1
|
Mattingly AJ, Laitano O, Garcia CK, Robinson GP, Clanton TL. Lipopolysaccharide-Induced Cytokine Secretion from In Vitro Mouse Slow and Fast Limb Muscle. Shock 2022; 57:600-607. [PMID: 34798635 PMCID: PMC8917056 DOI: 10.1097/shk.0000000000001891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Skeletal muscles play important roles in innate immunity. However, in vitro, their sensitivity to LPS is low. In other tissues, LPS sensing is facilitated by the presence of plasma, LPS binding protein (LBP), or soluble CD14 (sCD14). This study addressed whether these are critical for LPS sensitivity in skeletal muscle and whether LPS responsiveness is different between slow versus fast muscle. Soleus (SOL) or extensor digitorum longus (EDL) muscles from adult male C57bl/6 mice were mounted in 1 mL oxygenated baths containing: buffer only; buffer+1% mouse plasma; buffer+1 μg/mL LBP; or buffer+1% plasma from sCD14-/- mice. In each condition, muscles were exposed to LPS from 0 μg/mL to 1.0 μg/mL. Bath samples were collected at 0, 1, and 2 h, and analyzed using cytokine multiplex arrays. In both SOL and EDL the predominant responding cytokines/chemokines were KC(CXCL1), IL-6, and MCP-1(CCL2) and their average responses were amplified by ∼10-fold in the presence of 1% plasma. Overall, SOL and EDL exhibited similar secretory responses in the presence of 1% plasma, with a lower limit of sensitivity to LPS of 0.01 μg/mL. LBP supplementation did not augment secretion; however, 1% plasma from CD14-/- mice suppressed cytokine/chemokine secretion from EDL muscle. In conclusion, intact slow and fast mouse muscles have similar cytokine/chemokine responses to LPS but depend on the presence of low levels of plasma constituents. Though sCD14 plays some role in EDL muscle, neither sCD14 nor LBP can fully account for the strong effects of plasma on LPS sensitivity.
Collapse
Affiliation(s)
- Alex J Mattingly
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | | | | | | | | |
Collapse
|
2
|
Mankowski RT, Laitano O, Darden D, Kelly L, Munley J, Loftus TJ, Mohr AM, Efron PA, Thomas RM. Sepsis-Induced Myopathy and Gut Microbiome Dysbiosis: Mechanistic Links and Therapeutic Targets. Shock 2022; 57:15-23. [PMID: 34726875 PMCID: PMC9373856 DOI: 10.1097/shk.0000000000001843] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ABSTRACT Sepsis is currently defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The skeletal muscle system is among the host organ systems compromised by sepsis. The resulting neuromuscular dysfunction and impaired regenerative capacity defines sepsis-induced myopathy and manifests as atrophy, loss of strength, and hindered regeneration after injury. These outcomes delay recovery from critical illness and confer increased vulnerability to morbidity and mortality. The mechanisms underlying sepsis-induced myopathy, including the potential contribution of peripheral organs, remain largely unexplored. The gut microbiome is an immunological and homeostatic entity that interacts with and controls end-organ function, including the skeletal muscle system. Sepsis induces alterations in the gut microbiota composition, which is globally termed a state of "dysbiosis" for the host compared to baseline microbiota composition. In this review, we critically evaluate existing evidence and potential mechanisms linking sepsis-induced myopathy with gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Robert T. Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL
| | - Orlando Laitano
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL
| | - Dijoia Darden
- Department of Surgery, University of Florida, Gainesville, FL
| | - Lauren Kelly
- Department of Surgery, University of Florida, Gainesville, FL
| | - Jennifer Munley
- Department of Surgery, University of Florida, Gainesville, FL
| | - Tyler J. Loftus
- Department of Surgery, University of Florida, Gainesville, FL
| | - Alicia M. Mohr
- Department of Surgery, University of Florida, Gainesville, FL
| | - Philip A. Efron
- Department of Surgery, University of Florida, Gainesville, FL
| | - Ryan M. Thomas
- Department of Surgery, University of Florida, Gainesville, FL
- Department of Molecular Genetics and Microbiology; University of Florida College of Medicine; Gainesville, FL
- Section of General Surgery, North Florida/South Georgia Veterans Health System; Gainesville, FL
| |
Collapse
|
3
|
Bachnak L, Sparks J, Newmire DE, Gonzales XF, Omoruyi FO. The Effect of Acute and Chronic Thermotherapy on Type 2 Diabetic Skeletal Muscle Gene Expression and Inflammatory Markers. Biomedicines 2021; 9:1276. [PMID: 34572462 PMCID: PMC8467662 DOI: 10.3390/biomedicines9091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a chronic illness associated with resistance to or defective insulin secretion. This study investigates the effects of thermotherapy on cell viability, gene expression and inflammation in skeletal muscle cell lines. METHODS Healthy and T2D human skeletal muscle cell lines (HSMM and D-HSMM, respectively) were subjected to acute or chronic thermo-therapy (AT or CT, respectively). CT consisted of a 30 min exposure to 40 °C, three times a week for three weeks; AT was a one-time exposure. RESULTS A significant decrease in D-HSMM cell viability percentage followed AT; however, no significant change occurred in CT. HSMM yielded the highest elevations of genes following CT. In D-HSMM, both treatments yielded gene upregulation. Both treatments significantly down-regulated IL-1β, IL-6, IL-10 and TNF-α in HSMM. AT significantly decreased IL-1β, IL-6 and upregulated IL-10 and TNF-α levels in D-HSMM, while CT yielded a reduction in IL-4, TNF-α and an upregulation of IL-6 and IL-10. CONCLUSIONS An increase in gene expression indicates actin activity and cellular responses, suggesting an increase in transcriptional regulation. The upregulation of IL-6 and IL-10 in D-HSMM negatively correlated with a decrease in TNF-α and IL-1β, indicating improved adverse inflammatory effects associated with the disease.
Collapse
Affiliation(s)
- Louay Bachnak
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (J.S.); (X.F.G.); (F.O.O.)
| | - Jean Sparks
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (J.S.); (X.F.G.); (F.O.O.)
| | - Daniel E. Newmire
- Department of Kinesiology, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA;
| | - Xavier F. Gonzales
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (J.S.); (X.F.G.); (F.O.O.)
| | - Felix O. Omoruyi
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (J.S.); (X.F.G.); (F.O.O.)
| |
Collapse
|
4
|
Laitano O, Pindado J, Valera I, Spradlin RA, Murray KO, Villani KR, Alzahrani JM, Ryan TE, Efron PA, Ferreira LF, Barton ER, Clanton TL. The impact of hindlimb disuse on sepsis-induced myopathy in mice. Physiol Rep 2021; 9:e14979. [PMID: 34309237 PMCID: PMC8311555 DOI: 10.14814/phy2.14979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Sepsis induces a myopathy characterized by loss of muscle mass and weakness. Septic patients undergo prolonged periods of limb muscle disuse due to bed rest. The contribution of limb muscle disuse to the myopathy phenotype remains poorly described. To characterize sepsis-induced myopathy with hindlimb disuse, we combined the classic sepsis model via cecal ligation and puncture (CLP) with the disuse model of hindlimb suspension (HLS) in mice. Male C57bl/6j mice underwent CLP or SHAM surgeries. Four days after surgeries, mice underwent HLS or normal ambulation (NA) for 7 days. Soleus (SOL) and extensor digitorum longus (EDL) were dissected for in vitro muscle mechanics, morphological, and histological assessments. In SOL muscles, both CLP+NA and SHAM+HLS conditions elicited ~20% reduction in specific force (p < 0.05). When combined, CLP+HLS elicited ~35% decrease in specific force (p < 0.05). Loss of maximal specific force (~8%) was evident in EDL muscles only in CLP+HLS mice (p < 0.05). CLP+HLS reduced muscle fiber cross-sectional area (CSA) and mass in SOL (p < 0.05). In EDL muscles, CLP+HLS decreased absolute mass to a smaller extent (p < 0.05) with no changes in CSA. Immunohistochemistry revealed substantial myeloid cell infiltration (CD68+) in SOL, but not in EDL muscles, of CLP+HLS mice (p < 0.05). Combining CLP with HLS is a feasible model to study sepsis-induced myopathy in mice. Hindlimb disuse combined with sepsis induced muscle dysfunction and immune cell infiltration in a muscle dependent manner. These findings highlight the importance of rehabilitative interventions in septic hosts to prevent muscle disuse and help attenuate the myopathy.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Nutrition and Integrative PhysiologyCollege of Health and Human SciencesFlorida State UniversityTallahasseeFLUSA
| | - Jose Pindado
- Department of Nutrition and Integrative PhysiologyCollege of Health and Human SciencesFlorida State UniversityTallahasseeFLUSA
| | - Isela Valera
- Department of Nutrition and Integrative PhysiologyCollege of Health and Human SciencesFlorida State UniversityTallahasseeFLUSA
| | - Ray A. Spradlin
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Kevin O. Murray
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Katelyn R. Villani
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Jamal M. Alzahrani
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Terence E. Ryan
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Philip A. Efron
- Department of SurgeryCollege of MedicineUniversity of FloridaGainesvilleFLUSA
| | - Leonardo F. Ferreira
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Elisabeth R. Barton
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Thomas L. Clanton
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
5
|
Laitano O, Robinson GP, Garcia CK, Mattingly AJ, Sheikh LH, Murray KO, Iwaniec JD, Alzahrani J, Morse D, Hidalgo J, Clanton TL. Skeletal Muscle Interleukin-6 Contributes to the Innate Immune Response in Septic Mice. Shock 2021; 55:676-685. [PMID: 32826815 PMCID: PMC8607997 DOI: 10.1097/shk.0000000000001641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Interleukin-6 (IL-6) is a major cytokine released by skeletal muscle. Although IL-6 plays complex but well-known roles in host defense, the specific contribution of skeletal muscle IL-6 to innate immunity remains unknown. We tested its functional relevance by exposing inducible skeletal muscle IL-6 knockdown (skmIL-6KD) mice to a cecal slurry model of polymicrobial peritonitis and compared responses to strain-matched controls and skeletal muscle Cre-matched controls at 3, 6, and 12 h postinfection. In both sexes, skmIL-6KD mice at 6 h of infection exhibited marked changes to leukocyte trafficking in the peritoneum, characterized by ∼1.75-fold elevation in %neutrophils, a ∼3-fold reduction in %lymphocytes and a ∼2 to 3-fold reduction in %basophils. A similar pattern was seen at 12 h. No changes were observed in plasma leukocyte counts. Circulating cytokines in female skmIL-6KD mice at 6 h consistently showed modest reductions in IL-6, but marked reductions in a broad range of both pro- and anti-inflammatory cytokines, e.g., TNFα and IL-10. In both sexes at 12 h, a generalized suppression of plasma cytokines was also seen after the effects of Cre-induction with raloxifene were addressed. There were no significant effects of skmIL-6KD on mortality in either sex. Collectively, our results are consistent with skmIL-6 playing an important and previously unrecognized role in immune cell trafficking and cytokine regulation during septic shock.
Collapse
Affiliation(s)
- Orlando Laitano
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Gerard P. Robinson
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Christian K. Garcia
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Alex J. Mattingly
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Laila H. Sheikh
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Kevin O. Murray
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - John D. Iwaniec
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Jamal Alzahrani
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Deborah Morse
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Thomas L. Clanton
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| |
Collapse
|
6
|
Laitano O, Oki K, Leon LR. The Role of Skeletal Muscles in Exertional Heat Stroke Pathophysiology. Int J Sports Med 2021; 42:673-681. [PMID: 33772503 DOI: 10.1055/a-1400-9754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The active participation of skeletal muscles is a unique characteristic of exertional heat stroke. Nevertheless, the only well-documented link between skeletal muscle activities and exertional heat stroke pathophysiology is the extensive muscle damage (e. g., rhabdomyolysis) and subsequent leakage of intramuscular content into the circulation of exertional heat stroke victims. Here, we will present and discuss rarely explored roles of skeletal muscles in the context of exertional heat stroke pathophysiology and recovery. This includes an overview of heat production that contributes to severe hyperthermia and the synthesis and secretion of bioactive molecules, such as cytokines, chemokines and acute phase proteins. These molecules can alter the overall inflammatory status from pro- to anti-inflammatory, affecting other organ systems and influencing recovery. The activation of innate immunity can determine whether a victim is ready to return to physical activity or experiences a prolonged convalescence. We also provide a brief discussion on whether heat acclimation can shift skeletal muscle secretory phenotype to prevent or aid recovery from exertional heat stroke. We conclude that skeletal muscles should be considered as a key organ system in exertional heat stroke pathophysiology.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, United States
| | - Kentaro Oki
- Thermal & Mountain Medicine Devision, United States Army Research Institute of Environmental Medicine, Natick, United States
| | - Lisa R Leon
- Thermal & Mountain Medicine Devision, United States Army Research Institute of Environmental Medicine, Natick, United States
| |
Collapse
|
7
|
Iwaniec J, Robinson GP, Garcia CK, Murray KO, de Carvalho L, Clanton TL, Laitano O. Acute phase response to exertional heat stroke in mice. Exp Physiol 2021; 106:222-232. [PMID: 32281170 PMCID: PMC8530095 DOI: 10.1113/ep088501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Exertional heat stroke is accompanied by a marked inflammatory response. In this study, we explored the time course of acute phase proteins during recovery from severe heat stress in mice and the potential role of skeletal muscles as their source. What is the main finding and its importance? Exertional heat stroke transiently increased expression of acute phase proteins in mouse liver and plasma and depleted liver and plasma fibrinogen, a typical response to severe trauma. In contrast, skeletal muscle fibrinogen production was stimulated by heat stroke, which can provide an additional reservoir for fibrinogen supply to maintain the clotting potential throughout the body and locally within the muscle. ABSTRACT Exertional heat stroke (EHS), the most severe manifestation of heat illness, is accompanied by a marked inflammatory response. The release of acute phase proteins (APPs) is an important component of inflammation, which can assist in tissue survival/repair. The time course of APPs in recovery from EHS is unknown. Furthermore, skeletal muscles produce APPs during infection, but it is unknown whether they can produce APPs after EHS. Our objective was to determine the time course of representative APPs in liver, plasma and skeletal muscle during recovery from EHS. Male C57BL6/J mice ran in a forced running wheel at 37.5°C, 40% relative humidity until symptom limitation. Exercise control (EXC) mice ran for the same duration and intensity at 22.5°C. Samples were collected (n = 6-12 per group) over 14 days of recovery. Protein abundance was quantified using immunoblots. Total and phosphorylated STAT3 (pSTAT3) at Tyr705, responsible for APP activation, increased in liver at 0.5 h after EHS compared with EXC, (P < 0.05 and P < 0.001, respectively). In contrast, in tibialis anterior (TA) muscle, total STAT3 increased at 3 h (P < 0.05) but pSTAT3 (Tyr705) did not. Liver serum amyloid A1 (SAA1) increased at 3 and 24 h after EHS (P < 0.05), whereas plasma SAA1 increased only at 3 h (P < 0.05). SAA1 was not detected in TA muscle. In liver and plasma, fibrinogen decreased at 3 h (P < 0.01) and increased in TA muscle (P < 0.05). Lipocalin-2 was undetectable in liver or TA muscle. Recovery from EHS is characterized by a transient acute phase response in both liver and skeletal muscle. However, APP expression profiles and subtypes differ between skeletal muscle and liver.
Collapse
Affiliation(s)
- John Iwaniec
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Gerard P Robinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Christian K Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Kevin O Murray
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Lucas de Carvalho
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Mormile R. Hyperthermia, positive feedback loop with IL-6 and risk of NSCLC progression: a tangle to unravel? J Cancer Res Clin Oncol 2020; 146:1101-1102. [PMID: 31807866 DOI: 10.1007/s00432-019-03105-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022]
Abstract
Fever may represent a risk factor for NSCLC by increasing IL-6 expression. In this light, an accurate and rapid control of fever among lung cancer patients should be carefully added to the treatment plan. On this regard, concerns increase when doubts arise regarding the applicability of hyperthermia on NSCLC given the potential interaction of IL-6 with NSCLC. Thus, I suggest that randomized, controlled double-arm clinical studies are warranted for an evidence-based evaluation of feasibility of the hyperthermia application in the management of NSCLC.
Collapse
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Via A. Gramsci, 81031, Aversa, Italy.
| |
Collapse
|
9
|
Effects of high temperature on pandemic and seasonal human influenza viral replication and infection-induced damage in primary human tracheal epithelial cell cultures. Heliyon 2019; 5:e01149. [PMID: 30839917 PMCID: PMC6365403 DOI: 10.1016/j.heliyon.2019.e01149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/16/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
High temperature reduces influenza viral replication; however, the treatment of fevers is thought to be necessary to improve patients' conditions. We examined the effects of high temperature on viral replication and infection-induced damage to human tracheal epithelial cells. Cell viability and dome formation were reduced, the number of detached cells was increased and lactate dehydrogenase (LDH) levels tended to be increased from 72 h to 120 h in uninfected cells cultured at 40 °C. Long-term (72 h and/or 120 h) exposure to high temperatures (39 °C and/or 40 °C) decreased RNA levels and/or viral titers of eight influenza virus strains. Cell viability and dome formation were reduced, and the number of detached cells and LDH levels were increased to a similar extent after infection with the A/H1N1 pdm 2009 virus at 37 °C and 40 °C. High temperature increased the endosomal pH, where the viral RNA enters the cytoplasm, in uninfected cells. High temperature reduced the production of IL-6, which mediate viral replication processes, and IL-1β and IL-8 in uninfected and infected cells. Based on these findings, high temperature may cause similar levels of airway cell damage after infection to cells exposed normal temperatures, although high temperature reduces viral replication by affecting the function of acidic endosomes and inhibiting IL-6-mediated processes.
Collapse
|
10
|
Patton MG, Gillum TL, Szymanski MC, Gould LM, Lauterbach CJ, Vaughan RA, Kuennen MR. Heat acclimation increases inflammatory and apoptotic responses to subsequent LPS challenge in C2C12 myotubes. Cell Stress Chaperones 2018; 23:1117-1128. [PMID: 29907924 PMCID: PMC6111074 DOI: 10.1007/s12192-018-0923-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 01/12/2023] Open
Abstract
This work investigated the ability of a 6-day heat acclimation protocol to impart heat acclimation-mediated cross-tolerance (HACT) in C2C12 myotubes, as indicated by changes in inflammatory and apoptotic responses to subsequent lipopolysaccharide (LPS) challenge. Myotubes were incubated at 40 °C for 2 h/day over 6 days (HA) or maintained for 6 days at 37 °C (C). Following 24 h recovery, myotubes from each group received either no stimulation or 500 ng/ml LPS for 2 h (HA + LPS and C + LPS, respectively). Cell lysates were collected and analyzed for protein markers of the heat shock response, inflammation, and apoptosis. As compared to C, HA exhibited an elevated heat shock response [HSP70 (+ 99%); HSP60 (+ 216%); HSP32 (+ 40%); all p < 0.01] and reduced inflammatory and apoptotic signaling [p-NF-ĸB:NF-ĸB (- 99%%); p-JNK (- 49%); all p < 0.01]. When compared to C + LPS, HA + LPS also exhibited an elevated heat shock response [HSP70 (+ 68%); HSP60 (+ 32%); HSP32 (+ 38%); all p < 0.01]. However, inflammatory and apoptotic responses in HA + LPS were increased [p-IKBa:IKBa (+ 432%); p-NF-ĸB:NF-ĸB (+ 283%); caspase-8p18 (+ 53%); p-JNK (+ 41%); all p < 0.05]. This unanticipated finding may be due to increased TLR4-mediated signaling capacity in HA + LPS, as indicated by upregulation of TLR4 [(+ 24%); MyD88 (+ 308%); p-NIK (+ 199%); and p-IKKα/b (+ 81%); all p < 0.05]. Data suggest HA reduces inflammatory and apoptotic signaling in skeletal muscle cells that are maintained under basal conditions. However, HACT is selective and does not apply to TLR4 signaling in the present model.
Collapse
Affiliation(s)
- Meghan G Patton
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Mandy C Szymanski
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Lacey M Gould
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Claire J Lauterbach
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Matthew R Kuennen
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA.
| |
Collapse
|
11
|
Mattingly AJ, Laitano O, Clanton TL. Epinephrine stimulates CXCL1 IL-1 α, IL-6 secretion in isolated mouse limb muscle. Physiol Rep 2018; 5. [PMID: 29192066 PMCID: PMC5727277 DOI: 10.14814/phy2.13519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Catecholamines stimulate interleukin‐6 (IL‐6) secretion in skeletal muscles. However, whether other cytokines are secreted is currently unknown. Skeletal muscle ex vivo preparations commonly used to study cytokine secretion have dealt with limitations including auto‐oxidation of catecholamines. The use of metal chelators could be an alternative to avoid auto‐oxidation and allow catecholamines to be used at physiological doses. We exposed isolated soleus muscles to 1 or 100 ng/mL epinephrine (EPI) and collected bath samples at 1 and 2 h for multiplex cytokine analysis. Keratinocyte chemoattractant (CXCL1), IL‐6, and IL‐1α were significantly elevated by 100 ng/mL exposure, but not by 1 ng/mL (median [CXCL1] (2 h) = 83 pg/mL; [IL‐6] = 19 pg/mL; IL‐1α = 7.5 pg/mL). CXCL1 and IL‐6 were highly correlated in each sample (P = 0.0001). A second experiment combined the metal chelator, deferoxamine mesylate (DFO), to prevent EPI autoxidation, with 2 ng/mL EPI and 10.5 ng/mL norepinephrine (NOREPI) to mimic peak exercise. Unexpectedly, DFO alone stimulated both IL‐6 and CXCL1 secretion, but together with EPI and NOREPI had no additional effects. Stimulation of cytokine secretory responses from skeletal muscle cells in response to DFO thus precludes its use as a chelating agent in ex vivo models. In conclusion, 100 ng/mL EPI stimulates a robust secretory CXCL1 response, which together with IL‐6 and IL‐1α, may constitute an adrenal‐muscle endocrine response system.
Collapse
Affiliation(s)
- Alex J Mattingly
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, Florida
| | - Orlando Laitano
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, Florida
| | - Thomas L Clanton
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, Florida
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Mesoamerican nephropathy (MeN) is an emerging pathophysiological entity of Chronic kidney desease (CKD) not related to traditional risk factors (diabetes and hypertension) that have caused thousands of deaths in Central America, mainly in sugarcane workers. The focus of this review is to discuss the risk factors and probable mechanisms involved in the initiation and progression of this devastating disease. RECENT FINDINGS Frequent episodes of subclinical Acute kidney injury caused by repetitive heat stress, dehydration, and strenuous work have been regarded as the main risk factors for MeN. The combination of them chronically activates vasopressin, renin angiotensin aldosterone system, and polyol-fructokinase pathway in the kidney. Also, subclinical rhabdomyolysis compound the framework of the disease by exacerbating systemic inflammation and inducing uricosuria. Exposure to nephrotoxins, high fructose intake, and use of NSAIDs could also contribute to further accelerating the progression of the disease. SUMMARY The evidence supports the notion that recurrent cycles of heat stress, dehydration, and strenuous work may cause CKD. The chronic activation of such mechanisms likely occurs in other conditions of reduced water intake and probably explains why the current management of CKD has not been effective to revert or halt the progression to end-stage CKD.
Collapse
|
13
|
Ganesan S, Pearce SC, Gabler NK, Baumgard LH, Rhoads RP, Selsby JT. Short-term heat stress results in increased apoptotic signaling and autophagy in oxidative skeletal muscle in Sus scrofa. J Therm Biol 2018; 72:73-80. [PMID: 29496018 DOI: 10.1016/j.jtherbio.2018.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 11/30/2022]
Abstract
Prolonged environment-induced hyperthermia causes morbidities and mortality in humans and animals and appears to cause organ-specific injury and dysfunction. We have previously determined autophagic dysfunction and apoptotic signaling in oxidative skeletal muscle following prolonged hyperthermia. The aim of this investigation was to extend our knowledge regarding the early chronology of heat stress-mediated apoptotic and autophagic signaling in oxidative skeletal muscle. We hypothesized that 2, 4, and 6 h of hyperthermia would increase apoptosis and autophagy in oxidative skeletal muscle compared to thermoneutral (TN) conditions. Pigs were assigned to four groups (n = 8/group) and exposed to environmental heat stress (37 °C) for 0, 2, 4, or 6 h. Immediately following environmental exposure animals were euthanized and the red portion of the semitendinosus was collected. Markers of apoptotic signaling were increased following 2 h of heating but returned to baseline thereafter, while caspase 3 activity remained elevated 2-3 fold (p < .05) throughout the hyperthermic period. Heat stress increased (p < .05) markers of autophagic activation, and nucleation as well as autophagosome formation and degradation linearly throughout the heating intervention. In addition, 6 h of hyperthermia increased (p < .05) markers of mitophagy. These data suggest that apoptotic signaling precedes increased autophagy during acute heat stress in oxidative skeletal muscle.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Sarah C Pearce
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
14
|
King MA, Leon LR, Morse DA, Clanton TL. Unique cytokine and chemokine responses to exertional heat stroke in mice. J Appl Physiol (1985) 2016; 122:296-306. [PMID: 27909226 DOI: 10.1152/japplphysiol.00667.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 01/19/2023] Open
Abstract
In heat stroke, cytokines are believed to play important roles in multiorgan dysfunction and recovery of damaged tissue. The time course of the cytokine response is well defined in passive heat stroke (PHS), but little is known about exertional heat stroke (EHS). In this study we used a recently developed mouse EHS model to measure the responses of circulating cytokines/chemokines and cytokine gene expression in muscle. A very rapid increase in circulating IL-6 was observed at maximum core temperature (Tc,max) that peaked at 0.5 h of recovery and disappeared by 3 h. IL-10 was not elevated at any time. This contrasts with PHS where both IL-6 and IL-10 peak at 3 h of recovery. Keratinocyte chemoattractant (KC), granulocyte-colony-stimulating factor (G-CSF), macrophage inflammatory protein (MIP)-2, MIP-1β, and monocyte chemoattractive factor-1 also demonstrated near peak responses at 0.5 h. Only G-CSF and KC remained elevated at 3 h. Muscle mRNA for innate immune cytokines (IL-6, IL-10, IL-1β, but not TNF-α) were greatly increased in diaphragm and soleus compared with similar measurements in PHS. We hypothesized that these altered cytokine responses in EHS may be due to a lower Tc,max achieved in EHS or a lower overall heat load. However, when these variables were controlled for, they could not account for the differences between EHS and PHS. We conclude that moderate exercise, superimposed on heat exposure, alters the pattern of circulating cytokine and chemokine production and muscle cytokine expression in EHS. This response may comprise an endocrine reflex to exercise in heat that initiates survival pathways and early onset tissue repair mechanisms. NEW & NOTEWORTHY Immune modulators called cytokines are released following extreme hyperthermia leading to heat stroke. It is not known whether exercise in hyperthermia, leading to EHS, influences this response. Using a mouse model of EHS, we discovered a rapid accumulation of interleukin-6 and other cytokines involved in immune cell trafficking. This response may comprise a protective mechanism for early induction of cell survival and tissue repair pathways needed for recovery from thermal injury.
Collapse
Affiliation(s)
- Michelle A King
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, The University of Florida; and
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Deborah A Morse
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, The University of Florida; and
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, The University of Florida; and
| |
Collapse
|
15
|
Controlled Heat Stress Promotes Myofibrillogenesis during Myogenesis. PLoS One 2016; 11:e0166294. [PMID: 27824934 PMCID: PMC5100975 DOI: 10.1371/journal.pone.0166294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 10/26/2016] [Indexed: 11/24/2022] Open
Abstract
Hyperthermia therapy has recently emerged as a clinical modality used to finely tune heat stress inside the human body for various biomedical applications. Nevertheless, little is known regarding the optimal timing or temperature of heat stress that is needed to achieve favorable results following hyperthermia therapy for muscle regeneration purposes. The regeneration of skeletal muscle after injury is a highly complex and coordinated process that involves a multitude of cellular mechanisms. The main objective of this study was to characterize the effects of hyperthermal therapy on the overall behavior of myoblasts during myogenic differentiation. Various cellular processes, including myogenesis, myofibrillogenesis, hypertrophy/atrophy, and mitochondrial biogenesis, were studied using systematic cellular, morphological, and pathway-focused high-throughput gene expression profiling analyses. We found that C2C12 myoblasts exhibited distinctive time and temperature-dependence in biosynthesis and regulatory events during myogenic differentiation. Specifically, we for the first time observed that moderate hyperthermia at 39°C favored the growth of sarcomere in myofibrils at the late stage of myogenesis, showing universal up-regulation of characteristic myofibril proteins. Characteristic myofibrillogenesis genes, including heavy polypeptide 1 myosin, heavy polypeptide 2 myosin, alpha 1 actin, nebulin and titin, were all significantly upregulated (p<0.01) after C2C12 cells differentiated at 39°C over 5 days compared with the control cells cultured at 37°C. Furthermore, moderate hyperthermia enhanced myogenic differentiation, with nucleus densities per myotube showing 2.2-fold, 1.9-fold and 1.6-fold increases when C2C12 cells underwent myogenic differentiation at 39°C over 24 hours, 48 hours and 72 hours, respectively, as compared to the myotubes that were not exposed to heat stress. Yet, atrophy genes were sensitive even to moderate hyperthermia, indicating that strictly controlled heat stress is required to minimize the development of atrophy in myotubes. In addition, mitochondrial biogenesis was enhanced following thermal induction of myoblasts, suggesting a subsequent shift toward anabolic demand requirements for energy production. This study offers a new perspective to understand and utilize the time and temperature-sensitive effects of hyperthermal therapy on muscle regeneration.
Collapse
|
16
|
Brodmerkel DW, Taylor JA. Passive heat therapy: a ready route to vascular health? J Physiol 2016; 594:5039-40. [PMID: 27629074 DOI: 10.1113/jp272933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Daniel W Brodmerkel
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA, USA
| | - J Andrew Taylor
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|