1
|
Kshatriya S, Bagby SC. TaRTLEt: Transcriptionally-active Riboswitch Tracer Leveraging Edge deTection. PeerJ 2025; 13:e19418. [PMID: 40444283 PMCID: PMC12121620 DOI: 10.7717/peerj.19418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/13/2025] [Indexed: 06/02/2025] Open
Abstract
Structured RNAs have emerged as a major component of cellular regulatory systems, but their mechanism of action is often poorly understood. Riboswitches are structured RNAs that allosterically regulate gene expression through any of several different mechanisms. In vitro approaches to characterizing this mechanism are costly, low-throughput, and must be repeated for each individual riboswitch locus of interest. Bioinformatic methods promise higher throughput; despite robust computational identification of riboswitches, however, computational classification of the riboswitch mechanism has so far been both model-bound, relying on identification of sequence motifs known to be required for specific models of riboswitch activity, and empirically untested, with predictions far outpacing biological validation. Here, we introduce TaRTLEt (Transcriptionally-active Riboswitch Tracer Leveraging Edge deTection), a new high-throughput tool that recovers in vivo patterns of riboswitch-mediated transcription termination from paired-end RNA-seq data using edge detection methods. TaRTLEt successfully extracts transcription termination signals despite numerous sources of biological and technical noise. We tested the effectiveness of TaRTLEt on riboswitches identified from a wide range of sequenced bacterial taxa by utilizing publicly available paired-end RNA-seq readsets, finding broad agreement with previously published in vitro characterization results. In addition, we use TaRTLEt to infer the in vivo regulatory mechanism of uncharacterized riboswitch loci from existing public data. TaRTLEt is available on GitHub and can be applied to paired-end RNA-seq datasets from isolates or complex communities.
Collapse
Affiliation(s)
- Sachit Kshatriya
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Sarah C. Bagby
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
2
|
Sidorova TM, Tomashevich NS, Allahverdyan VV, Tupertsev BS, Kostyukevich YI, Asaturova AM. New Pseudomonas Bacterial Strains: Biological Activity and Characteristic Properties of Metabolites. Microorganisms 2023; 11:1943. [PMID: 37630503 PMCID: PMC10459626 DOI: 10.3390/microorganisms11081943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
This paper investigates the antagonistic and plant growth promotion activity of the new indigenous bacteria antagonist strains P. chlororaphis BZR 245-F and Pseudomonas sp. BZR 523-2. It was found that on the 10th day of cultivation, BZR 245-F and BZR 523-2 exhibit an antagonistic activity against F. graminearum at the level of 59.6% and 15.1% and against F. oxysporum var. orthoceras at the level of 50.2% and 8.9%, respectively. Furthermore, the BZR 523-2 strain stimulated the growth of winter wheat seedlings more actively than the BZR 245-F strain. When processing seeds of winter wheat, Pseudomonas sp. BZR 523-2 indicators were higher than in the control: plant height increased by 10.3%, and root length increased by 18.6%. The complex characteristic properties of the metabolite were studied by bioautography and HPLC-MS. Bioautography proved the antifungal activity of phenazine nature compounds synthesized by the new bacterial strains. We qualitatively and quantitatively analyzed them by HPLC-MS analysis of the strain sample metabolites. In the BZR 245-F sample, we found more phenazine compounds of various types. Their total phenazine concentration in the BZR 245-F was more than five times greater than in the BZR 523-2. We defined crucial differences in the quantitative content of the other metabolites. Despite the difference between new indigenous bacteria antagonist strains, they can be used as producers of effective biopesticides for sustainable agriculture management.
Collapse
Affiliation(s)
- Tatiana M. Sidorova
- Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (T.M.S.); (V.V.A.)
| | - Natalia S. Tomashevich
- Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (T.M.S.); (V.V.A.)
| | - Valeria V. Allahverdyan
- Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (T.M.S.); (V.V.A.)
| | - Boris S. Tupertsev
- Phystech School of Biological and Medical Physics (FBMF), Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Center of Molecular and Cellular Biology (CMCB), Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Yuri I. Kostyukevich
- Center of Molecular and Cellular Biology (CMCB), Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anzhela M. Asaturova
- Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (T.M.S.); (V.V.A.)
| |
Collapse
|
3
|
Moshynets OV, Pokholenko I, Iungin O, Potters G, Spiers AJ. eDNA, Amyloid Fibers and Membrane Vesicles Identified in Pseudomonas fluorescens SBW25 Biofilms. Int J Mol Sci 2022; 23:ijms232315096. [PMID: 36499433 PMCID: PMC9738004 DOI: 10.3390/ijms232315096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudomonas fluorescens SBW25 is a model soil- and plant-associated bacterium capable of forming a variety of air-liquid interface biofilms in experimental microcosms and on plant surfaces. Previous investigations have shown that cellulose is the primary structural matrix component in the robust and well-attached Wrinkly Spreader biofilm, as well as in the fragile Viscous Mass biofilm. Here, we demonstrate that both biofilms include extracellular DNA (eDNA) which can be visualized using confocal laser scanning microscopy (CLSM), quantified by absorbance measurements, and degraded by DNase I treatment. This eDNA plays an important role in cell attachment and biofilm development. However, exogenous high-molecular-weight DNA appears to decrease the strength and attachment levels of mature Wrinkly Spreader biofilms, whereas low-molecular-weight DNA appears to have little effect. Further investigation with CLSM using an amyloid-specific fluorophore suggests that the Wrinkly Spreader biofilm might also include Fap fibers, which might be involved in attachment and contribute to biofilm strength. The robust nature of the Wrinkly Spreader biofilm also allowed us, using MALDI-TOF mass spectrometry, to identify matrix-associated proteins unable to diffuse out of the structure, as well as membrane vesicles which had a different protein profile compared to the matrix-associated proteins. CLSM and DNase I treatment suggest that some vesicles were also associated with eDNA. These findings add to our understanding of the matrix components in this model pseudomonad, and, as found in other biofilms, biofilm-specific products and material from lysed cells contribute to these structures through a range of complex interactions.
Collapse
Affiliation(s)
- Olena V. Moshynets
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Ianina Pokholenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Olga Iungin
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
- Department of Biotechnology, Leather and Fur, Kyiv National University of Technologies and Design, 01011 Kyiv, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, 2030 Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, 2000 Antwerp, Belgium
- Correspondence:
| | - Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| |
Collapse
|
4
|
Dong J, He B, Wang R, Zuo X, Zhan R, Hu L, Li Y, He J. Characterization of the diastaphenazine/izumiphenazine C biosynthetic gene cluster from plant endophyte Streptomyces diastaticus W2. Microb Biotechnol 2022; 15:1168-1177. [PMID: 34487423 PMCID: PMC8966011 DOI: 10.1111/1751-7915.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
Two phenazine compounds, diastaphenazine and izumiphenazine C, with complex structures and promising antitumour activity have been isolated from the plant endophytic actinomycete Streptomyces diastaticus W2. Their putative biosynthetic gene cluster (dap) was identified by heterologous expression and gene knockout. There are twenty genes in the dap cluster. dap14-19 related to shikimic pathway were potentially involved in the precursor chorismic acid biosynthesis, and dapBCDEFG were confirmed to be responsible for the biosynthesis of the dibenzopyrazine ring, the nuclear structure of phenazines. Two transcriptional regulatory genes dapR and dap4 played the positive regulatory roles on the phenazine biosynthetic pathway. Most notably, the dimerization of the dibenzopyrazine ring in diastaphenazine and the loading of the complex side chain in izumiphenazine C could be catalysed by the cyclase homologous gene dap5, suggesting an unusual modification strategy tailoring complex phenazine biosynthesis. Moreover, metabolite analysis of the gene deletion mutant strain S. albus::23C5Δdap2 and substrate assay of the methyltransferase Dap2 clearly revealed the biosynthetic route of the complex side chain in izumiphenazine C.
Collapse
Affiliation(s)
- Junli Dong
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Beibei He
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Ruinan Wang
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Xiuli Zuo
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Rui Zhan
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Linfang Hu
- Key Laboratory of Microbial Diversity in Southwest ChinaMinistry of EducationCollege of Life ScienceYunnan UniversityKunming650091China
| | - Yiqing Li
- Key Laboratory of Microbial Diversity in Southwest ChinaMinistry of EducationCollege of Life ScienceYunnan UniversityKunming650091China
| | - Jing He
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
5
|
Snopková K, Dufková K, Chamrád I, Lenobel R, Čejková D, Kosina M, Hrala M, Holá V, Sedláček I, Šmajs D. Pyocin-mediated antagonistic interactions in Pseudomonas spp. isolated in James Ross Island, Antarctica. Environ Microbiol 2021; 24:1294-1307. [PMID: 34735036 DOI: 10.1111/1462-2920.15809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Interactions within bacterial communities are frequently mediated by the production of antimicrobial agents. Despite the increasing interest in research of new antimicrobials, studies describing antagonistic interactions among cold-adapted microorganisms are still rare. Our study assessed the antimicrobial interactions of 36 Antarctic Pseudomonas spp. and described the genetic background of these interactions in selected strains. The overall bacteriocinogeny was greater compared to mesophilic Pseudomonas non-aeruginosa species. R-type tailocins were detected on transmission electron micrographs in 16 strains (44.4%); phylogenetic analysis of the corresponding gene clusters revealed that the P. prosekii CCM 8878 tailocin was related to the Rp3 group, whereas the tailocin in Pseudomonas sp. CCM 8880 to the Rp4 group. Soluble antimicrobials were produced by eight strains (22.-2%); gene mining found pyocin L homologues in the genomes of P. prosekii CCM 8881 and CCM 8879 and pyocin S9-like homologues in P. prosekii CCM 8881 and Pseudomonas sp. CCM 8880. Analysis of secretomes confirmed the production of all S- and L-type pyocin genes. Our results suggest that bacteriocin-based inhibition plays an important role in interactions among Antarctic soil bacteria, and these native, cold-adapted microorganisms could be a promising source of new antimicrobials.
Collapse
Affiliation(s)
- Kateřina Snopková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Kristýna Dufková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, Olomouc-Holice, 779 00, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, Olomouc-Holice, 779 00, Czech Republic
| | - Darina Čejková
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Marcel Kosina
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Veronika Holá
- Faculty of Medicine, Institute for Microbiology, Masaryk University and St. Anne's University Hospital Brno, Pekařská 664/53, Brno, 656 91, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| |
Collapse
|
6
|
Rieusset L, Rey M, Gerin F, Wisniewski-Dyé F, Prigent-Combaret C, Comte G. A Cross-Metabolomic Approach Shows that Wheat Interferes with Fluorescent Pseudomonas Physiology through Its Root Metabolites. Metabolites 2021; 11:84. [PMID: 33572622 PMCID: PMC7911646 DOI: 10.3390/metabo11020084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Roots contain a wide variety of secondary metabolites. Some of them are exudated in the rhizosphere, where they are able to attract and/or control a large diversity of microbial species. In return, the rhizomicrobiota can promote plant health and development. Some rhizobacteria belonging to the Pseudomonas genus are known to produce a wide diversity of secondary metabolites that can exert a biological activity on the host plant and on other soil microorganisms. Nevertheless, the impact of the host plant on the production of bioactive metabolites by Pseudomonas is still poorly understood. To characterize the impact of plants on the secondary metabolism of Pseudomonas, a cross-metabolomic approach has been developed. Five different fluorescent Pseudomonas strains were thus cultivated in the presence of a low concentration of wheat root extracts recovered from three wheat genotypes. Analysis of our metabolomic workflow revealed that the production of several Pseudomonas secondary metabolites was significantly modulated when bacteria were cultivated with root extracts, including metabolites involved in plant-beneficial properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Gilles Comte
- Ecologie Microbienne, Université Claude Bernard Lyon1, Université de Lyon, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne, France; (L.R.); (M.R.); (F.G.); (F.W.-D.); (C.P.-C.)
| |
Collapse
|
7
|
Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Comput Struct Biotechnol J 2020; 18:3539-3554. [PMID: 33304453 PMCID: PMC7711191 DOI: 10.1016/j.csbj.2020.11.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) actively colonize the soil portion under the influence of plant roots, called the rhizosphere. Many plant-beneficial Pseudomonas spp. have been characterized as PGPR. They are ubiquitous rod-shaped motile Gram-negative bacteria displaying a high metabolic versatility. Their capacity to protect plants from pathogens and improve plant growth closely depends on their rhizosphere colonization abilities. Various molecular and cellular mechanisms are involved in this complex process, such as chemotaxis, biofilm formation, secondary metabolites biosynthesis, metabolic versatility, and evasion of plant immunity. The burst in Pseudomonas spp. genome sequencing in recent years has been crucial to better understand how they colonize the rhizosphere. In this review, we discuss the recent advances regarding these mechanisms and the underlying bacterial genetic factors required for successful rhizosphere colonization.
Collapse
Affiliation(s)
- Antoine Zboralski
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
8
|
Pan H, Pierson LS, Pierson EA. PcsR2 Is a LuxR-Type Regulator That Is Upregulated on Wheat Roots and Is Unique to Pseudomonas chlororaphis. Front Microbiol 2020; 11:560124. [PMID: 33244313 PMCID: PMC7683790 DOI: 10.3389/fmicb.2020.560124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
LuxR solos are common in plant-associated bacteria and increasingly recognized for playing important roles in plant-microbe interkingdom signaling. Unlike the LuxR-type transcriptional regulators of prototype LuxR/LuxI quorum sensing systems, luxR solos do not have a LuxI-type autoinducer synthase gene associated with them. LuxR solos in plant-pathogenic bacteria are important for virulence and in plant endosymbionts contribute to symbiosis. In the present study, we characterized an atypical LuxR solo, PcsR2, in the biological control species Pseudomonas chlororaphis 30-84 that is highly conserved among sequenced P. chlororaphis strains. Unlike most LuxR solos in the plant-associated bacteria characterized to date, pcsR2 is not associated with a proline iminopeptidase gene and the protein has an atypical N-terminal binding domain. We created a pcsR2 deletion mutant and used quantitative RT-PCR to show that the expression of pcsR2 and genes in the operon immediately downstream was upregulated ∼10-fold when the wild type strain was grown on wheat roots compared to planktonic culture. PcsR2 was involved in upregulation. Using a GFP transcriptional reporter, we found that expression of pcsR2 responded specifically to root-derived substrates as compared to leaf-derived substrates but not to endogenous AHLs. Compared to the wild type, the mutant was impaired in the ability to utilize root carbon and nitrogen sources in wheat root macerate and to colonize wheat roots. Phenazine production and most biofilm traits previously shown to be correlated with phenazine production also were diminished in the mutant. Gene expression of several of the proteins in the phenazine regulatory network including PhzR, Pip (phenazine inducing protein) and RpeA/RpeB were reduced in the mutant, and overexpression of these genes in trans restored phenazine production in the mutant to wild-type levels, indicating PcsR2 affects the activity of the these regulatory genes upstream of RpeA/RpeB via an undetermined mechanism. Our results indicate PcsR2 upregulates the expression of the adjacent operon in response to unknown wheat root-derived signals and belongs to a novel subfamily of LuxR-type transcriptional regulators found in sequenced P. chlororaphis strains.
Collapse
Affiliation(s)
- Huiqiao Pan
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, United States.,Department of Horticulture Sciences, Texas A&M University, College Station, TX, United States
| | - Leland S Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A Pierson
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, United States.,Department of Horticulture Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Yuan P, Pan H, Boak EN, Pierson LS, Pierson EA. Phenazine-Producing Rhizobacteria Promote Plant Growth and Reduce Redox and Osmotic Stress in Wheat Seedlings Under Saline Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:575314. [PMID: 33133116 PMCID: PMC7550623 DOI: 10.3389/fpls.2020.575314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/01/2020] [Indexed: 05/23/2023]
Abstract
Application of plant growth promoting bacteria may induce plant salt stress tolerance, however the underpinning microbial and plant mechanisms remain poorly understood. In the present study, the specific role of phenazine production by rhizosphere-colonizing Pseudomonas in mediating the inhibitory effects of salinity on wheat seed germination and seedling growth in four different varieties was investigated using Pseudomonas chlororaphis 30-84 (wild type) and isogenic derivatives deficient or enhanced in phenazine production. The results showed that varieties differed in how they responded to the salt stress treatment and the benefits derived from colonization by P. chlororaphis 30-84. In all varieties, the salt stress treatment significantly reduced seed germination, and in seedlings, reduced relative water content, increased reactive oxygen species (ROS) levels in leaves, and in three of four varieties, reduced shoot and root production compared to the no salt stress treatment. Inoculation of seeds with Pseudomonas chlororaphis 30-84 wild type or derivatives promoted salt-stress tolerance in seedlings of the four commercial winter wheat varieties tested, but the salt-stress tolerance phenotype was not entirely due to phenazine production. For example, all P. chlororaphis derivatives (including the phenazine-producing mutant) significantly improved relative water content in two varieties, Iba and CV 1, for which the salt stress treatment had a large impact. Importantly, all P. chlororaphis derivatives enabled the salt inhibited wheat varieties studied to maintain above ground productivity in saline conditions. However, only phenazine-producing derivatives enhanced the shoot or root growth of seedlings of all varieties under nonsaline conditions. Notably, ROS accumulation was reduced, and antioxidant enzyme (catalase) activity enhanced in the leaves of seedlings grown in saline conditions that were seed-treated with phenazine-producing P. chlororaphis derivatives as compared to noninoculated seedlings. The results demonstrate the capacity of P. chlororaphis to improve salt tolerance in wheat seedlings by promoting plant growth and reducing osmotic stress and a role for bacterial phenazine production in reducing redox stress.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Huiqiao Pan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, United States
| | - Emily N. Boak
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Metabolic reconstruction of Pseudomonas chlororaphis ATCC 9446 to understand its metabolic potential as a phenazine-1-carboxamide-producing strain. Appl Microbiol Biotechnol 2020; 104:10119-10132. [PMID: 32984920 DOI: 10.1007/s00253-020-10913-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023]
Abstract
Pseudomonas chlororaphis is a plant-associated bacterium with reported antagonistic activity against different organisms and plant growth-promoting properties. P. chlororaphis possesses exciting biotechnological features shared with another Pseudomonas with a nonpathogenic phenotype. Part of the antagonistic role of P. chlororaphis is due to its production of a wide variety of phenazines. To expand the knowledge of the metabolic traits of this organism, we constructed the first experimentally validated genome-scale model of P. chlororaphis ATCC 9446, containing 1267 genes and 2289 reactions, and analyzed strategies to maximize its potential for the production of phenazine-1-carboxamide (PCN). The resulting model also describes the capability of P. chlororaphis to carry out the denitrification process and its ability to consume sucrose (Scr), trehalose, mannose, and galactose as carbon sources. Additionally, metabolic network analysis suggested fatty acids as the best carbon source for PCN production. Moreover, the optimization of PCN production was performed with glucose and glycerol. The optimal PCN production phenotype requires an increased carbon flux in TCA and glutamine synthesis. Our simulations highlight the intrinsic H2O2 flux associated with PCN production, which may generate cellular stress in an overproducing strain. These results suggest that an improved antioxidative strategy could lead to optimal performance of phenazine-producing strains of P. chlororaphis. KEY POINTS : • This is the first publication of a metabolic model for a strain of P. chlororaphis. • Genome-scale model is worthy tool to increase the knowledge of a non model organism. • Fluxes simulations indicate a possible effect of H2O2 on phenazines production. • P. chlororaphis can be a suitable model for a wide variety of compounds.
Collapse
|
11
|
Mahmoudi TR, Yu JM, Liu S, Pierson LS, Pierson EA. Drought-Stress Tolerance in Wheat Seedlings Conferred by Phenazine-Producing Rhizobacteria. Front Microbiol 2019; 10:1590. [PMID: 31354678 PMCID: PMC6636665 DOI: 10.3389/fmicb.2019.01590] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
The specific role of phenazines produced by rhizosphere-colonizing Pseudomonas in mediating wheat seedling drought-stress tolerance and recovery from water deficit was investigated using Pseudomonas chlororaphis 30-84 and isogenic derivatives deficient or enhanced in phenazine production compared to wild type. Following a 7-day water deficit, seedlings that received no-inoculum or were colonized by the phenazine mutant wilted to collapse, whereas seedlings colonized by phenazine producers displayed less severe symptoms. After a 7-day recovery period, survival of seedlings colonized by phenazine-producing strains exceeded 80%, but was less than 60% for no-inoculum controls. A second 7-day water deficit reduced overall survival rates to less than 10% for no-inoculum control seedlings, whereas survival was ∼50% for seedlings colonized by phenazine-producers. The relative water content of seedlings colonized by phenazine-producers was 10-20% greater than for the no-inoculum controls at every stage of water deficit and recovery, resulting in higher recovery indices than observed for the no-inoculum controls. For 10-day water deficits causing the collapse of all seedlings, survival rates remained high for plants colonized by phenazine-producers, especially the enhanced phenazine producer (∼74%), relative to the no-inoculum control (∼25%). These observations indicate that seedlings colonized by the phenazine-producing strains suffered less from dehydration during water deficit and recovered better, potentially contributing to better resilience from a second drought/recovery cycle. Seedlings colonized by phenazine-producing strains invested more in root systems and produced 1.5 to 2 fold more root tips than seedlings colonized by the phenazine mutant or the no-inoculum controls when grown with or without water deficit. The results suggest that the presence of phenazine-producing bacteria in the rhizosphere provides wheat seedlings with a longer adjustment period resulting in greater drought-stress avoidance and resilience.
Collapse
Affiliation(s)
- Tessa Rose Mahmoudi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Jun Myoung Yu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Shuyu Liu
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Ghequire MGK, Öztürk B, De Mot R. Lectin-Like Bacteriocins. Front Microbiol 2018; 9:2706. [PMID: 30483232 PMCID: PMC6240691 DOI: 10.3389/fmicb.2018.02706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Bacteria produce a diverse array of antagonistic compounds to restrict growth of microbial rivals. Contributing to this warfare are bacteriocins: secreted antibacterial peptides, proteins and multi-protein complexes. These compounds typically eliminate competitors closely related to the producer. Lectin-like bacteriocins (LlpAs) constitute a distinct class of such proteins, produced by Pseudomonas as well as some other proteobacterial genera. LlpAs share a common architecture consisting of two B-lectin domains, followed by a short carboxy-terminal extension. Two surface-exposed moieties on susceptible Pseudomonas cells are targeted by the respective lectin modules. The carboxy-terminal domain binds D-rhamnose residues present in the lipopolysaccharide layer, whereas the amino-terminal domain interacts with a polymorphic external loop of the outer-membrane protein insertase BamA, hence determining selectivity. The absence of a toxin-immunity module as found in modular bacteriocins and other polymorphic toxin systems, hints toward a novel mode of killing initiated at the cellular surface, not requiring bacteriocin import. Despite significant progress in understanding the function of LlpAs, outstanding questions include the secretion machinery recruited by lectin-like bacteriocins for their release, as well as a better understanding of the environmental signals initiating their expression.
Collapse
Affiliation(s)
| | - Başak Öztürk
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Meirelles LA, Newman DK. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol 2018; 110:995-1010. [PMID: 30230061 DOI: 10.1111/mmi.14132] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, produces redox-active pigments called phenazines. Pyocyanin (PYO, the blue phenazine) plays an important role during biofilm development. Paradoxically, PYO auto-poisoning can stimulate cell death and release of extracellular DNA (eDNA), yet PYO can also promote survival within biofilms when cells are oxidant-limited. Here, we identify the environmental and physiological conditions in planktonic culture that promote PYO-mediated cell death. We demonstrate that PYO auto-poisoning is enhanced when cells are starved for carbon. In the presence of PYO, cells activate a set of genes involved in energy-dependent defenses, including: (i) the oxidative stress response, (ii) RND efflux systems and (iii) iron-sulfur cluster biogenesis factors. P. aeruginosa can avoid PYO poisoning when reduced carbon is available, but blockage of adenosine triphosphate (ATP) synthesis either through carbon limitation or direct inhibition of the F0 F1 -ATP synthase triggers death and eDNA release. Finally, even though PYO is toxic to the majority of the population when cells are nutrient limited, a subset of cells is intrinsically PYO resistant. The effect of PYO on the producer population thus appears to be dynamic, playing dramatically different yet predictable roles throughout distinct stages of growth, helping rationalize its multifaceted contributions to biofilm development.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
14
|
Ong KS, Mawang CI, Daniel-Jambun D, Lim YY, Lee SM. Current anti-biofilm strategies and potential of antioxidants in biofilm control. Expert Rev Anti Infect Ther 2018; 16:855-864. [PMID: 30308132 DOI: 10.1080/14787210.2018.1535898] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Biofilm formation is a strategy for microorganisms to adapt and survive in hostile environments. Microorganisms that are able to produce biofilms are currently recognized as a threat to human health. Areas covered: Many strategies have been employed to eradicate biofilms, but several drawbacks from these methods had subsequently raised concerns on the need for alternative approaches to effectively prevent biofilm formation. One of the main mechanisms that drives a microorganism to transit from a planktonic to a biofilm-sessile state, is oxidative stress. Chemical agents that could target oxidative stress regulators, for instance antioxidants, could therefore be used to treat biofilm-associated infections. Expert commentary: The focus of this review is to summarize the function and limitation of the current anti-biofilm strategies and will propose the use of antioxidants as an alternative method to treat, prevent and eradicate biofilms. Studies have shown that water-soluble and lipid-soluble antioxidants can reduce and prevent biofilm formation, by influencing the expression of genes associated with oxidative stress. Further in vivo work should be conducted to ensure the efficacy of these antioxidants in a biological environment. Nevertheless, antioxidants are promising anti-biofilm agents, and thus is a potential solution for biofilm-associated infections in the future.
Collapse
Affiliation(s)
- Kuan Shion Ong
- a School of Science , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia.,b Tropical Medicine and Biology Multidisciplinary Platform , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia
| | | | | | - Yau Yan Lim
- a School of Science , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia
| | - Sui Mae Lee
- a School of Science , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia.,b Tropical Medicine and Biology Multidisciplinary Platform , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia
| |
Collapse
|
15
|
Biessy A, Filion M. Phenazines in plant-beneficialPseudomonasspp.: biosynthesis, regulation, function and genomics. Environ Microbiol 2018; 20:3905-3917. [DOI: 10.1111/1462-2920.14395] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Adrien Biessy
- Department of Biology; Université de Moncton; Moncton New Brunswick Canada
| | - Martin Filion
- Department of Biology; Université de Moncton; Moncton New Brunswick Canada
| |
Collapse
|
16
|
Kim YC, Anderson AJ. Rhizosphere pseudomonads as probiotics improving plant health. MOLECULAR PLANT PATHOLOGY 2018; 19:2349-2359. [PMID: 29676842 PMCID: PMC6638116 DOI: 10.1111/mpp.12693] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This article illustrates how the probiotic pseudomonads, nurtured by the carbon (C) and nitrogen (N) sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production.
Collapse
Affiliation(s)
- Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju 61186South Korea
| | - Anne J. Anderson
- Department of Biological EngineeringUtah State UniversityLoganUT 84322‐4105USA
| |
Collapse
|
17
|
Bilal M, Wang S, Iqbal HMN, Zhao Y, Hu H, Wang W, Zhang X. Metabolic engineering strategies for enhanced shikimate biosynthesis: current scenario and future developments. Appl Microbiol Biotechnol 2018; 102:7759-7773. [PMID: 30014168 DOI: 10.1007/s00253-018-9222-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 02/08/2023]
Abstract
Shikimic acid is an important intermediate for the manufacture of the antiviral drug oseltamivir (Tamiflu®) and many other pharmaceutical compounds. Much of its existing supply is obtained from the seeds of Chinese star anise (Illicium verum). Nevertheless, plants cannot supply a stable source of affordable shikimate along with laborious and cost-expensive extraction and purification process. Microbial biosynthesis of shikimate through metabolic engineering and synthetic biology approaches represents a sustainable, cost-efficient, and environmentally friendly route than plant-based methods. Metabolic engineering allows elevated shikimate production titer by inactivating the competing pathways, increasing intracellular level of key precursors, and overexpressing rate-limiting enzymes. The development of synthetic and systems biology-based novel technologies have revealed a new roadmap for the construction of high shikimate-producing strains. This review elaborates the enhanced biosynthesis of shikimate by utilizing an array of traditional metabolic engineering along with novel advanced technologies. The first part of the review is focused on the mechanistic pathway for shikimate production, use of recombinant and engineered strains, improving metabolic flux through the shikimate pathway, chemically inducible chromosomal evolution, and bioprocess engineering strategies. The second part discusses a variety of industrially pertinent compounds derived from shikimate with special reference to aromatic amino acids and phenazine compound, and main engineering strategies for their production in diverse bacterial strains. Towards the end, the work is wrapped up with concluding remarks and future considerations.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL, Mexico
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Anderson AJ, McLean JE, Jacobson AR, Britt DW. CuO and ZnO Nanoparticles Modify Interkingdom Cell Signaling Processes Relevant to Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6513-6524. [PMID: 28481096 DOI: 10.1021/acs.jafc.7b01302] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As the world population increases, strategies for sustainable agriculture are needed to fulfill the global need for plants for food and other commercial products. Nanoparticle formulations are likely to be part of the developing strategies. CuO and ZnO nanoparticles (NPs) offer potential as fertilizers, as they provide bioavailable essential metals, and as pesticides, because of dose-dependent toxicity. Effects of these metal oxide NPs on rhizosphere functions are the focus of this review. These NPs at doses of ≥10 mg metal/kg change the production of key metabolites involved in plant protection in a root-associated microbe, Pseudomonas chlororaphis O6. Altered synthesis occurs in the microbe for phenazines, which function in plant resistance to pathogens, the pyoverdine-like siderophore that enhances Fe bioavailability in the rhizosphere and indole-3-acetic acid affecting plant growth. In wheat seedlings, reprogramming of root morphology involves increases in root hair proliferation (CuO NPs) and lateral root formation (ZnO NPs). Systemic changes in wheat shoot gene expression point to altered regulation for metal stress resilience as well as the potential for enhanced survival under stress commonly encountered in the field. These responses to the NPs cross kingdoms involving the bacteria, fungi, and plants in the rhizosphere. Our challenge is to learn how to understand the value of these potential changes and successfully formulate the NPs for optimal activity in the rhizosphere of crop plants. These formulations may be integrated into developing practices to ensure the sustainability of crop production.
Collapse
Affiliation(s)
- Anne J Anderson
- Department of Biology , Utah State University , Logan , Utah 84322-5305 , United States
| | - Joan E McLean
- Department of Civil and Environmental Engineering, Utah Water Research Laboratory , Utah State University , Logan , Utah 84322-8200 , United States
| | - Astrid R Jacobson
- Department of Plants, Soils and Climate , Utah State University , Logan , Utah 84322-4820 , United States
| | - David W Britt
- Department of Bioengineering , Utah State University , Logan , Utah 84322-4105 , United States
| |
Collapse
|
19
|
Shahid I, Malik KA, Mehnaz S. A decade of understanding secondary metabolism in Pseudomonas spp. for sustainable agriculture and pharmaceutical applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0006-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Yu JM, Wang D, Ries TR, Pierson LS, Pierson EA. An upstream sequence modulates phenazine production at the level of transcription and translation in the biological control strain Pseudomonas chlororaphis 30-84. PLoS One 2018; 13:e0193063. [PMID: 29451920 PMCID: PMC5815613 DOI: 10.1371/journal.pone.0193063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/02/2018] [Indexed: 12/02/2022] Open
Abstract
Phenazines are bacterial secondary metabolites and play important roles in the antagonistic activity of the biological control strain P. chlororaphis 30-84 against take-all disease of wheat. The expression of the P. chlororaphis 30-84 phenazine biosynthetic operon (phzXYFABCD) is dependent on the PhzR/PhzI quorum sensing system located immediately upstream of the biosynthetic operon as well as other regulatory systems including Gac/Rsm. Bioinformatic analysis of the sequence between the divergently oriented phzR and phzX promoters identified features within the 5'-untranslated region (5'-UTR) of phzX that are conserved only among 2OHPCA producing Pseudomonas. The conserved sequence features are potentially capable of producing secondary structures that negatively modulate one or both promoters. Transcriptional and translational fusion assays revealed that deletion of 90-bp of sequence at the 5'-UTR of phzX led to up to 4-fold greater expression of the reporters with the deletion compared to the controls, which indicated this sequence negatively modulates phenazine gene expression both transcriptionally and translationally. This 90-bp sequence was deleted from the P. chlororaphis 30-84 chromosome, resulting in 30-84Enh, which produces significantly more phenazine than the wild-type while retaining quorum sensing control. The transcriptional expression of phzR/phzI and amount of AHL signal produced by 30-84Enh also were significantly greater than for the wild-type, suggesting this 90-bp sequence also negatively affects expression of the quorum sensing genes. In addition, deletion of the 90-bp partially relieved RsmE-mediated translational repression, indicating a role for Gac/RsmE interaction. Compared to the wild-type, enhanced phenazine production by 30-84Enh resulted in improvement in fungal inhibition, biofilm formation, extracellular DNA release and suppression of take-all disease of wheat in soil without negative consequences on growth or rhizosphere persistence. This work provides greater insight into the regulation of phenazine biosynthesis with potential applications for improved biological control.
Collapse
Affiliation(s)
- Jun Myoung Yu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States of America
| | - Dongping Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States of America
| | - Tessa R. Ries
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States of America
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States of America
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
21
|
Yu JM, Wang D, Pierson LS, Pierson EA. Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in Pseudomonas chlororaphis 30-84. THE PLANT PATHOLOGY JOURNAL 2018; 34:44-58. [PMID: 29422787 PMCID: PMC5796749 DOI: 10.5423/ppj.ft.12.2017.0277] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 05/16/2023]
Abstract
Pseudomonas chlororaphis 30-84 is a biological control agent selected for its ability to suppress diseases caused by fungal pathogens. P. chlororaphis 30-84 produces three phenazines: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine-1-carboxylic acid (2OHPCA) and a small amount of 2-hydroxy-phenazine (2OHPHZ), and these are required for fungal pathogen inhibition and wheat rhizosphere competence. The two, 2-hydroxy derivatives are produced from PCA via the activity of a phenazine-modifying enzyme encoded by phzO. In addition to the seven biosynthetic genes responsible for the production of PCA, many other Pseudomonas strains possess one or more modifying genes, which encode enzymes that act independently or together to convert PCA into other phenazine derivatives. In order to understand the fitness effects of producing different phenazines, we constructed isogenic derivatives of P. chlororaphis 30-84 that differed only in the type of phenazines produced. Altering the type of phenazines produced by P. chlororaphis 30-84 enhanced the spectrum of fungal pathogens inhibited and altered the degree of take-all disease suppression. These strains also differed in their ability to promote extracellular DNA release, which may contribute to the observed differences in the amount of biofilm produced. All derivatives were equally important for survival over repeated plant/harvest cycles, indicating that the type of phenazines produced is less important for persistence in the wheat rhizosphere than whether or not cells produce phenazines. These findings provide a better understanding of the effects of different phenazines on functions important for biological control activity with implications for applications that rely on introduced or native phenazine producing populations.
Collapse
Affiliation(s)
- Jun Myoung Yu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77943-2133,
USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77943-2133,
USA
| | - Dongping Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77943-2133,
USA
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77943-2133,
USA
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77943-2133,
USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77943-2133,
USA
| |
Collapse
|
22
|
Bilal M, Guo S, Iqbal HMN, Hu H, Wang W, Zhang X. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review. World J Microbiol Biotechnol 2017; 33:191. [PMID: 28975557 DOI: 10.1007/s11274-017-2356-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/22/2017] [Indexed: 02/08/2023]
Abstract
Pseudomonas strains are increasingly attracting considerable attention as a valuable bacterial host both for basic and applied research. It has been considered as a promising candidate to produce a variety of bioactive secondary metabolites, particularly phenazines. Apart from the biotechnological perspective, these aromatic compounds have the notable potential to inhibit plant-pathogenic fungi and thus are useful in controlling plant diseases. Nevertheless, phenazines production is quite low by the wild-type strains that necessitated its yield improvement for large-scale agricultural applications. Metabolic engineering approaches with the advent of plentiful information provided by systems-level genomic and transcriptomic analyses enabled the development of new biological agents functioning as potential cell factories for producing the desired level of value-added bioproducts. This study presents an up-to-date overview of recombinant Pseudomonas strains as the preferred choice of host organisms for the biosynthesis of natural phenazines. The biosynthetic pathway and regulatory mechanism involved in the phenazine biosynthesis are comprehensively discussed. Finally, a summary of biological functionalities and biotechnological applications of the phenazines is also provided.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuqi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
23
|
Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE. Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities. Front Microbiol 2017; 8:1390. [PMID: 28798731 PMCID: PMC5527159 DOI: 10.3389/fmicb.2017.01390] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
The capacity to release genetic material into the extracellular medium has been reported in cultures of numerous species of bacteria, archaea, and fungi, and also in the context of multicellular microbial communities such as biofilms. Moreover, extracellular DNA (eDNA) of microbial origin is widespread in natural aquatic and terrestrial environments. Different specific mechanisms are involved in eDNA release, such as autolysis and active secretion, as well as through its association with membrane vesicles. It is noteworthy that in microorganisms, in which DNA release has been studied in detail, the production of eDNA is coordinated by the population when it reaches a certain cell density, and is induced in a subpopulation in response to the accumulation of quorum sensing signals. Interestingly, in several bacteria there is also a relationship between eDNA release and the development of natural competence (the ability to take up DNA from the environment), which is also controlled by quorum sensing. Then, what is the biological function of eDNA? A common biological role has not been proposed, since different functions have been reported depending on the microorganism. However, it seems to be important in biofilm formation, can be used as a nutrient source, and could be involved in DNA damage repair and gene transfer. This review covers several aspects of eDNA research: (i) its occurrence and distribution in natural environments, (ii) the mechanisms and regulation of its release in cultured microorganisms, and (iii) its biological roles. In addition, we propose that eDNA release could be considered a social behavior, based on its quorum sensing-dependent regulation and on the described functions of eDNA in the context of microbial communities.
Collapse
Affiliation(s)
- Alejandra L Ibáñez de Aldecoa
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (Consejo Superior de Investigaciones Científicas/Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| | - Olga Zafra
- Experimental Sciences Faculty, Francisco de Vitoria UniversityMadrid, Spain
| | - José E González-Pastor
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (Consejo Superior de Investigaciones Científicas/Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| |
Collapse
|
24
|
Pseudomonas chlororaphis Produces Two Distinct R-Tailocins That Contribute to Bacterial Competition in Biofilms and on Roots. Appl Environ Microbiol 2017; 83:AEM.00706-17. [PMID: 28526791 DOI: 10.1128/aem.00706-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/13/2017] [Indexed: 12/13/2022] Open
Abstract
R-type tailocins are high-molecular-weight bacteriocins that resemble bacteriophage tails and are encoded within the genomes of many Pseudomonas species. In this study, analysis of the P. chlororaphis 30-84 R-tailocin gene cluster revealed that it contains the structural components to produce two R-tailocins of different ancestral origins. Two distinct R-tailocin populations differing in length were observed in UV-induced lysates of P. chlororaphis 30-84 via transmission electron microscopy. Mutants defective in the production of one or both R-tailocins demonstrated that the killing spectrum of each tailocin is limited to Pseudomonas species. The spectra of pseudomonads killed by the two R-tailocins differed, although a few Pseudomonas species were either killed by or insusceptible to both tailocins. Tailocin release was disrupted by deletion of the holin gene within the tailocin gene cluster, demonstrating that the lysis cassette is required for the release of both R-tailocins. The loss of functional tailocin production reduced the ability of P. chlororaphis 30-84 to compete with an R-tailocin-sensitive strain within biofilms and rhizosphere communities. Our study demonstrates that Pseudomonas species can produce more than one functional R-tailocin particle sharing the same lysis cassette but differing in their killing spectra. This study provides evidence for the role of R-tailocins as determinants of bacterial competition among plant-associated Pseudomonas in biofilms and the rhizosphere.IMPORTANCE Recent studies have identified R-tailocin gene clusters potentially encoding more than one R-tailocin within the genomes of plant-associated Pseudomonas but have not demonstrated that more than one particle is produced or the ecological significance of the production of multiple R-tailocins. This study demonstrates for the first time that Pseudomonas strains can produce two distinct R-tailocins with different killing spectra, both of which contribute to bacterial competition between rhizosphere-associated bacteria. These results provide new insight into the previously uncharacterized role of R-tailocin production by plant-associated Pseudomonas species in bacterial population dynamics within surface-attached biofilms and on roots.
Collapse
|
25
|
Yu JM, Wang D, Pierson LS, Pierson EA. Disruption of MiaA provides insights into the regulation of phenazine biosynthesis under suboptimal growth conditions in Pseudomonas chlororaphis 30-84. MICROBIOLOGY-SGM 2017; 163:94-108. [PMID: 27926818 DOI: 10.1099/mic.0.000409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many products of secondary metabolism are activated by quorum sensing (QS), yet even at cell densities sufficient for QS, their production may be repressed under suboptimal growth conditions via mechanisms that still require elucidation. For many beneficial plant-associated bacteria, secondary metabolites such as phenazines are important for their competitive survival and plant-protective activities. Previous work established that phenazine biosynthesis in Pseudomonas chlororaphis 30-84 is regulated by the PhzR/PhzI QS system, which in turn is regulated by transcriptional regulator Pip, two-component system RpeA/RpeB and stationary phase/stress sigma factor RpoS. Disruption of MiaA, a tRNA modification enzyme, altered primary metabolism and growth leading to widespread effects on secondary metabolism, including reduced phenazine production and oxidative stress tolerance. Thus, the miaA mutant provided the opportunity to examine the regulation of phenazine production in response to altered metabolism and growth or stress tolerance. Despite the importance of MiaA for translation efficiency, the most significant effect of miaA disruption on phenazine production was the reduction in the transcription of phzR, phzI and pip, whereas neither the transcription nor translation of RpeB, a transcriptional regulator of pip, was affected. Constitutive expression of rpeB or pip in the miaA mutant completely restored phenazine production, but it resulted in further growth impairment. Constitutive expression of RpoS alleviated sensitivity to oxidative stress resulting from RpoS translation inefficiency in the miaA mutant, but it did not restore phenazine production. Our results support the model that cells curtail phenazine biosynthesis under suboptimal growth conditions via RpeB/Pip-mediated regulation of QS.
Collapse
Affiliation(s)
- Jun Myoung Yu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77943-2133, USA
| | - Dongping Wang
- Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Leland S Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77943-2133, USA
| | - Elizabeth A Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77943-2133, USA.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77943-2133, USA
| |
Collapse
|
26
|
Jain R, Pandey A. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiol Res 2016; 190:63-71. [DOI: 10.1016/j.micres.2016.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|