhythmic lower limb movements. These results have implications for the development of spinal cord-based computer interfaces, and the design of neural stimulation devices for the treatment of pain and sensorimotor deficit.
Collapse
Affiliation(s)
- Alexander G Steele
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas, 77030-2707, UNITED STATES
| | - Gerome A Manson
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas, 77030-2707, UNITED STATES
| | - Philip J Horner
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas, 77030-2707, UNITED STATES
| | - Dimitry G Sayenko
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas, 77030-2707, UNITED STATES
| | - Jose L Contreras-Vidal
- Electrical and Computer Engineering, University of Houston, N308 Engineering Building I, Houston, Texas, 77204-4005, UNITED STATES
| |
Collapse
|
25
|
Adapting Human-Based Transcutaneous Spinal Cord Stimulation to Develop a Clinically Relevant Animal Model. J Clin Med 2022; 11:jcm11072023. [PMID: 35407636 PMCID: PMC8999945 DOI: 10.3390/jcm11072023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Transcutaneous spinal cord stimulation (tSCS) as a neuromodulatory strategy has received great attention as a method to promote functional recovery after spinal cord injury (SCI). However, due to the noninvasive nature of tSCS, investigations have primarily focused on human applications. This leaves a critical need for the development of a suitable animal model to further our understanding of this therapeutic intervention in terms of functional and neuroanatomical plasticity and to optimize stimulation protocols. The objective of this study is to establish a new animal model of thoracolumbar tSCS that (1) can accurately recapitulate studies in healthy humans and (2) can receive a repeated and stable tSCS treatment after SCI with minimal restraint, while the electrode remains consistently positioned. We show that our model displays bilateral evoked potentials in multisegmental leg muscles characteristically comparable to humans. Our data also suggest that tSCS mainly activates dorsal root structures like in humans, thereby accounting for the different electrode-to-body-size ratio between the two species. Finally, a repeated tSCS treatment protocol in the awake rat after a complete spinal cord transection is feasible, tolerable, and safe, even with minimal body restraint. Additionally, repeated tSCS was capable of modulating motor output after SCI, providing an avenue to further investigate stimulation-based neuroplasticity and optimize treatment.
Collapse
|
26
|
Rahman MA, Tharu NS, Gustin SM, Zheng YP, Alam M. Trans-Spinal Electrical Stimulation Therapy for Functional Rehabilitation after Spinal Cord Injury: Review. J Clin Med 2022; 11:1550. [PMID: 35329875 PMCID: PMC8954138 DOI: 10.3390/jcm11061550] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating injuries in the world. Complications after SCI, such as respiratory issues, bowel/bladder incontinency, pressure ulcers, autonomic dysreflexia, spasticity, pain, etc., lead to immense suffering, a remarkable reduction in life expectancy, and even premature death. Traditional rehabilitations for people with SCI are often insignificant or ineffective due to the severity and complexity of the injury. However, the recent development of noninvasive electrical neuromodulation treatments to the spinal cord have shed a ray of hope for these individuals to regain some of their lost functions, a reduction in secondary complications, and an improvement in their life quality. For this review, 250 articles were screened and about 150 were included to summarize the two most promising noninvasive spinal cord electrical stimulation methods of SCI rehabilitation treatment, namely, trans-spinal direct current stimulation (tsDCS) and trans-spinal pulsed current stimulation (tsPCS). Both treatments have demonstrated good success in not only improving the sensorimotor function, but also autonomic functions. Due to the noninvasive nature and lower costs of these treatments, in the coming years, we expect these treatments to be integrated into regular rehabilitation therapies worldwide.
Collapse
Affiliation(s)
- Md. Akhlasur Rahman
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
- Centre for the Rehabilitation of the Paralysed (CRP), Savar Union 1343, Bangladesh
| | - Niraj Singh Tharu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
| | - Sylvia M. Gustin
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia;
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
| | - Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia;
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW 2031, Australia
| |
Collapse
|
27
|
Influence of Spine Curvature on the Efficacy of Transcutaneous Lumbar Spinal Cord Stimulation. J Clin Med 2021; 10:jcm10235543. [PMID: 34884249 PMCID: PMC8658162 DOI: 10.3390/jcm10235543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Transcutaneous spinal cord stimulation is a non-invasive method for neuromodulation of sensorimotor function. Its main mechanism of action results from the activation of afferent fibers in the posterior roots-the same structures as targeted by epidural stimulation. Here, we investigated the influence of sagittal spine alignment on the capacity of the surface-electrode-based stimulation to activate these neural structures. We evaluated electromyographic responses evoked in the lower limbs of ten healthy individuals during extension, flexion, and neutral alignment of the thoracolumbar spine. To control for position-specific effects, stimulation in these spine alignment conditions was performed in four different body positions. In comparison to neutral and extended spine alignment, flexion of the spine resulted in a strong reduction of the response amplitudes. There was no such effect on tibial-nerve evoked H reflexes. Further, there was a reduction of post-activation depression of the responses to transcutaneous spinal cord stimulation evoked in spinal flexion. Thus, afferent fibers were reliably activated with neutral and extended spine alignment. Spinal flexion, however, reduced the capacity of the stimulation to activate afferent fibers and led to the co-activation of motor fibers in the anterior roots. This change of action was due to biophysical rather than neurophysiological influences. We recommend applying transcutaneous spinal cord stimulation in body positions that allow individuals to maintain a neutral or extended spine.
Collapse
|
28
|
Salchow-Hömmen C, Schauer T, Müller P, Kühn AA, Hofstoetter US, Wenger N. Algorithms for Automated Calibration of Transcutaneous Spinal Cord Stimulation to Facilitate Clinical Applications. J Clin Med 2021; 10:jcm10225464. [PMID: 34830746 PMCID: PMC8623351 DOI: 10.3390/jcm10225464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
Transcutaneous spinal cord stimulation (tSCS) is a promising intervention that can benefit spasticity control and augment voluntary movement in spinal cord injury (SCI) and multiple sclerosis. Current applications require expert knowledge and rely on the thorough visual analysis of electromyographic (EMG) responses from lower-limb muscles to optimize attainable treatment effects. Here, we devised an automated tSCS setup by combining an electrode array placed over low-thoracic to mid-lumbar vertebrae, synchronized EMG recordings, and a self-operating stimulation protocol to systematically test various stimulation sites and amplitudes. A built-in calibration procedure classifies the evoked responses as reflexes or direct motor responses and identifies stimulation thresholds as recommendations for tSCS therapy. We tested our setup in 15 individuals (five neurologically intact, five SCI, and five Parkinson’s disease) and validated the results against blinded ratings from two clinical experts. Congruent results were obtained in 13 cases for electrode positions and in eight for tSCS amplitudes, with deviations of a maximum of one position and 5 to 10 mA in amplitude in the remaining cases. Despite these minor deviations, the calibration found clinically suitable tSCS settings in 13 individuals. In the remaining two cases, the automatic setup and both experts agreed that no reflex responses could be detected. The presented technological developments may facilitate the dissemination of tSCS into non-academic environments and broaden its use for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Christina Salchow-Hömmen
- Department of Neurology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (C.S.-H.); (A.A.K.); (N.W.)
| | - Thomas Schauer
- Control Systems Group, Technische Universität Berlin, 10587 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24404
| | - Philipp Müller
- Control Systems Group, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Andrea A. Kühn
- Department of Neurology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (C.S.-H.); (A.A.K.); (N.W.)
| | - Ursula S. Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria;
| | - Nikolaus Wenger
- Department of Neurology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (C.S.-H.); (A.A.K.); (N.W.)
| |
Collapse
|
29
|
Taylor C, McHugh C, Mockler D, Minogue C, Reilly RB, Fleming N. Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: A methodological review. PLoS One 2021; 16:e0260166. [PMID: 34793572 PMCID: PMC8601579 DOI: 10.1371/journal.pone.0260166] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background Transcutaneous spinal cord stimulation (tSCS) is a non-invasive modality in which electrodes can stimulate spinal circuitries and facilitate a motor response. This review aimed to evaluate the methodology of studies using tSCS to generate motor activity in persons with spinal cord injury (SCI) and to appraise the quality of included trials. Methods A systematic search for studies published until May 2021 was made of the following databases: EMBASE, Medline (Ovid) and Web of Science. Two reviewers independently screened the studies, extracted the data, and evaluated the quality of included trials. The electrical characteristics of stimulation were summarised to allow for comparison across studies. In addition, the surface electromyography (EMG) recording methods were evaluated. Results A total of 3753 articles were initially screened, of which 25 met the criteria for inclusion. Studies were divided into those using tSCS for neurophysiological investigations of reflex responses (n = 9) and therapeutic investigations of motor recovery (n = 16). The overall quality of evidence was deemed to be poor-to-fair (10.5 ± 4.9) based on the Downs and Black Quality Checklist criteria. The electrical characteristics were collated to establish the dosage range across stimulation trials. The methods employed by included studies relating to stimulation parameters and outcome measurement varied extensively, although some trends are beginning to appear in relation to electrode configuration and EMG outcomes. Conclusion This review outlines the parameters currently employed for tSCS of the cervicothoracic and thoracolumbar regions to produce motor responses. However, to establish standardised procedures for neurophysiological assessments and therapeutic investigations of tSCS, further high-quality investigations are required, ideally utilizing consistent electrophysiological recording methods, and reporting common characteristics of the electrical stimulation administered.
Collapse
Affiliation(s)
- Clare Taylor
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
- * E-mail:
| | - Conor McHugh
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - David Mockler
- John Stearne Medical Library, Trinity Centre for Health Sciences, School of Medicine, St. James’s Hospital, Dublin, Ireland
| | - Conor Minogue
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Richard B. Reilly
- Trinity Centre for Biomedical Engineering, Trinity College, The University of Dublin, Dublin, Ireland
- School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Neil Fleming
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Kaneko N, Sasaki A, Masugi Y, Nakazawa K. The Effects of Paired Associative Stimulation with Transcutaneous Spinal Cord Stimulation on Corticospinal Excitability in Multiple Lower-limb Muscles. Neuroscience 2021; 476:45-59. [PMID: 34500017 DOI: 10.1016/j.neuroscience.2021.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Paired associative stimulation (PAS) is a non-invasive method to modulate the excitability of the primary motor cortex (M1). PAS involves the combination of peripheral nerve stimulation and transcranial magnetic stimulation (TMS) over the primary motor cortex. However, for lower-limb muscles, PAS has only been applied to the few muscles innervated by peripheral nerves that can easily be stimulated. This study used transcutaneous spinal cord stimulation (tSCS) to the posterior root, stimulating the sensory nerves of multiple lower-limb muscles, and aimed to investigate the effect of PAS consisting of tSCS and TMS on corticospinal excitability. Twelve non-disabled men received 120 paired stimuli on two separate days in (1) an individual-ISI condition, using inter-stimulus intervals (ISIs) of paired stimuli individually calculated to send two signals to M1 with individually-adjusted ISI, and (2) a constant-ISI condition, using a constant ISI of 100 ms. Before and after PAS, corticospinal excitability was assessed in the lower-limb muscles. Facilitation of corticospinal excitability in the lower-leg and hamstring muscles was observed up to 30 min after PAS only in the individual-ISI condition (p < 0.05), although there was no significant difference between the individual-ISI and constant-ISI conditions. Additionally, our results revealed a difference in PAS-induced facilitation among lower-limb muscles, suggesting a spatial gradient of PAS-induced facilitation of corticospinal excitability, such that knee flexor muscles have a higher potential for plastic change than knee extensor muscles. These findings will foster a better understanding of the neural mechanisms underlying PAS-induced neuroplasticity, leading to better neurorehabilitation and motor learning strategies.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; School of Health Sciences, Tokyo International University, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
31
|
Calvert JS, Gill ML, Linde MB, Veith DD, Thoreson AR, Lopez C, Lee KH, Gerasimenko YP, Edgerton VR, Lavrov IA, Zhao KD, Grahn PJ, Sayenko DG. Voluntary Modulation of Evoked Responses Generated by Epidural and Transcutaneous Spinal Stimulation in Humans with Spinal Cord Injury. J Clin Med 2021; 10:jcm10214898. [PMID: 34768418 PMCID: PMC8584516 DOI: 10.3390/jcm10214898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Transcutaneous (TSS) and epidural spinal stimulation (ESS) are electrophysiological techniques that have been used to investigate the interactions between exogenous electrical stimuli and spinal sensorimotor networks that integrate descending motor signals with afferent inputs from the periphery during motor tasks such as standing and stepping. Recently, pilot-phase clinical trials using ESS and TSS have demonstrated restoration of motor functions that were previously lost due to spinal cord injury (SCI). However, the spinal network interactions that occur in response to TSS or ESS pulses with spared descending connections across the site of SCI have yet to be characterized. Therefore, we examined the effects of delivering TSS or ESS pulses to the lumbosacral spinal cord in nine individuals with chronic SCI. During low-frequency stimulation, participants were instructed to relax or attempt maximum voluntary contraction to perform full leg flexion while supine. We observed similar lower-extremity neuromusculature activation during TSS and ESS when performed in the same participants while instructed to relax. Interestingly, when participants were instructed to attempt lower-extremity muscle contractions, both TSS- and ESS-evoked motor responses were significantly inhibited across all muscles. Participants with clinically complete SCI tested with ESS and participants with clinically incomplete SCI tested with TSS demonstrated greater ability to modulate evoked responses than participants with motor complete SCI tested with TSS, although this was not statistically significant due to a low number of subjects in each subgroup. These results suggest that descending commands combined with spinal stimulation may increase activity of inhibitory interneuronal circuitry within spinal sensorimotor networks in individuals with SCI, which may be relevant in the context of regaining functional motor outcomes.
Collapse
Affiliation(s)
- Jonathan S. Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA;
| | - Megan L. Gill
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Margaux B. Linde
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Daniel D. Veith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Andrew R. Thoreson
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Cesar Lopez
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Kendall H. Lee
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
| | - Yury P. Gerasimenko
- Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
| | - Victor R. Edgerton
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari Adscrit a la Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Igor A. Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kristin D. Zhao
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
| | - Peter J. Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Dimitry G. Sayenko
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-363-7949
| |
Collapse
|
32
|
Megía-García Á, Serrano-Muñoz D, Comino-Suárez N, Del-Ama AJ, Moreno JC, Gil-Agudo A, Taylor J, Gómez-Soriano J. Effect of posture and body weight loading on spinal posterior root reflex responses. Eur J Neurosci 2021; 54:6575-6586. [PMID: 34494329 DOI: 10.1111/ejn.15448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
The posterior root muscle response (PRM) is a monosynaptic reflex that is evoked by single pulse transcutaneous spinal cord stimulation (tSCS). The main aim of this work was to analyse how body weight loading influences PRM reflex threshold measured from several lower limb muscles in healthy participants. PRM reflex responses were evoked with 1-ms rectangular monophasic pulses applied at an interval of 6 s via a self-adhesive electrode (9 × 5 cm) at the T11-T12 vertebral level. Surface electromyographic activity of lower limb muscles was recorded during four different conditions, one in decubitus supine (DS) and the other three involving standing at 100%, 50%, and 0% body weight loading (BW). PRM threshold intensity, peak-to-peak amplitude, and latency for each muscle were analysed in different conditions study. PRM reflex threshold increased with body weight unloading compared with DS, and the largest change was observed between DS and 0% BW for the proximal muscles and between DS and 50% BW for distal muscles. Peak-to-peak amplitude analysis showed only a significant mean decrease of 34.6% (SD 10.4, p = 0.028) in TA and 53.6% (SD 15.1, p = 0.019) in GM muscles between DS and 50% BW. No significant differences were observed for PRM latency. This study has shown that sensorimotor networks can be activated with tSCS in various conditions of body weight unloading. Higher stimulus intensities are necessary to evoke reflex response during standing at 50% body weight loading. These results have practical implications for gait rehabilitation training programmes that include body weight support.
Collapse
Affiliation(s)
- Álvaro Megía-García
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| | - Diego Serrano-Muñoz
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| | - Natalia Comino-Suárez
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Antonio J Del-Ama
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Rey Juan Carlos University, Madrid, Spain
| | - Juan C Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Angel Gil-Agudo
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain
| | - Julian Taylor
- Sensorimotor Function Group, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Harris Manchester College, University of Oxford, Oxford, UK
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| |
Collapse
|
33
|
Intra-limb modulations of posterior root-muscle reflexes evoked from the lower-limb muscles during isometric voluntary contractions. Exp Brain Res 2021; 239:3035-3043. [PMID: 34363090 PMCID: PMC8536641 DOI: 10.1007/s00221-021-06187-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/01/2021] [Indexed: 12/02/2022]
Abstract
Although voluntary muscle contraction modulates spinal reflex excitability of contracted muscles and other muscles located at other segments within a limb (i.e., intra-limb modulation), to what extent corticospinal pathways are involved in intra-limb modulation of spinal reflex circuits remains unknown. The purpose of the present study was to identify differences in the involvement of corticospinal pathways in intra-limb modulation of spinal reflex circuits among lower-limb muscles during voluntary contractions. Ten young males performed isometric plantar-flexion, dorsi-flexion, knee extension, and knee flexion at 10% of each maximal torque. Electromyographic activity was recorded from soleus, tibialis anterior, vastus lateralis, and biceps femoris muscles. Motor evoked potentials and posterior root-muscle reflexes during rest and isometric contractions were elicited from the lower-limb muscles using transcranial magnetic stimulation and transcutaneous spinal cord stimulation, respectively. Motor evoked potential and posterior root-muscle reflex amplitudes of soleus during knee extension were significantly increased compared to rest. The motor evoked potential amplitude of biceps femoris during dorsi-flexion was significantly increased, whereas the posterior root-muscle reflex amplitude of biceps femoris during dorsi-flexion was significantly decreased compared to rest. These results suggest that corticospinal and spinal reflex excitabilities of soleus are facilitated during knee extension, whereas intra-limb modulation of biceps femoris during dorsi-flexion appeared to be inverse between corticospinal and spinal reflex circuits.
Collapse
|
34
|
Sandler EB, Condon K, Field-Fote EC. Efficacy of Transcutaneous Spinal Stimulation versus Whole Body Vibration for Spasticity Reduction in Persons with Spinal Cord Injury. J Clin Med 2021; 10:jcm10153267. [PMID: 34362051 PMCID: PMC8348743 DOI: 10.3390/jcm10153267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023] Open
Abstract
Transcutaneous spinal stimulation (TSS) and whole-body vibration (WBV) each have a robust ability to activate spinal afferents. Both forms of stimulation have been shown to influence spasticity in persons with spinal cord injury (SCI), and may be viable non-pharmacological approaches to spasticity management. In thirty-two individuals with motor-incomplete SCI, we used a randomized crossover design to compare single-session effects of TSS versus WBV on quadriceps spasticity, as measured by the pendulum test. TSS (50 Hz, 400 μs, 15 min) was delivered in supine through a cathode placed over the thoracic spine (T11-T12) and an anode over the abdomen. WBV (50 Hz; eight 45-s bouts) was delivered with the participants standing on a vibration platform. Pendulum test first swing excursion (FSE) was measured at baseline, immediately post-intervention, and 15 and 45 min post-intervention. In the whole-group analysis, there were no between- or within-group differences of TSS and WBV in the change from baseline FSE to any post-intervention timepoints. Significant correlations between baseline FSE and change in FSE were associated with TSS at all timepoints. In the subgroup analysis, participants with more pronounced spasticity showed significant decreases in spasticity immediately post-TSS and 45 min post-TSS. TSS and WBV are feasible physical therapeutic interventions for the reduction of spasticity, with persistent effects.
Collapse
Affiliation(s)
- Evan B. Sandler
- Shepherd Center, Crawford Research Institute, Atlanta, GA 30309, USA; (E.B.S.); (K.C.)
- Program in Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kyle Condon
- Shepherd Center, Crawford Research Institute, Atlanta, GA 30309, USA; (E.B.S.); (K.C.)
| | - Edelle C. Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, GA 30309, USA; (E.B.S.); (K.C.)
- Program in Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-603-4274
| |
Collapse
|
35
|
de Freitas RM, Sasaki A, Sayenko DG, Masugi Y, Nomura T, Nakazawa K, Milosevic M. Selectivity and excitability of upper-limb muscle activation during cervical transcutaneous spinal cord stimulation in humans. J Appl Physiol (1985) 2021; 131:746-759. [PMID: 34138648 DOI: 10.1152/japplphysiol.00132.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cervical transcutaneous spinal cord stimulation (tSCS) efficacy for rehabilitation of upper-limb motor function was suggested to depend on recruitment of Ia afferents. However, selectivity and excitability of motor activation with different electrode configurations remain unclear. In this study, activation of upper-limb motor pools was examined with different cathode and anode configurations during cervical tSCS in 10 able-bodied individuals. Muscle responses were measured from six upper-limb muscles simultaneously. First, postactivation depression was confirmed with tSCS paired pulses (50-ms interval) for each cathode configuration (C6, C7, and T1 vertebral levels), with anode on the anterior neck. Selectivity and excitability of activation of the upper-limb motor pools were examined by comparing the recruitment curves (10-100 mA) of first evoked responses across muscles and cathode configurations. Our results showed that hand muscles were preferentially activated when the cathode was placed over T1 compared with the other vertebral levels, whereas there was no selectivity for proximal arm muscles. Furthermore, higher stimulation intensities were required to activate distal hand muscles than proximal arm muscles, suggesting different excitability thresholds between muscles. In a separate protocol, responses were compared between anode configurations (anterior neck, shoulders, iliac crests, and back), with one selected cathode configuration. The level of discomfort was also assessed. Largest muscle responses were elicited with the anode configuration over the anterior neck, whereas there were no differences in the discomfort. Our results therefore inform methodological considerations for electrode configuration to help optimize recruitment of Ia afferents during cervical tSCS.NEW & NOTEWORTHY We examined selectivity and excitability of motor activation in multiple upper-limb muscles during cervical transcutaneous spinal cord stimulation with different cathode and anode configurations. Hand muscles were more activated when the cathode was configured over the T1 vertebra compared with C6 and C7 locations. Higher stimulation intensities were required to activate distal hand muscles than proximal arm muscles. Finally, configuration of anode over anterior neck elicited larger responses compared with other configurations.
Collapse
Affiliation(s)
- Roberto M de Freitas
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan.,Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan.,Institute of Sports Medicine and Science, Tokyo International University, Kawagoe, Japan
| | - Taishin Nomura
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
36
|
Hofstoetter US, Freundl B, Lackner P, Binder H. Transcutaneous Spinal Cord Stimulation Enhances Walking Performance and Reduces Spasticity in Individuals with Multiple Sclerosis. Brain Sci 2021; 11:brainsci11040472. [PMID: 33917893 PMCID: PMC8068213 DOI: 10.3390/brainsci11040472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Gait dysfunction and spasticity are common debilitating consequences of multiple sclerosis (MS). Improvements of these motor impairments by lumbar transcutaneous spinal cord stimulation (tSCS) have been demonstrated in spinal cord injury. Here, we explored for the first time the motor effects of lumbar tSCS applied at 50 Hz for 30 min in 16 individuals with MS and investigated their temporal persistence post-intervention. We used a comprehensive protocol assessing walking ability, different presentations of spasticity, standing ability, manual dexterity, and trunk control. Walking ability, including walking speed and endurance, was significantly improved for two hours beyond the intervention and returned to baseline after 24 h. Muscle spasms, clonus duration, and exaggerated stretch reflexes were reduced for two hours, and clinically assessed lower-extremity muscle hypertonia remained at improved levels for 24 h post-intervention. Further, postural sway during normal standing with eyes open was decreased for two hours. No changes were detected in manual dexterity and trunk control. Our results suggest that transcutaneous lumbar SCS can serve as a clinically accessible method without known side effects that holds the potential for substantial clinical benefit across the disability spectrum of MS.
Collapse
Affiliation(s)
- Ursula S. Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Brigitta Freundl
- Neurological Center, Klinik Penzing—Wiener Gesundheitsverbund, 1140 Vienna, Austria; (B.F.); (P.L.); (H.B.)
| | - Peter Lackner
- Neurological Center, Klinik Penzing—Wiener Gesundheitsverbund, 1140 Vienna, Austria; (B.F.); (P.L.); (H.B.)
| | - Heinrich Binder
- Neurological Center, Klinik Penzing—Wiener Gesundheitsverbund, 1140 Vienna, Austria; (B.F.); (P.L.); (H.B.)
| |
Collapse
|
37
|
Characterization of Motor-Evoked Responses Obtained with Transcutaneous Electrical Spinal Stimulation from the Lower-Limb Muscles after Stroke. Brain Sci 2021; 11:brainsci11030289. [PMID: 33652677 PMCID: PMC7996860 DOI: 10.3390/brainsci11030289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
An increasing number of studies suggests that a novel neuromodulation technique targeting the spinal circuitry enhances gait rehabilitation, but research on its application to stroke survivors is limited. Therefore, we investigated the characteristics of spinal motor-evoked responses (sMERs) from lower-limb muscles obtained by transcutaneous spinal cord stimulation (tSCS) after stroke compared to age-matched and younger controls without stroke. Thirty participants (ten stroke survivors, ten age-matched controls, and ten younger controls) completed the study. By using tSCS applied between the L1 and L2 vertebral levels, we compared sMER characteristics (resting motor threshold (RMT), slope of the recruitment curve, and latency) of the tibialis anterior (TA) and medial gastrocnemius (MG) muscles among groups. A single pulse of stimulation was delivered in 5 mA increments, increasing from 5 mA to 250 mA or until the subjects reached their maximum tolerance. The stroke group had an increased RMT (27–51%) compared to both age-matched (TA: p = 0.032; MG: p = 0.005) and younger controls (TA: p < 0.001; MG: p < 0.001). For the TA muscle, the paretic side demonstrated a 13% increased latency compared to the non-paretic side in the stroke group (p = 0.010). Age-matched controls also exhibited an increased RMT compared to younger controls (TA: p = 0.002; MG: p = 0.007), suggesting that altered sMER characteristics present in stroke survivors may result from both stroke and normal aging. This observation may provide implications for altered spinal motor output after stroke and demonstrates the feasibility of using sMER characteristics as an assessment after stroke.
Collapse
|
38
|
Saito A, Nakagawa K, Masugi Y, Nakazawa K. Inter-muscle differences in modulation of motor evoked potentials and posterior root-muscle reflexes evoked from lower-limb muscles during agonist and antagonist muscle contractions. Exp Brain Res 2020; 239:463-474. [PMID: 33221989 PMCID: PMC7936942 DOI: 10.1007/s00221-020-05973-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 01/28/2023]
Abstract
Voluntary contraction facilitates corticospinal and spinal reflex circuit excitabilities of the contracted muscle and inhibits spinal reflex circuit excitability of the antagonist. It has been suggested that modulation of spinal reflex circuit excitability in agonist and antagonist muscles during voluntary contraction differs among lower-limb muscles. However, whether the effects of voluntary contraction on the excitabilities of corticospinal and spinal reflex circuits depend on the tested muscles remains unknown. The purpose of this study was to examine inter-muscle differences in modulation of the corticospinal and spinal reflex circuit excitabilities of multiple lower-limb muscles during voluntary contraction. Eleven young males performed isometric plantar-flexion, dorsi-flexion, knee extension, and flexion at low torque levels. Motor evoked potentials (MEPs) and posterior root-muscle reflexes from seven lower-leg and thigh muscles were evoked by transcranial magnetic stimulation and transcutaneous spinal cord stimulation, respectively, at rest and during weak voluntary contractions. MEP and posterior root-muscle reflex amplitudes of agonists were significantly increased as agonist torque level increased, except for the reflex of the tibialis anterior. MEP amplitudes of antagonists were significantly increased in relation to the agonist torque level, but those of the rectus femoris were slightly depressed during knee flexion. Regarding the posterior root-muscle reflex of the antagonists, the amplitudes of triceps surae and the hamstrings were significantly decreased, but those of the quadriceps femoris were significantly increased as the agonist torque level increased. These results demonstrate that modulation of corticospinal and spinal reflex circuit excitabilities during agonist and antagonist muscle contractions differed among lower-limb muscles.
Collapse
Affiliation(s)
- Akira Saito
- Center for Health and Sports Science, Kyushu Sangyo University, Matsukadai, Higashi-ku, Fukuoka, Japan. .,Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan. .,Japan Society for the Promotion of Science, Kojimachi, Chiyoda-ku, Tokyo, Japan.
| | - Kento Nakagawa
- Faculty of Sport Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Yohei Masugi
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan.,Institute of Sports Medicine and Science, Tokyo International University, Matoba, Kawagoe, Saitama, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
39
|
Meyer C, Hofstoetter US, Hubli M, Hassani RH, Rinaldo C, Curt A, Bolliger M. Immediate Effects of Transcutaneous Spinal Cord Stimulation on Motor Function in Chronic, Sensorimotor Incomplete Spinal Cord Injury. J Clin Med 2020; 9:E3541. [PMID: 33147884 PMCID: PMC7694146 DOI: 10.3390/jcm9113541] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Deficient ankle control after incomplete spinal cord injury (iSCI) often accentuates walking impairments. Transcutaneous electrical spinal cord stimulation (tSCS) has been shown to augment locomotor activity after iSCI, presumably due to modulation of spinal excitability. However, the effects of possible excitability modulations induced by tSCS on ankle control have not yet been assessed. This study investigated the immediate (i.e., without training) effects during single-sessions of tonic tSCS on ankle control, spinal excitability, and locomotion in ten individuals with chronic, sensorimotor iSCI (American Spinal Injury Association Impairment Scale D). Participants performed rhythmic ankle movements (dorsi- and plantar flexion) at a given rate, and irregular ankle movements following a predetermined trajectory with and without tonic tSCS at 15 Hz, 30 Hz, and 50 Hz. In a subgroup of eight participants, the effects of tSCS on assisted over-ground walking were studied. Furthermore, the activity of a polysynaptic spinal reflex, associated with spinal locomotor networks, was investigated to study the effect of the stimulation on the dedicated spinal circuitry associated with locomotor function. Tonic tSCS at 30 Hz immediately improved maximum dorsiflexion by +4.6° ± 0.9° in the more affected lower limb during the rhythmic ankle movement task, resulting in an increase of +2.9° ± 0.9° in active range of motion. Coordination of ankle movements, assessed by the ability to perform rhythmic ankle movements at a given target rate and to perform irregular movements according to a trajectory, was unchanged during stimulation. tSCS at 30 Hz modulated spinal reflex activity, reflected by a significant suppression of pathological activity specific to SCI in the assessed polysynaptic spinal reflex. During walking, there was no statistical group effect of tSCS. In the subgroup of eight assessed participants, the three with the lowest as well as the one with the highest walking function scores showed positive stimulation effects, including increased maximum walking speed, or more continuous and faster stepping at a self-selected speed. Future studies need to investigate if multiple applications and individual optimization of the stimulation parameters can increase the effects of tSCS, and if the technique can improve the outcome of locomotor rehabilitation after iSCI.
Collapse
Affiliation(s)
- Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| | - Ursula S. Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| | - Roushanak H. Hassani
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| | - Carmen Rinaldo
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| |
Collapse
|
40
|
Megía-García Á, Serrano-Muñoz D, Taylor J, Avendaño-Coy J, Comino-Suárez N, Gómez-Soriano J. Transcutaneous Spinal Cord Stimulation Enhances Quadriceps Motor Evoked Potential in Healthy Participants: A Double-Blind Randomized Controlled Study. J Clin Med 2020; 9:jcm9103275. [PMID: 33066103 PMCID: PMC7601803 DOI: 10.3390/jcm9103275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022] Open
Abstract
Transcutaneous electrical spinal cord stimulation (tSCS) is a non-invasive technique for neuromodulation and has therapeutic potential for motor rehabilitation following spinal cord injury. The main aim of the present study is to quantify the effect of a single session of tSCS on lower limb motor evoked potentials (MEPs) in healthy participants. A double-blind, sham-controlled, randomized, crossover, clinical trial was carried out in 15 participants. Two 10-min sessions of tSCS (active-tSCS and sham-tSCS) were applied at the T11-T12 vertebral level. Quadriceps (Q) and tibialis anterior (TA) muscle MEPs were recorded at baseline, during and after tSCS. Q and TA isometric maximal voluntary contraction was also recorded. A significant increase of the Q-MEP amplitude was observed during active-tSCS (1.96 ± 0.3 mV) when compared from baseline (1.40 ± 0.2 mV; p = 0.01) and when compared to sham-tSCS at the same time-point (1.13 ± 0.3 mV; p = 0.03). No significant modulation was identified for TA-MEP amplitude or for Q and TA isometric maximal voluntary isometric strength. In conclusion, tSCS applied over the T11-T12 vertebral level increased Q-MEP but not TA-MEP compared to sham stimulation. The specific neuromodulatory effect of tSCS on Q-MEP may reflect optimal excitation of this motor response at the interneuronal or motoneuronal level.
Collapse
Affiliation(s)
- Álvaro Megía-García
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, 45071 Toledo, Spain;
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 45071 Toledo, Spain; (J.A.-C.); (N.C.-S.); (J.G.-S.)
| | - Diego Serrano-Muñoz
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 45071 Toledo, Spain; (J.A.-C.); (N.C.-S.); (J.G.-S.)
- Correspondence: ; Tel.: +34-925268800 (ext. 5830)
| | - Julian Taylor
- Sensorimotor Function Group, National Hospital for Paraplegia, SESCAM, 45071 Toledo, Spain;
- Harris Manchester College, University of Oxford, Oxford OX1 3TD, UK
| | - Juan Avendaño-Coy
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 45071 Toledo, Spain; (J.A.-C.); (N.C.-S.); (J.G.-S.)
| | - Natalia Comino-Suárez
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 45071 Toledo, Spain; (J.A.-C.); (N.C.-S.); (J.G.-S.)
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 45071 Toledo, Spain; (J.A.-C.); (N.C.-S.); (J.G.-S.)
| |
Collapse
|
41
|
Krenn MJ, Vargas Luna JL, Mayr W, Stokic DS. Bipolar transcutaneous spinal stimulation evokes short-latency reflex responses in human lower limbs alike standard unipolar electrode configuration. J Neurophysiol 2020; 124:1072-1082. [PMID: 32845202 DOI: 10.1152/jn.00433.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Noninvasive electrical stimulation targeting the posterior lumbosacral roots has been applied recently in reflexes studies and as a neuromodulation intervention for modifying spinal cord circuitry after an injury. Here, we characterized short-latency responses evoked by four bipolar electrode configurations placed longitudinally over the spinal column at different vertebral levels from L1 to T9. They were compared with the responses evoked by the standard unipolar (aka monopolar) electrode configuration (cathode at T11/12, anode over the abdominal wall). Short-latency responses were recorded in the rectus femoris, medial hamstrings, tibialis anterior, and soleus muscles, bilaterally, in 11 neurologically intact participants. The response recruitment characteristics (maximal amplitude, motor threshold) and amplitude-matched onset latencies and paired-pulse suppression (35-ms interstimulus interval) were assessed with 1-ms current-controlled pulses at intensities up to 100 mA. The results showed that short-latency responses can be elicited with all bipolar electrode configurations. However, only with the cathode at T11/12 and the anode 10 cm cranially (∼T9), the maximum response amplitudes were statistical equivalent (P < 0.05) in the medial hamstrings, tibialis anterior, and soleus but not the rectus femoris, whereas motor thresholds were not significantly different across all muscles. The onset latency and paired-pulse suppression were also not significantly different across the tested electrode configurations, thereby confirming the reflex nature of the bipolar short-latency responses. We conclude that the bipolar configuration (cathode T11/12, anode ∼T9) produces reflex responses that are ostensibly similar to those evoked by the standard unipolar configuration. This provides an alternative approach for neuromodulation intervention.NEW & NOTEWORTHY Transcutaneous spinal stimulation with the identified bipolar electrode configuration may offer several advantages for neuromodulation interventions over commonly used unipolar configurations: there are no associated abdominal contractions, which improves the participant's comfort; additional dermatomes are not stimulated as when the anode is over the abdominal wall or iliac crest, which may have unwanted effects; and, due to a more localized electrical field, the bipolar configuration offers the possibility of targeting cord segments more selectively.
Collapse
Affiliation(s)
- Matthias J Krenn
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, Mississippi
| | - Jose L Vargas Luna
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Winfried Mayr
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, Mississippi
| |
Collapse
|
42
|
Al’joboori Y, Massey SJ, Knight SL, Donaldson NDN, Duffell LD. The Effects of Adding Transcutaneous Spinal Cord Stimulation (tSCS) to Sit-To-Stand Training in People with Spinal Cord Injury: A Pilot Study. J Clin Med 2020; 9:jcm9092765. [PMID: 32858977 PMCID: PMC7565331 DOI: 10.3390/jcm9092765] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023] Open
Abstract
Spinal cord stimulation may enable recovery of volitional motor control in people with chronic Spinal Cord Injury (SCI). In this study we explored the effects of adding SCS, applied transcutaneously (tSCS) at vertebral levels T10/11, to a sit-to-stand training intervention in people with motor complete and incomplete SCI. Nine people with chronic SCI (six motor complete; three motor incomplete) participated in an 8-week intervention, incorporating three training sessions per week. Participants received either tSCS combined with sit-to-stand training (STIM) or sit-to-stand training alone (NON-STIM). Outcome measures were carried out before and after the intervention. Seven participants completed the intervention (STIM N = 5; NON-STIM N = 2). Post training, improvements in International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) motor scores were noted in three STIM participants (range 1.0–7.0), with no change in NON-STIM participants. Recovery of volitional lower limb muscle activity and/or movement (with tSCS off) was noted in three STIM participants. Unassisted standing was not achieved in any participant, although standing with minimal assistance was achieved in one STIM participant. This pilot study has shown that the recruitment of participants, intervention and outcome measures were all feasible in this study design. However, some modifications are recommended for a larger trial.
Collapse
Affiliation(s)
- Yazi Al’joboori
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
- Aspire CREATe, UCL, Stanmore HA7 4LP, UK;
- Correspondence: ; Tel.: +44-020-3108-4083
| | | | - Sarah L. Knight
- London Spinal Cord Injury Centre, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK;
| | - Nick de N. Donaldson
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
| | - Lynsey D. Duffell
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
- Aspire CREATe, UCL, Stanmore HA7 4LP, UK;
| |
Collapse
|
43
|
Militskova A, Mukhametova E, Fatykhova E, Sharifullin S, Cuellar CA, Calvert JS, Grahn PJ, Baltina T, Lavrov I. Supraspinal and Afferent Signaling Facilitate Spinal Sensorimotor Network Excitability After Discomplete Spinal Cord Injury: A Case Report. Front Neurosci 2020; 14:552. [PMID: 32655351 PMCID: PMC7323764 DOI: 10.3389/fnins.2020.00552] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/04/2020] [Indexed: 12/25/2022] Open
Abstract
Objective In this study, we evaluated the role of residual supraspinal and afferent signaling and their convergence on the sublesional spinal network in subject diagnosed with complete paralysis (AIS-A). Methods A combination of electrophysiologic techniques with positional changes and subject-driven reinforcement maneuvers was implemented in this study. Electrical stimulation was applied transcutaneously at the T9-L2 vertebra levels and the spinal cord motor evoked potentials (SEMP) were recorded from leg muscles. To test the influence of positional changes, the subject was placed in (i) supine, (ii) upright with partial body weight bearing and (iii) vertically suspended without body weight bearing positions. Results Increase in amplitude of SEMP was observed during transition from supine to upright position, supporting the role of sensory input in lumbosacral network excitability. Additionally, amplitudes of SEMP were facilitated during reinforcement maneuvers, indicating a supralesional influence on sub-lesional network. After initial assessment, subject underwent rehabilitation therapy with following electrophysiological testing that reviled facilitation of SEMP. Conclusion These results demonstrate that combination of electrophysiological techniques with positional and reinforcement maneuvers can add to the diagnostics of discomplete SCI. These findings also support an idea that integration of supraspinal and afferent information on sub-lesional circuitry plays a critical role in facilitation of spinal sensorimotor network in discomplete SCI.
Collapse
Affiliation(s)
- Alena Militskova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elvira Mukhametova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elsa Fatykhova
- Children's Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | | | - Carlos A Cuellar
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | - Jonathan S Calvert
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Peter J Grahn
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States
| | - Tatiana Baltina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Igor Lavrov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.,Department of Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
44
|
Manson GA, Calvert JS, Ling J, Tychhon B, Ali A, Sayenko DG. The relationship between maximum tolerance and motor activation during transcutaneous spinal stimulation is unaffected by the carrier frequency or vibration. Physiol Rep 2020; 8:e14397. [PMID: 32170844 PMCID: PMC7070156 DOI: 10.14814/phy2.14397] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Transcutaneous spinal stimulation (TSS) is a useful tool to modulate spinal sensorimotor circuits and has emerged as a potential treatment for motor disorders in neurologically impaired populations. One major limitation of TSS is the discomfort associated with high levels of stimulation during the experimental procedure. The objective of this study was to examine if the discomfort caused by TSS can be alleviated using different stimulation paradigms in a neurologically intact population. Tolerance to TSS delivered using conventional biphasic balanced rectangular pulses was compared to two alternative stimulation paradigms: a 5 kHz carrier frequency and biphasic balanced rectangular pulses combined with vibrotactile stimulation. In ten healthy participants, tolerance to TSS was examined using both single-pulse (0.2 Hz) and continuous (30 Hz) stimulation protocols. In both the single-pulse and continuous stimulation protocols, participants tolerated significantly higher levels of stimulation with the carrier frequency paradigm compared to the other stimulation paradigms. However, when the maximum tolerable stimulation intensity of each stimulation paradigm was normalized to the intensity required to evoke a lower limb muscle response, there were no statistical differences between the stimulation paradigms. Our results suggest that, when considering the intensity of stimulation required to obtain spinally evoked motor potentials, neither alternative stimulation paradigm is more effective at reducing discomfort than the conventional, unmodulated pulse configuration.
Collapse
Affiliation(s)
- Gerome A Manson
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Jonathan S Calvert
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jeremiah Ling
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Boranai Tychhon
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Amir Ali
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
45
|
Novel human models for elucidating mechanisms of rate-sensitive H-reflex depression. Biomed J 2020; 43:44-52. [PMID: 32200955 PMCID: PMC7090317 DOI: 10.1016/j.bj.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/24/2019] [Accepted: 07/10/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND This study used novel human neurophysiologic models to investigate whether the mechanism of rate-sensitive H-reflex depression lies in the pre-synaptic or post-synaptic locus in humans. We hypothesized that pre-synaptic inhibition would suppress Ia afferents and H-reflexes without suppressing alpha motor neurons or motor evoked potentials (MEPs). In contrast, post-synaptic inhibition would suppress alpha motor neurons, thereby reducing H-reflexes and MEPs. METHODS We recruited 23 healthy adults with typical rate-sensitive H-reflex depression, 2 participants with acute sensory-impaired spinal cord injury (SCI) (to rule out influence of sensory stimulation on supra-spinal excitability), and an atypical cohort of 5 healthy adults without rate-sensitive depression. After a single electrical stimulation to the tibial nerve, we administered either a testing H-reflex or a testing MEP at 50-5000 ms intervals. RESULTS Testing MEPs were not diminished in healthy subjects with or without typical rate-sensitive H-reflex depression, or in subjects with sensory-impaired SCI. MEP responses were similar in healthy subjects with versus without rate-sensitive H-reflex depression. CONCLUSIONS Results from these novel in vivo human models support a pre-synaptic locus of rate-sensitive H-reflex depression for the first time in humans. Spinal reflex excitability can be modulated separately from descending corticospinal influence. Each represents a potential target for neuromodulatory intervention.
Collapse
|
46
|
Barss TS, Parhizi B, Mushahwar VK. Transcutaneous spinal cord stimulation of the cervical cord modulates lumbar networks. J Neurophysiol 2020; 123:158-166. [DOI: 10.1152/jn.00433.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been established that coordinated arm and leg (A&L) cycling facilitates corticospinal drive and modulation of cervico-lumbar connectivity and ultimately improves overground walking in people with incomplete spinal cord injury or stroke. This study examined the effect of noninvasive transcutaneous spinal cord stimulation (tSCS) on the modulation of cervico-lumbar connectivity. Thirteen neurologically intact adults participated in the study. The excitability of the Hoffmann (H) reflex elicited in the soleus muscle was examined under multiple conditions involving either the arms held in a static position or rhythmic arm cycling while tSCS was applied to either the cervical or lumbar cord. As expected, soleus H-reflex amplitude was significantly suppressed by 19.2% during arm cycling (without tSCS) relative to arms static (without tSCS). Interestingly, tSCS of the cervical cord with arms static significantly suppressed the soleus H-reflex (−22.9%), whereas tSCS over the lumbar cord did not suppress the soleus H-reflex (−3.8%). The combination of arm cycling with cervical or lumbar tSCS did not yield additional suppression of the soleus H-reflex beyond that obtained with arm cycling alone or cervical tSCS alone. The results demonstrate that activation of the cervical spinal cord through both rhythmic arm cycling and tonic tSCS significantly modulates the activity of lumbar networks. This highlights the potential for engaging cervical spinal cord networks through tSCS during rehabilitation interventions to enhance cervico-lumbar connectivity. This connectivity is influential in facilitating improvements in walking function after neurological impairment. NEW & NOTEWORTHY This is the first study to investigate the modulatory effects of transcutaneous spinal cord stimulation (tSCS) on cervico-lumbar connectivity. We report that both rhythmic activation of the cervical spinal cord through arm cycling and tonic activation of the cervical cord through tSCS significantly modulate the activity of lumbar networks. This suggests that engaging cervical spinal cord networks through tSCS during locomotor retraining interventions may not only enhance cervico-lumbar connectivity but also further improve walking capacity.
Collapse
Affiliation(s)
- Trevor S. Barss
- Neuroscience and Mental Health Institute, University of Alberta, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Behdad Parhizi
- Neuroscience and Mental Health Institute, University of Alberta, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Vivian K. Mushahwar
- Neuroscience and Mental Health Institute, University of Alberta, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Megía García A, Serrano-Muñoz D, Taylor J, Avendaño-Coy J, Gómez-Soriano J. Transcutaneous Spinal Cord Stimulation and Motor Rehabilitation in Spinal Cord Injury: A Systematic Review. Neurorehabil Neural Repair 2019; 34:3-12. [PMID: 31858871 DOI: 10.1177/1545968319893298] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background. Epidural spinal electrical stimulation at the lumbar spinal level evokes rhythmic muscle activation of lower-limb antagonists, attributed to the central pattern generator. However, the efficacy of noninvasive spinal stimulation for the activation of lower-limb muscles is not yet clear. This review aimed to analyze the feasibility and efficacy of noninvasive transcutaneous spinal cord stimulation (tSCS) on motor function in individuals with spinal cord injury. Methods. A search for tSCS studies was made of the following databases: PubMed; Cochrane Registry; and Physiotherapy Evidence Database (PEDro). In addition, an inverse manual search of the references cited by the identified articles was carried out. The keywords transcutaneous, non-invasive, electrical stimulation, spinal cord stimulation [Mesh term], and spinal cord injury were used. Results. A total of 352 articles were initially screened, of which 13 studies met the inclusion criteria for systematic review. The total participant sample comprised 55 persons with spinal cord injury. All studies with tSCS provided evidence of induced muscle activation in the lower and upper limbs, and applied stimulation at the level of the T11-T12 and C4-C7 interspinous space, respectively. All studies reported an increase in motor response measured by recording surface electromyography, voluntary movement, muscle strength, or function. Conclusions. Although this review highlights tSCS as a feasible therapeutic neuromodulatory strategy to enhance voluntary movement, muscle strength, and function in patients with chronic spinal cord injury, the clinical impact and efficacy of electrode location and current intensity need to be characterized in statistically powered and controlled clinical trials.
Collapse
Affiliation(s)
- Alvaro Megía García
- National Hospital for Paraplegics, SESCAM, Toledo, Spain.,Faculty of Physiotherapy and Nursery, Castilla La Mancha University, Toledo, Spain
| | - Diego Serrano-Muñoz
- National Hospital for Paraplegics, SESCAM, Toledo, Spain.,Faculty of Physiotherapy and Nursery, Castilla La Mancha University, Toledo, Spain
| | - Julian Taylor
- National Hospital for Paraplegics, SESCAM, Toledo, Spain.,University of Oxford, Oxford, UK
| | - Juan Avendaño-Coy
- Faculty of Physiotherapy and Nursery, Castilla La Mancha University, Toledo, Spain
| | - Julio Gómez-Soriano
- Faculty of Physiotherapy and Nursery, Castilla La Mancha University, Toledo, Spain
| |
Collapse
|
48
|
Muscle-Specific Modulation of Spinal Reflexes in Lower-Limb Muscles during Action Observation with and without Motor Imagery of Walking. Brain Sci 2019; 9:brainsci9120333. [PMID: 31766487 PMCID: PMC6955956 DOI: 10.3390/brainsci9120333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Action observation (AO) and motor imagery (MI) are useful techniques in neurorehabilitation. Previous studies have reported that AO and MI facilitate corticospinal excitability only in those muscles that are active when actually performing the observed or imagined movements. However, it remained unclear whether spinal reflexes modulate multiple muscles simultaneously. The present study focused on AO and MI of walking and aimed to clarify their effects on spinal reflexes in lower-limb muscles that are recruited during actual walking. Ten healthy males participated in the present study. Spinal reflex parameters evoked by transcutaneous spinal cord stimulation were measured from five lower-limb muscles during rest, AO, and AO combined with MI (AO + MI) conditions. Our results showed that spinal reflexes were increased in the tibialis anterior and biceps femoris muscles during AO and in the tibialis anterior, soleus, and medial gastrocnemius muscles during AO + MI, compared with resting condition. Spinal reflex parameters in the vastus medialis muscle were unchanged. These results indicate the muscle-specific modulations of spinal reflexes during AO and AO + MI. These findings reveal the underlying neural activities induced by AO, MI, and their combined processes.
Collapse
|
49
|
Kato T, Sasaki A, Yokoyama H, Milosevic M, Nakazawa K. Effects of neuromuscular electrical stimulation and voluntary commands on the spinal reflex excitability of remote limb muscles. Exp Brain Res 2019; 237:3195-3205. [PMID: 31602493 PMCID: PMC6882749 DOI: 10.1007/s00221-019-05660-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/21/2019] [Indexed: 12/25/2022]
Abstract
It is well known that contracting the upper limbs can affect spinal reflexes of the lower limb muscle, via intraneuronal networks within the central nervous system. However, it remains unknown whether neuromuscular electrical stimulation (NMES), which can generate muscle contractions without central commands from the cortex, can also play a role in such inter-limb facilitation. Therefore, the objective of this study was to compare the effects of unilateral upper limb contractions using NMES and voluntary unilateral upper limb contractions on the inter-limb spinal reflex facilitation in the lower limb muscles. Spinal reflex excitability was assessed using transcutaneous spinal cord stimulation (tSCS) to elicit responses bilaterally in multiple lower limb muscles, including ankle and thigh muscles. Five interventions were applied on the right wrist flexors for 70 s: (1) sensory-level NMES; (2) motor-level NMES; (3) voluntary contraction; (4) voluntary contraction and sensory-level NMES; (5) voluntary contraction and motor-level NMES. Results showed that spinal reflex excitability of ankle muscles was facilitated bilaterally during voluntary contraction of the upper limb unilaterally and that voluntary contraction with motor-level NMES had similar effects as just contracting voluntarily. Meanwhile, motor-level NMES facilitated contralateral thigh muscles, and sensory-level NMES had no effect. Overall, our results suggest that inter-limb facilitation effect of spinal reflex excitability in lower limb muscles depends, to a larger extent, on the presence of the central commands from the cortex during voluntary contractions. However, peripheral input generated by muscle contractions using NMES might have effects on the spinal reflex excitability of inter-limb muscles via spinal intraneuronal networks.
Collapse
Affiliation(s)
- Tatsuya Kato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Hikaru Yokoyama
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.,Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.,Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
50
|
Pulverenti TS, Islam MA, Alsalman O, Murray LM, Harel NY, Knikou M. Transspinal stimulation decreases corticospinal excitability and alters the function of spinal locomotor networks. J Neurophysiol 2019; 122:2331-2343. [PMID: 31577515 DOI: 10.1152/jn.00554.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Locomotion requires the continuous integration of descending motor commands and sensory inputs from the legs by spinal central pattern generator circuits. Modulation of spinal neural circuits by transspinal stimulation is well documented, but how transspinal stimulation affects corticospinal excitability during walking in humans remains elusive. We measured the motor evoked potentials (MEPs) at multiple phases of the step cycle conditioned with transspinal stimulation delivered at sub- and suprathreshold intensities of the spinally mediated transspinal evoked potential (TEP). Transspinal stimulation was delivered before or after transcranial magnetic stimulation during which summation between MEP and TEP responses in the surface EMG was absent or present. Relationships between MEP amplitude and background EMG activity, silent period duration, and phase-dependent EMG amplitude modulation during and after stimulation were also determined. Ankle flexor and extensor MEPs were depressed by suprathreshold transspinal stimulation when descending volleys were timed to interact with transspinal stimulation-induced motoneuron depolarization at the spinal cord. MEP depression coincided with decreased MEP gain, unaltered MEP threshold, and unaltered silent period duration. Locomotor EMG activity of bilateral knee and ankle muscles was significantly depressed during the step at which transspinal stimulation was delivered but fully recovered at the subsequent step. The results support a model in which MEP depression by transspinal stimulation occurs via subcortical or spinal mechanisms. Transspinal stimulation disrupts the locomotor output of flexor and extensor motoneurons initially, but the intact nervous system has the ability to rapidly overcome this pronounced locomotor adaptation. In conclusion, transspinal stimulation directly affects spinal locomotor centers in healthy humans.NEW & NOTEWORTHY Lumbar transspinal stimulation decreases ankle flexor and extensor motor evoked potentials (MEPs) during walking. The MEP depression coincides with decreased MEP gain, unaltered MEP threshold changes, and unaltered silent period duration. These findings indicate that MEP depression is subcortical or spinal in origin. Healthy subjects could rapidly overcome the pronounced depression of muscle activity during the step at which transspinal stimulation was delivered. Thus, transspinal stimulation directly affects the function of spinal locomotor networks in healthy humans.
Collapse
Affiliation(s)
- Timothy S Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York
| | - Md Anamul Islam
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York
| | - Ola Alsalman
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York.,Bronx Veterans Medical Research Foundation at the James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York
| | - Lynda M Murray
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York
| | - Noam Y Harel
- Bronx Veterans Medical Research Foundation at the James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York.,Departments of Neurology and Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York.,PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, New York, New York
| |
Collapse
|