1
|
Doll L, Welte K, Skokowa J, Bajoghli B. A JAGN1-associated severe congenital neutropenia zebrafish model revealed an altered G-CSFR signaling and UPR activation. Blood Adv 2024; 8:4050-4065. [PMID: 38739706 PMCID: PMC11342096 DOI: 10.1182/bloodadvances.2023011656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
ABSTRACT A variety of autosomal recessive mutations in the JAGN1 gene cause severe congenital neutropenia (CN). However, the underlying pathomechanism remains poorly understood, mainly because of the limited availability of primary hematopoietic stem cells from JAGN1-CN patients and the absence of animal models. In this study, we aimed to address these limitations by establishing a zebrafish model of JAGN1-CN. We found 2 paralogs of the human JAGN1 gene, namely jagn1a and jagn1b, which play distinct roles during zebrafish hematopoiesis. Using various approaches such as morpholino-based knockdown, CRISPR/Cas9-based gene editing, and misexpression of a jagn1b harboring a specific human mutation, we successfully developed neutropenia while leaving other hematopoietic lineages unaffected. Further analysis of our model revealed significant upregulation of apoptosis and genes involved in the unfolded protein response (UPR). However, neither UPR nor apoptosis is the primary mechanism that leads to neutropenia in zebrafish. Instead, Jagn1b has a critical role in granulocyte colony-stimulating factor receptor signaling and steady-state granulopoiesis, shedding light on the pathogenesis of neutropenia associated with JAGN1 mutations. The establishment of a zebrafish model for JAGN1-CN represents a significant advancement in understanding the specific pathologic pathways underlying the disease. This model provides a valuable in vivo tool for further investigation and exploration of potential therapeutic strategies.
Collapse
Affiliation(s)
- Larissa Doll
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karl Welte
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Children’s Hospital, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Gene and RNA Therapy Center, Tuebingen University, Tuebingen, Germany
| | - Baubak Bajoghli
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Austrian BioImaging/CMI, Vienna, Austria
| |
Collapse
|
2
|
Yuan F, Li Y, Zhou X, Meng P, Zou P. Spatially resolved mapping of proteome turnover dynamics with subcellular precision. Nat Commun 2023; 14:7217. [PMID: 37940635 PMCID: PMC10632371 DOI: 10.1038/s41467-023-42861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the development of prox-SILAC method that combines proximity-dependent protein labeling (APEX2/HRP) with metabolic incorporation of stable isotopes (pulse-SILAC) to map newly synthesized proteins with subcellular spatial resolution. We apply prox-SILAC to investigate proteome dynamics in the mitochondrial matrix and the endoplasmic reticulum (ER) lumen. Our analysis reveals a highly heterogeneous distribution in protein turnover dynamics within macromolecular machineries such as the mitochondrial ribosome and respiratory complexes I-V, thus shedding light on their mechanism of hierarchical assembly. Furthermore, we investigate the dynamic changes of ER proteome when cells are challenged with stress or undergoing stimulated differentiation, identifying subsets of proteins with unique patterns of turnover dynamics, which may play key regulatory roles in alleviating stress or promoting differentiation. We envision that prox-SILAC could be broadly applied to profile protein turnover at various subcellular compartments, under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Feng Yuan
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China
| | - Yi Li
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, PKU-IDG/McGovern Institute for Brain Research, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xinyue Zhou
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China
| | - Peiyuan Meng
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, PKU-IDG/McGovern Institute for Brain Research, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Peng Zou
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China.
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, PKU-IDG/McGovern Institute for Brain Research, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China.
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, China.
| |
Collapse
|
3
|
Kuehnle N, Osborne SM, Liang Z, Manzano M, Gottwein E. CRISPR screens identify novel regulators of cFLIP dependency and ligand-independent, TRAIL-R1-mediated cell death. Cell Death Differ 2023; 30:1221-1234. [PMID: 36801923 PMCID: PMC10154404 DOI: 10.1038/s41418-023-01133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes primary effusion lymphoma (PEL). PEL cell lines require expression of the cellular FLICE inhibitory protein (cFLIP) for survival, although KSHV encodes a viral homolog of this protein (vFLIP). Cellular and viral FLIP proteins have several functions, including, most importantly, the inhibition of pro-apoptotic caspase 8 and modulation of NF-κB signaling. To investigate the essential role of cFLIP and its potential redundancy with vFLIP in PEL cells, we first performed rescue experiments with human or viral FLIP proteins known to affect FLIP target pathways differently. The long and short isoforms of cFLIP and molluscum contagiosum virus MC159L, which are all strong caspase 8 inhibitors, efficiently rescued the loss of endogenous cFLIP activity in PEL cells. KSHV vFLIP was unable to fully rescue the loss of endogenous cFLIP and is therefore functionally distinct. Next, we employed genome-wide CRISPR/Cas9 synthetic rescue screens to identify loss of function perturbations that can compensate for cFLIP knockout. Results from these screens and our validation experiments implicate the canonical cFLIP target caspase 8 and TRAIL receptor 1 (TRAIL-R1 or TNFRSF10A) in promoting constitutive death signaling in PEL cells. However, this process was independent of TRAIL receptor 2 or TRAIL, the latter of which is not detectable in PEL cell cultures. The requirement for cFLIP is also overcome by inactivation of the ER/Golgi resident chondroitin sulfate proteoglycan synthesis and UFMylation pathways, Jagunal homolog 1 (JAGN1) or CXCR4. UFMylation and JAGN1, but not chondroitin sulfate proteoglycan synthesis or CXCR4, contribute to TRAIL-R1 expression. In sum, our work shows that cFLIP is required in PEL cells to inhibit ligand-independent TRAIL-R1 cell death signaling downstream of a complex set of ER/Golgi-associated processes that have not previously been implicated in cFLIP or TRAIL-R1 function.
Collapse
Affiliation(s)
- Neil Kuehnle
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Scout Mask Osborne
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Ziyan Liang
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Mark Manzano
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Adams V, Gußen V, Zozulya S, Cruz A, Moriscot A, Linke A, Labeit S. Small-Molecule Chemical Knockdown of MuRF1 in Melanoma Bearing Mice Attenuates Tumor Cachexia Associated Myopathy. Cells 2020; 9:E2272. [PMID: 33050629 PMCID: PMC7600862 DOI: 10.3390/cells9102272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
: Patients with malignant tumors frequently suffer during disease progression from a syndrome referred to as cancer cachexia (CaCax): CaCax includes skeletal muscle atrophy and weakness, loss of bodyweight, and fat tissues. Currently, there are no FDA (Food and Drug Administration) approved treatments available for CaCax. Here, we studied skeletal muscle atrophy and dysfunction in a murine CaCax model by injecting B16F10 melanoma cells into mouse thighs and followed mice during melanoma outgrowth. Skeletal muscles developed progressive weakness as detected by wire hang tests (WHTs) during days 13-23. Individual muscles analyzed at day 24 had atrophy, mitochondrial dysfunction, augmented metabolic reactive oxygen species (ROS) stress, and a catabolically activated ubiquitin proteasome system (UPS), including upregulated MuRF1. Accordingly, we tested as an experimental intervention of recently identified small molecules, Myomed-205 and -946, that inhibit MuRF1 activity and MuRF1/MuRF2 expression. Results indicate that MuRF1 inhibitor fed attenuated induction of MuRF1 in tumor stressed muscles. In addition, the compounds augmented muscle performance in WHTs and attenuated muscle weight loss. Myomed-205 and -946 also rescued citrate synthase and complex-1 activities in tumor-stressed muscles, possibly suggesting that mitochondrial-metabolic and muscle wasting effects in this CaCax model are mechanistically connected. Inhibition of MuRF1 during tumor cachexia may represent a suitable strategy to attenuate skeletal muscle atrophy and dysfunction.
Collapse
Affiliation(s)
- Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 1307 Dresden, Germany; (V.G.); (A.L.)
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, 01067 Dresden, Germany
| | - Victoria Gußen
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 1307 Dresden, Germany; (V.G.); (A.L.)
| | - Sergey Zozulya
- Department of Drug Research, Enamine-Bienta Ltd., 02000 Kiev, Ukraine;
| | - André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (A.C.); (A.M.)
| | - Anselmo Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (A.C.); (A.M.)
| | - Axel Linke
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 1307 Dresden, Germany; (V.G.); (A.L.)
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, 01067 Dresden, Germany
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
| |
Collapse
|
5
|
Pini T, Parks J, Russ J, Dzieciatkowska M, Hansen KC, Schoolcraft WB, Katz-Jaffe M. Obesity significantly alters the human sperm proteome, with potential implications for fertility. J Assist Reprod Genet 2020; 37:777-787. [PMID: 32026202 PMCID: PMC7183029 DOI: 10.1007/s10815-020-01707-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In men, obesity may lead to poor semen parameters and reduced fertility. However, the causative links between obesity and male infertility are not totally clear, particularly on a molecular level. As such, we investigated how obesity modifies the human sperm proteome, to elucidate any important implications for fertility. METHODS Sperm protein lysates from 5 men per treatment, classified as a healthy weight (body mass index (BMI) ≤ 25 kg/m2) or obese (BMI ≥ 30 kg/m2), were FASP digested, submitted to liquid chromatography tandem mass spectrometry, and compared by label-free quantification. Findings were confirmed for several proteins by qualitative immunofluorescence and a quantitative protein immunoassay. RESULTS A total of 2034 proteins were confidently identified, with 24 proteins being significantly (p < 0.05) less abundant (fold change < 0.05) in the spermatozoa of obese men and 3 being more abundant (fold change > 1.5) compared with healthy weight controls. Proteins with altered abundance were involved in a variety of biological processes, including oxidative stress (GSS, NDUFS2, JAGN1, USP14, ADH5), inflammation (SUGT1, LTA4H), translation (EIF3F, EIF4A2, CSNK1G1), DNA damage repair (UBEA4), and sperm function (NAPA, RNPEP, BANF2). CONCLUSION These results suggest that oxidative stress and inflammation are closely tied to reproductive dysfunction in obese men. These processes likely impact protein translation and folding during spermatogenesis, leading to poor sperm function and subfertility. The observation of these changes in obese men with no overt andrological diagnosis further suggests that traditional clinical semen assessments fail to detect important biochemical changes in spermatozoa which may compromise fertility.
Collapse
Affiliation(s)
- T Pini
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA.
| | - J Parks
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - J Russ
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - M Dzieciatkowska
- School of Medicine Biological Mass Spectrometry Facility, University of Colorado, Aurora, CO, 80045, USA
| | - K C Hansen
- School of Medicine Biological Mass Spectrometry Facility, University of Colorado, Aurora, CO, 80045, USA
| | - W B Schoolcraft
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - M Katz-Jaffe
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| |
Collapse
|
6
|
Cifaldi C, Serafinelli J, Petricone D, Brigida I, Di Cesare S, Di Matteo G, Chiriaco M, De Vito R, Palumbo G, Rossi P, Palma P, Cancrini C, Aiuti A, Finocchi A. Next-Generation Sequencing Reveals A JAGN1 Mutation in a Syndromic Child With Intermittent Neutropenia. J Pediatr Hematol Oncol 2019; 41:e266-e269. [PMID: 30044346 DOI: 10.1097/mph.0000000000001256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Jagunal homolog 1 (JAGN1) gene was identified as a novel responsible for severe congenital neutropenia. The protein encoded by this gene is required for neutrophil differentiation, survival and function in microbial activity. JAGN1-deficient human neutrophils are characterized by alterations in trafficking within the endoplasmic reticulum and golgi compartments because of ultrastructural defects in endoplasmic reticulum and susceptibility to apoptosis. OBSERVATIONS We report a patient exhibiting an intermittent neutropenia, for which a next-generation sequencing revealed a homozygous mutation in the JAGN1 gene. CONCLUSIONS The patient extends the clinical variability associated to JAGN1 mutations, and this case highlights the importance of genetic investigations in patients with suspected neutropenia.
Collapse
Affiliation(s)
- Cristina Cifaldi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù
| | - Jessica Serafinelli
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù
| | - Davide Petricone
- Department of Systems Medicine, "University of Rome Tor Vergata," Rome
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute
| | - Silvia Di Cesare
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù
| | | | - Maria Chiriaco
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù
| | - Rita De Vito
- Department of Pathology and Molecular Histopathology, Bambino Gesù Children's Hospital IRCCS
| | - Giuseppe Palumbo
- University Department of Pediatrics, Unit of Hematology and Oncology, Bambino Gesù Children's Hospital
| | - Paolo Rossi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù.,Department of Systems Medicine, "University of Rome Tor Vergata," Rome
| | - Paolo Palma
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù
| | - Caterina Cancrini
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù.,Department of Systems Medicine, "University of Rome Tor Vergata," Rome
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute.,Vita Salute San Raffaele University.,Pediatric Immunohematology, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Finocchi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù.,Department of Systems Medicine, "University of Rome Tor Vergata," Rome
| |
Collapse
|
7
|
Furutani E, Newburger PE, Shimamura A. Neutropenia in the age of genetic testing: Advances and challenges. Am J Hematol 2019; 94:384-393. [PMID: 30536760 DOI: 10.1002/ajh.25374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
Abstract
Identification of genetic causes of neutropenia informs precision medicine approaches to medical management and treatment. Accurate diagnosis of genetic neutropenia disorders informs treatment options, enables risk stratification, cancer surveillance, and attention to associated medical complications. The rapidly expanding genetic testing options for the evaluation of neutropenia have led to exciting advances but also new challenges. This review provides a practical guide to germline genetic testing for neutropenia.
Collapse
Affiliation(s)
- Elissa Furutani
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
| | - Peter E. Newburger
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
- Department of PediatricsUniversity of Massachusetts Medical School Worcester MA
| | - Akiko Shimamura
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
| |
Collapse
|
8
|
Khandagale A, Lazzaretto B, Carlsson G, Sundin M, Shafeeq S, Römling U, Fadeel B. JAGN1 is required for fungal killing in neutrophil extracellular traps: Implications for severe congenital neutropenia. J Leukoc Biol 2018; 104:1199-1213. [DOI: 10.1002/jlb.4a0118-030rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Avinash Khandagale
- Division of Molecular ToxicologyInstitute of Environmental MedicineKarolinska Institutet Stockholm Sweden
| | - Beatrice Lazzaretto
- Division of Molecular ToxicologyInstitute of Environmental MedicineKarolinska Institutet Stockholm Sweden
| | - Göran Carlsson
- Department of Women's and Children's HealthKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
| | - Mikael Sundin
- Department of Women's and Children's HealthKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
| | - Sulman Shafeeq
- Department of MicrobiologyTumor and Cell BiologyKarolinska Institutet Stockholm Sweden
| | - Ute Römling
- Department of MicrobiologyTumor and Cell BiologyKarolinska Institutet Stockholm Sweden
| | - Bengt Fadeel
- Division of Molecular ToxicologyInstitute of Environmental MedicineKarolinska Institutet Stockholm Sweden
| |
Collapse
|