1
|
Zheng Y, Ye C, Li H, Wang Y, Teng L, Huang Y. Knockdown of TGFB2 Attenuates Ischemic Heart Failure by Inhibiting Apoptosis. Cardiovasc Toxicol 2025; 25:735-749. [PMID: 40080329 DOI: 10.1007/s12012-025-09974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
Heart failure (HF) is a clinical syndrome resulting from cardiac overload and injury. The molecular mechanisms underlying ischemic HF remain unclear. Using the GSE116250 and GSE203160 datasets, we screened for differentially expressed genes (DEGs) in ischemic HF, identifying 132 overlapping genes. Through the protein-protein interaction (PPI) network, we screened nine hub genes-SPP1, POSTN, CCN2, FGF7, OGN, BMP2, LUM, TGFB2, and BMP7-that may serve as diagnostic biomarkers for HF. FGF7 and BMP7 expression levels were reduced, while TGFB2, OGN, and CCN2 expression levels were elevated in rat models of left anterior descending coronary artery ligation. Notably, Cell Counting Kit-8 and flow cytometry showed that TGFB2 knockdown promoted viability and inhibited apoptosis in oxygen glucose deprivation-induced H9c2 cells. Western blot analysis further demonstrated that TGFB2 knockdown decreased cleaved Caspase-3/Caspase-3 and Bax protein levels while increasing Bcl-2 protein expression. These findings reveal that TGFB2 knockdown mitigates ischemic HF by suppressing apoptosis, offering novel insights into the fundamental molecular mechanisms underlying HF.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, 570311, Hainnan, China
| | - Cong Ye
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, 570311, Hainnan, China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, 570311, Hainnan, China
| | - Yudai Wang
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, 570311, Hainnan, China
| | - Lifeng Teng
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, 570311, Hainnan, China.
| | - Yubing Huang
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, 570311, Hainnan, China.
| |
Collapse
|
2
|
Chen Q, Thompson J, Hu Y, Wang H, Slotabec L, Nguyen JD, Rouhi N, Li J, Lesnefsky EJ. High-dose metformin treatment to inhibit complex I during early reperfusion protects the aged mouse heart via decreased mitochondrial permeability transition pore opening. J Pharmacol Exp Ther 2024; 392:100529. [PMID: 39969273 DOI: 10.1016/j.jpet.2024.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 02/20/2025] Open
Abstract
Acute, high-dose metformin (MET, 2 mM) results in partial complex I inhibition in ischemia (ISC)-modified mitochondria. Mitochondrial permeability transition pore (MPTP) opening increases cardiac injury during ISC-reperfusion (REP). We evaluated whether MET (2 mM) can decrease MPTP opening in aged hearts during REP. Sestrin2 (Sesn2) regulates metabolism through activation of AMP-dependent protein kinase. Sesn2 decreases in aged hearts. The knockout (KO) of Sesn2 mimics the aging phenotype. Inactivation of glycogen synthase kinase-3 β (GSK-3β) via serine-9 phosphorylation decreases MPTP opening. We assessed if 2 mM MET given during early REP can decrease cardiac injury by partial blockade of complex I with decreased MPTP opening and if the protection depends on Sesn2-mediated GSK-3β phosphorylation. C57BL/6BJ male mice (22-24 months) and adult Sesn2 KO mice were evaluated. MET dose-dependently inhibited NADH oxidase activity in permeabilized mitochondria in both aged and Sesn2 KO greater after 25 minutes of ISC. MET (2 mM) given during REP decreased infarct size in aged hearts. MET improved calcium retention capacity in both aged wild-type and adult Sesn2 KO mice. MET treatment only increased phosphorylation of GSK-3β in aged heart mitochondria but not in Sesn2 KO hearts. Thus, high-dose MET at REP partially inhibits complex I and decreases MPTP opening. The decreased MPTP susceptibility downstream of complex I inhibition is not fully dependent on GSK-3β inhibition. Complex I downregulation with acute, high-dose MET has translational potential to protect the aged heart. SIGNIFICANCE STATEMENT: This study explores the efficacy and mechanism of acute high-dose metformin treatment in reducing mitochondrial-driven cardiac injury during reperfusion after stop-flow ischemia in the high-risk aged heart. Metformin dose-dependently inhibits complex I (NADH oxidation) in ischemia-altered mitochondria. Metformin given during early reperfusion mitigated MPTP opening as the mechanism of decreased reperfusion injury. Thus, modulation of complex I via metformin at reperfusion has potential translational application to mitigate injury during ST-elevation myocardial infarction in the high-risk aged heart.
Collapse
Affiliation(s)
- Qun Chen
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Jeremy Thompson
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Ying Hu
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Hao Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lily Slotabec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi
| | - Jennie D Nguyen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia; Medical Service, Richmond Department of Veterans Affairs Medical Center, Richmond, Virginia.
| |
Collapse
|
3
|
Tejera-Muñoz A, Cortés M, Rodriguez-Rodriguez A, Tejedor-Santamaria L, Marchant V, Rayego-Mateos S, Gimeno-Longas MJ, Leask A, Nguyen TQ, Martín M, Tuñón J, Rodríguez I, Ruiz-Ortega M, Rodrigues-Díez RR. Ccn2 Deletion Reduces Cardiac Dysfunction, Oxidative Markers, and Fibrosis Induced by Doxorubicin Administration in Mice. Int J Mol Sci 2024; 25:9617. [PMID: 39273564 PMCID: PMC11394698 DOI: 10.3390/ijms25179617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular Communication Network Factor 2 (CCN2) is a matricellular protein implicated in cell communication and microenvironmental signaling. Overexpression of CCN2 has been documented in various cardiovascular pathologies, wherein it may exert either deleterious or protective effects depending on the pathological context, thereby suggesting that its role in the cardiovascular system is not yet fully elucidated. In this study, we aimed to investigate the effects of Ccn2 gene deletion on the progression of acute cardiac injury induced by doxorubicin (DOX), a widely utilized chemotherapeutic agent. To this end, we employed conditional knockout (KO) mice for the Ccn2 gene (CCN2-KO), which were administered DOX and compared to DOX-treated wild-type (WT) control mice. Our findings demonstrated that the ablation of CCN2 ameliorated DOX-induced cardiac dysfunction, as evidenced by improvements in ejection fraction (EF) and fractional shortening (FS) of the left ventricle. Furthermore, DOX-treated CCN2-KO mice exhibited a significant reduction in the gene expression and activation of oxidative stress markers (Hmox1 and Nfe2l2/NRF2) relative to DOX-treated WT controls. Additionally, the deletion of Ccn2 markedly attenuated DOX-induced cardiac fibrosis. Collectively, these results suggest that CCN2 plays a pivotal role in the pathogenesis of DOX-mediated cardiotoxicity by modulating oxidative stress and fibrotic pathways. These findings provide a novel avenue for future investigations to explore the therapeutic potential of targeting CCN2 in the prevention of DOX-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Research Unit, Complejo Hospitalario La Mancha Centro, 13600 Alcázar de San Juan, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
| | - Marcelino Cortés
- Cardiology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Lucia Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Maria José Gimeno-Longas
- Department of Cell Biology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - María Martín
- Cardiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Tuñón
- Cardiology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Isabel Rodríguez
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Raul R Rodrigues-Díez
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
- Department of Cell Biology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Rodrigues-Díez R, Tejera-Muñoz A, Rodrigues-Diez RR. A new procedure to induce aortic aneurysms in mice. Methods Cell Biol 2024; 188:61-71. [PMID: 38880528 DOI: 10.1016/bs.mcb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Aortic aneurysms (AAs) are a major public health challenge, featured by a progressive impairs in aortic wall integrity that drives to aortic dilation and, in end stage, to its rupture. Despite important advances in the surgical treatment of aortic aneurysms, there is currently no pharmacological intervention that prevents their development, reduces their expansion, or avoids their rupture. In addition to classic risk factors such age or gender, several heritable connective tissue disorders have been associated with AA developing, highlighting the role of extracellular matrix (ECM) genes alterations in the developing of AA. In this sense, we have recently demonstrated that global deletion of the cellular communicating network factor 2 (CCN2), previously known as connective tissue growth factor (CTGF) due to its role in the extracellular matrix formation, predisposes to early and lethal AAs development after Angiotensin II (Ang II) infusion in mice. Here, we detail the protocol to induce and detect AAs generation in inducible global CCN2 knockout mice after Ang II infusion which allow the characterization of CCN role in AA development and may help to the development of pharmacological target for AA treatment.
Collapse
Affiliation(s)
- Raquel Rodrigues-Díez
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| | - Antonio Tejera-Muñoz
- Research Support Unit, Hospital General Mancha Centro, Alcázar de San Juan, Spain; Health Research Institute of Castilla-La Mancha, IDISCAM, Tomelloso, Spain
| | - Raúl R Rodrigues-Diez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, Oviedo, Spain; Department of Cell Biology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
5
|
Tejera-Muñoz A, Rodríguez I, Del Río-García Á, Mohamedi Y, Martín M, Chiminazzo V, Suárez-Álvarez B, López-Larrea C, Ruiz-Ortega M, Rodrigues-Díez RR. The CCN2 Polymorphism rs12526196 Is a Risk Factor for Ascending Thoracic Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms232315406. [PMID: 36499730 PMCID: PMC9740045 DOI: 10.3390/ijms232315406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cellular communication network factor 2 (CCN2/CTGF) has been traditionally described as a downstream mediator of other profibrotic factors including transforming growth factor (TGF)-β and angiotensin II. However, recent evidence from our group demonstrated the direct role of CCN2 in maintaining aortic wall homeostasis and acute and lethal aortic aneurysm development induced by angiotensin II in the absence of CCN2 in mice. In order to translate these findings to humans, we evaluated the potential association between three polymorphisms in the CCN2 gene and the presence of a thoracic aortic aneurysm (TAA). Patients with and without TAA retrospectively selected were genotyped for rs6918698, rs9402373 and rs12526196 polymorphisms related to the CCN2 gene. Multivariable logistic regression models were performed. In our population of 366 patients (69 with TAA), no associations were found between rs6918698 and rs9402373 and TAA. However, the presence of one C allele from rs12526196 was associated with TAA comparing with the TT genotype, independently of risk factors such as sex, age, hypertension, type of valvulopathy and the presence of a bicuspid aortic valve (OR = 3.17; 95% CI = 1.30-7.88; p = 0.011). In conclusion, we demonstrated an association between the C allele of rs12526196 in the CCN2 gene and the presence of TAA. This study extrapolates to humans the relevance of CCN2 in aortic aneurysm observed in mice and postulates, for the first time, a potential protective role to CCN2 in aortic aneurysm pathology. Our results encourage future research to explore new variants in the CCN2 gene that could be predisposed to TAA development.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain
- Research Support Unit, Hospital General Mancha Centro, 13600 Alcázar de San Juan, Spain
| | - Isabel Rodríguez
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Álvaro Del Río-García
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Yamina Mohamedi
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Martín
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Cardiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Valentina Chiminazzo
- Biostatistics and Epidemiology Platform, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Beatriz Suárez-Álvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011 Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011 Oviedo, Spain
- Servicio de Inmunología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain
- Correspondence: (M.R.-O.); (R.R.R.-D.)
| | - Raúl R. Rodrigues-Díez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011 Oviedo, Spain
- Correspondence: (M.R.-O.); (R.R.R.-D.)
| |
Collapse
|
6
|
Rodrigues-Díez Raul R, Tejera-Muñoz A, Esteban V, Steffensen Lasse B, Rodrigues-Díez R, Orejudo M, Rayego-Mateos S, Falke Lucas L, Cannata-Ortiz P, Ortiz A, Egido J, Mallat Z, Briones Ana M, Bajo Maria A, Goldschmeding R, Ruiz-Ortega M. CCN2 (Cellular Communication Network Factor 2) Deletion Alters Vascular Integrity and Function Predisposing to Aneurysm Formation. Hypertension 2021; 79:e42-e55. [DOI: 10.1161/hypertensionaha.121.18201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
CCN2 (cellular communication network factor 2) is a matricellular protein involved in cell communication and microenvironmental signaling responses. CCN2 is known to be overexpressed in several cardiovascular diseases, but its role is not completely understood.
Methods:
Here, CCN2 involvement in aortic wall homeostasis and response to vascular injury was investigated in inducible
Ccn2
-deficient mice, with induction of vascular damage by infusion of Ang II (angiotensin II; 15 days), which is known to upregulate CCN2 expression in the aorta.
Results:
Ang II infusion in CCN2-silenced mice lead to 60% mortality within 10 days due to rapid development and rupture of aortic aneurysms, as evidenced by magnetic resonance imaging, echography, and histological examination.
Ccn2
deletion decreased systolic blood pressure and caused aortic structural and functional changes, including elastin layer disruption, smooth muscle cell alterations, augmented distensibility, and increased metalloproteinase activity, which were aggravated by Ang II administration. Gene ontology analysis of RNA sequencing data identified aldosterone biosynthesis as one of the most enriched terms in CCN2-deficient aortas. Consistently, treatment with the mineralocorticoid receptor antagonist spironolactone before and during Ang II infusion reduced aneurysm formation and mortality, underscoring the importance of the aldosterone pathway in Ang II–induced aorta pathology.
Conclusions:
CCN2 is critically involved in the functional and structural homeostasis of the aorta and in maintenance of its integrity under Ang II–induced stress, at least, in part, by disruption of the aldosterone pathway. Thus, this study opens new avenues to future studies in disorders associated to vascular pathologies.
Collapse
Affiliation(s)
- R. Rodrigues-Díez Raul
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (R.R.-D.R., A.T.-M., M.O., S.R.-M., M.R.-O.)
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
- Department of Pharmacology, UAM, Instituto de Investigación-Hospital Universitario La Paz, IdiPaz, Ciber Cardiovascular, Madrid, Spain (R.R.-D., M.B.A.)
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (R.R.-D.R., A.T.-M., M.O., S.R.-M., M.R.-O.)
| | - Vanesa Esteban
- Department of Allergy and Immunology, FIIS-Fundación Jiménez Díaz, UAM, Asma, Reacciones Adversas y Alérgicas Network. Madrid, Spain (V.E.)
| | - B. Steffensen Lasse
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense (B.S.L.)
| | | | - Macarena Orejudo
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (R.R.-D.R., A.T.-M., M.O., S.R.-M., M.R.-O.)
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (R.R.-D.R., A.T.-M., M.O., S.R.-M., M.R.-O.)
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
| | - L. Falke Lucas
- Department of Pathology, University Medical Center Utrecht, the Netherlands (L.F.L.)
| | - Pablo Cannata-Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (P.C.-O., A.O., J.E., R.G.)
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (P.C.-O., A.O., J.E., R.G.)
| | - Jesus Egido
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (P.C.-O., A.O., J.E., R.G.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain (J.E.)
| | - Ziad Mallat
- Department of Medicine, University of Cambridge, United Kingdom (Z.M.)
- Institut National de la Sante et de la Recherche Medicale, France, Cambridge, United Kingdom (Z.M.)
| | - M. Briones Ana
- Department of Pharmacology, UAM, Instituto de Investigación-Hospital Universitario La Paz, IdiPaz, Ciber Cardiovascular, Madrid, Spain (R.R.-D., M.B.A.)
| | - Auxiliadora Bajo Maria
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
- Department of Nephrology, Instituto de Investigación-Hospital Universitario La Paz, Madrid, Spain (A.B.M.)
| | - Roel Goldschmeding
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (P.C.-O., A.O., J.E., R.G.)
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (R.R.-D.R., A.T.-M., M.O., S.R.-M., M.R.-O.)
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
| |
Collapse
|
7
|
Tejera-Muñoz A, Marquez-Exposito L, Tejedor-Santamaría L, Rayego-Mateos S, Orejudo M, Suarez-Álvarez B, López-Larrea C, Ruíz-Ortega M, Rodrigues-Díez RR. CCN2 Increases TGF-β Receptor Type II Expression in Vascular Smooth Muscle Cells: Essential Role of CCN2 in the TGF-β Pathway Regulation. Int J Mol Sci 2021; 23:375. [PMID: 35008801 PMCID: PMC8745763 DOI: 10.3390/ijms23010375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular communication network factor 2 (CCN2/CTGF) has been traditionally described as a mediator of the fibrotic responses induced by other factors including the transforming growth factor β (TGF-β). However, several studies have defined a direct role of CCN2 acting as a growth factor inducing oxidative and proinflammatory responses. The presence of CCN2 and TGF-β together in the cellular context has been described as a requisite to induce a persistent fibrotic response, but the precise mechanisms implicated in this relation are not described yet. Considering the main role of TGF-β receptors (TβR) in the TGF-β pathway activation, our aim was to investigate the effects of CCN2 in the regulation of TβRI and TβRII levels in vascular smooth muscle cells (VSMCs). While no differences were observed in TβRI levels, an increase in TβRII expression at both gene and protein level were found 48 h after stimulation with the C-terminal fragment of CCN2 (CCN2(IV)). Cell pretreatment with a TβRI inhibitor did not modify TβRII increment induced by CCN2(VI), demonstrating a TGF-β-independent response. Secondly, CCN2(IV) rapidly activated the SMAD pathway in VSMCs, this being crucial in the upregulation of TβRII since the preincubation with an SMAD3 inhibitor prevented it. Similarly, pretreatment with the epidermal growth factor receptor (EGFR) inhibitor erlotinib abolished TβRII upregulation, indicating the participation of this receptor in the observed responses. Our findings suggest a direct role of CCN2 maintaining the TGF-β pathway activation by increasing TβRII expression in an EGFR-SMAD dependent manner activation.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Laura Marquez-Exposito
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Lucía Tejedor-Santamaría
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Macarena Orejudo
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
| | - Beatriz Suarez-Álvarez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos López-Larrea
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, 33011 Oviedo, Spain
| | - Marta Ruíz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Raúl R. Rodrigues-Díez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
8
|
Zaykov V, Chaqour B. The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities. J Cell Commun Signal 2021; 15:567-580. [PMID: 34613590 DOI: 10.1007/s12079-021-00650-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
Cellular communication network 2 (CCN2), also known as connective tissue growth factor (CTGF) regulates diverse cellular processes, some at odds with others, including adhesion, proliferation, apoptosis, and extracellular matrix (ECM) protein synthesis. Although a cause-and-effect relationship between CCN2/CTGF expression and local fibrotic reactions has initially been established, CCN2/CTGF manifests cell-, tissue-, and context-specific functions and differentially affects developmental and pathological processes ranging from progenitor cell fate decisions and angiogenesis to inflammation and tumorigenesis. CCN2/CTGF multimodular structure, binding to and activation or inhibition of multiple cell surface receptors, growth factors and ECM proteins, and susceptibility for proteolytic cleavage highlight the complexity to CCN2/CTGF biochemical attributes. CCN2/CTGF expression and dosage in the local environment affects a defined community of its interacting partners, and this results in sequestration of growth factors, interference with or potentiation of ligand-receptor binding, cellular internalization of CCN2/CTGF, inhibition or activation of proteases, and generation of CCN2/CTGF degradome products that add molecular diversity and expand the repertoire of functional modules in the cells and their microenvironment. Through these interactions, different intracellular signals and cellular responses are elicited culminating into physiological or pathological reactions. Thus, the CCN2/CTGF interactome is a defining factor of its tissue- and context-specific effects. Mapping of new CCN2/CTGF binding partners might shed light on yet unknown roles of CCN2/CTGF and provide a solid basis for tissue-specific targeting this molecule or its interacting partners in a therapeutic context.
Collapse
Affiliation(s)
- Viktor Zaykov
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA. .,Department of Ophthalmology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
9
|
Evaluation of circulating levels of CCN2/connective tissue growth factor in patients with ST-elevation myocardial infarction. Sci Rep 2017; 7:11945. [PMID: 28931920 PMCID: PMC5607271 DOI: 10.1038/s41598-017-12372-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/07/2017] [Indexed: 11/17/2022] Open
Abstract
CCN2/Connective tissue growth factor seems to be involved in development of cardiac hypertrophy and fibrosis, but a possible cardioprotective role in left ventricular (LV) remodelling following myocardial infarction has also been suggested. The main objectives of the study were therefore to investigate whether circulating CCN2 levels were associated with infarct size, LV function, adverse remodelling or clinical outcome in two cohorts of patients with ST-elevation myocardial infarction (STEMI). CCN2 was measured in 988 patients 18 hours after PCI and clinical events were recorded after 55 months in the BAMI cohort. In the POSTEMI trial, serial measurements of CCN2 were performed in 258 STEMI patients during index hospitalisation and cardiac magnetic resonance imaging was performed in the acute phase and after 4 months. Clinical events were also recorded. There were no significant associations between levels of CCN2 and infarct size, LV ejection fraction, changes in LV end-diastolic or end-systolic volume, myocardial salvage or microvascular obstruction. There were no significant associations between CCN2 levels and clinical events including mortality, in either of the study cohorts. In conclusion, circulating levels of CCN2 measured in the acute phase of STEMI were not associated with final infarct size, left ventricular function or new clinical events.
Collapse
|
10
|
Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing. PLoS One 2017; 12:e0182828. [PMID: 28837672 PMCID: PMC5570368 DOI: 10.1371/journal.pone.0182828] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023] Open
Abstract
Although diabetes mellitus (DM) causes cardiomyopathy and exacerbates heart failure, the underlying molecular mechanisms for diabetic cardiomyopathy/heart failure are poorly understood. Insulin2 mutant (Ins2+/-) Akita is a mouse model of T1DM, which manifests cardiac dysfunction. However, molecular changes at cardiac transcriptome level that lead to cardiomyopathy remain unclear. To understand the molecular changes in the heart of diabetic Akita mice, we profiled cardiac transcriptome of Ins2+/- Akita and Ins2+/+ control mice using next generation sequencing (NGS) and microarray, and determined the implications of differentially expressed genes on various heart failure signaling pathways using Ingenuity pathway (IPA) analysis. First, we validated hyperglycemia, increased cardiac fibrosis, and cardiac dysfunction in twelve-week male diabetic Akita. Then, we analyzed the transcriptome levels in the heart. NGS analyses on Akita heart revealed 137 differentially expressed transcripts, where Bone Morphogenic Protein-10 (BMP10) was the most upregulated and hairy and enhancer of split-related (HELT) was the most downregulated gene. Moreover, twelve long non-coding RNAs (lncRNAs) were upregulated. The microarray analyses on Akita heart showed 351 differentially expressed transcripts, where vomeronasal-1 receptor-180 (Vmn1r180) was the most upregulated and WD Repeat Domain 83 Opposite Strand (WDR83OS) was the most downregulated gene. Further, miR-101c and H19 lncRNA were upregulated but Neat1 lncRNA was downregulated in Akita heart. Eleven common genes were upregulated in Akita heart in both NGS and microarray analyses. IPA analyses revealed the role of these differentially expressed genes in key signaling pathways involved in diabetic cardiomyopathy. Our results provide a platform to initiate focused future studies by targeting these genes and/or non-coding RNAs, which are differentially expressed in Akita hearts and are involved in diabetic cardiomyopathy.
Collapse
|