1
|
Christoforou M, Charalambous A, Sfakianakis D, Skourides PA. Targeting the hydrophobic pockets of FAK/PYK2 FAT domain: a highly effective inhibitory strategy suppressing tumor growth and eliminating metastasis. Cell Commun Signal 2025; 23:231. [PMID: 40390029 PMCID: PMC12087225 DOI: 10.1186/s12964-025-02203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 04/15/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND FAK is a non-receptor tyrosine kinase and an adaptor protein commonly overexpressed in cancer. It regulates multiple tumorigenic pathways through both kinase-dependent and kinase-independent scaffolding functions and thus represents a promising therapeutic target for various cancers. Several FAK kinase inhibitors shown to be effective in preclinical studies advanced to clinical trials, however none produced objective clinical responses. These results are in part attributed to drug resistance and the inability to simultaneously target kinase-dependent and kinase-independent functions of the protein, both of which have been shown to promote tumorigenesis. This has led to the development of scaffold inhibitors that could be used as adjuvants, none of which have so far reached the clinical stage. Importantly, FAK's closely related paralogue, PYK2, compensates for the loss of FAK thus it is also important to target both kinases. In the present study, we evaluate a novel strategy for the inhibition of kinase-dependent and kinase-independent functions of FAK and PYK2 through the expression of the FAT HP-site-specific LD2-LD4 peptide that leads to their displacement from focal adhesions. METHODS The impact of LD2-LD4 expression on FAK and PYK2 was assessed through co-immunoprecipitation experiments, Western Blot analysis and quantitative immunofluorescence. In vitro investigation of the effects of LD2-LD4 expression on tumor cell migration and proliferation was carried out using 2D migration, 3D invasion and proliferation assays. The preclinical experiments of this study were carried out using an orthotopic xenograft model, followed by immunohistochemical analysis. RESULTS We show that LD2-LD4 expression leads to the displacement of FAK and PYK2 from focal adhesions, blocking both enzymatic and non-enzymatic activities. It also dramatically inhibits 2D cell migration, as well as invasion in vitro. Importantly, LD2-LD4 exerts promising anti-tumor effects and nearly abolishes the appearance of metastatic foci. Finally, we show that an LD monomer can also displace both FAK and PYK2 from FAs suggesting that organic molecules with high affinity for the FAT HPs could mimic the LD2-LD4 activity. CONCLUSIONS Targeting the FAT domain hydrophobic patches of FAK/PYK2 is a highly effective inhibitory strategy that can overcome the limitations of existing ATP competitive inhibitors and lead to the development of novel inhibitors with strong antitumor and antimetastatic activity.
Collapse
Affiliation(s)
- Maria Christoforou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Anna Charalambous
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.
| | - Dimitrios Sfakianakis
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | | |
Collapse
|
2
|
Wang C, Li S, Li Q, Xi H, Li J, Zhu Q, Wu P, Zhu Y, Mao Y. H 2S Donor SPRC Ameliorates Ischemic Stroke by Upregulating CD24. CNS Neurosci Ther 2025; 31:e70243. [PMID: 39953809 PMCID: PMC11829115 DOI: 10.1111/cns.70243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Ischemic stroke is well-known for its high mortality and morbidity, but its treatment remains to be explored due to the current limitations. For example, severe neuroinflammation occurs after ischemic stroke; however, effective neuroinflammatory inhibitors are still lacking. Thus, the development of new therapeutic targets of inhibiting neuroinflammation is urgent. CD24 is a small heavy glycosylated protein, which plays a critical role in neural development and acts as an inflammatory suppressor in tumors and autoimmune diseases. But the role of CD24 in ischemic stroke remains unknown. AIMS The role of CD24 in ischemic stroke should be explored. Additionally, the potential relationship between the H2S donor, S-propargyl-cysteine (SPRC) and CD24 in ischemic stroke should be revealed. METHODS Mechanism studies have been performed both in vitro and in vivo to verify the CD24-mediated inflammation and migration. SPRC has been applied to treat ischemic stroke, and its potential association with CD24 has been studied. RESULTS The overexpression of CD24 can inhibit the nuclear factor kappa B (NF-κB) inflammatory signaling pathway and promote the migration ability of M2 microglia cells via Src/Fak/Pyk2 signaling pathway in an inflammatory model of BV2 cells. SPRC can upregulate the level of endogenous H2S via cystathionase-β-synthase (CBS) and it indirectly plays a role in upregulating CD24. CONCLUSIONS CD24 could be a potential target of inhibiting neuroinflammation. SPRC reduces inflammation in ischemic stroke by regulating the CD24/Iκ-Bα/NF-κB inflammatory signaling pathway and improves the migration ability of M2 microglia via CD24/Src/Fak/Pyk2 signaling pathway, which further alleviates the inflammatory response at the lesion.
Collapse
Affiliation(s)
- Chenye Wang
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| | - Sha Li
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| | - Qixiu Li
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| | - Haiyan Xi
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| | - Jiejia Li
- School of Pharmacy and Laboratory of Drug Discovery from Natural Resources and IndustrializtionMacau University of Science and TechnologyMacauChina
- School of PharmacyProvincial Key Laboratory of Inflammation and Molecular Drug TargetInstitute for Translational NeuroscienceAffiliated Hospital 2 of Nantong UniversityCentre for Neural Developmental and Degenerative ResearchNantong UniversityNantongChina
| | - Qing Zhu
- School of PharmacyProvincial Key Laboratory of Inflammation and Molecular Drug TargetInstitute for Translational NeuroscienceAffiliated Hospital 2 of Nantong UniversityCentre for Neural Developmental and Degenerative ResearchNantong UniversityNantongChina
| | - Pinwen Wu
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| | - Yi‐Zhun Zhu
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
- School of Pharmacy and Laboratory of Drug Discovery from Natural Resources and IndustrializtionMacau University of Science and TechnologyMacauChina
| | - Yicheng Mao
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Datta C, Das P, Swaroop S, Bhattacharjee A. Rac1 plays a crucial role in MCP-1-induced monocyte adhesion and migration. Cell Immunol 2024; 401-402:104843. [PMID: 38905771 DOI: 10.1016/j.cellimm.2024.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Monocyte migration is an important process in inflammation and atherogenesis. Identification of the key signalling pathways that regulate monocyte migration can provide prospective targets for prophylactic treatments in inflammatory diseases. Previous research showed that the focal adhesion kinase Pyk2, Src kinase and MAP kinases play an important role in MCP-1-induced monocyte migration. In this study, we demonstrate that MCP-1 induces iPLA2 activity, which is regulated by PKCβ and affects downstream activation of Rac1 and Pyk2. Rac1 interacts directly with iPLA2 and Pyk2, and plays a crucial role in MCP-1-mediated monocyte migration by modulating downstream Pyk2 and p38 MAPK activation. Furthermore, Rac1 is necessary for cell spreading and F-actin polymerization during monocyte adhesion to fibronectin. Finally, we provide evidence that Rac1 controls the secretion of inflammatory mediator vimentin from MCP-1-stimulated monocytes. Altogether, this study demonstrates that the PKCβ/iPLA2/Rac1/Pyk2/p38 MAPK signalling cascade is essential for MCP-1-induced monocyte adhesion and migration.
Collapse
Affiliation(s)
- Chandreyee Datta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Pradip Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Surbhi Swaroop
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India.
| |
Collapse
|
4
|
Zanela TMP, Zangiabadi M, Zhao Y, Underbakke ES. Molecularly imprinted nanoparticles reveal regulatory scaffolding features in Pyk2 tyrosine kinase. RSC Chem Biol 2024; 5:447-453. [PMID: 38725907 PMCID: PMC11078204 DOI: 10.1039/d3cb00228d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Pyk2 is a multi-domain non-receptor tyrosine kinase that serves dual roles as a signaling enzyme and scaffold. Pyk2 activation involves a multi-stage cascade of conformational rearrangements and protein interactions initiated by autophosphorylation of a linker site. Linker phosphorylation recruits Src kinase, and Src-mediated phosphorylation of the Pyk2 activation loop confers full activation. The regulation and accessibility of the initial Pyk2 autophosphorylation site remains unclear. We employed peptide-binding molecularly imprinted nanoparticles (MINPs) to probe the regulatory conformations controlling Pyk2 activation. MINPs differentiating local structure and phosphorylation state revealed that the Pyk2 autophosphorylation site is protected in the autoinhibited state. Activity profiling of Pyk2 variants implicated FERM and linker residues responsible for constraining the autophosphorylation site. MINPs targeting each Src docking site disrupt the higher-order kinase interactions critical for activation complex maturation. Ultimately, MINPs targeting key regulatory motifs establish a useful toolkit for probing successive activational stages in the higher-order Pyk2 signaling complex.
Collapse
Affiliation(s)
- Tania M Palhano Zanela
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University Ames IA 50011 USA
| | - Milad Zangiabadi
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University Ames IA 50011 USA
| |
Collapse
|
5
|
Lyu A, Humphrey RS, Nam SH, Durham TA, Hu Z, Arasappan D, Horton TM, Ehrlich LIR. Integrin signaling is critical for myeloid-mediated support of T-cell acute lymphoblastic leukemia. Nat Commun 2023; 14:6270. [PMID: 37805579 PMCID: PMC10560206 DOI: 10.1038/s41467-023-41925-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
We previously found that T-cell acute lymphoblastic leukemia (T-ALL) requires support from tumor-associated myeloid cells, which activate Insulin Like Growth Factor 1 Receptor (IGF1R) signaling in leukemic blasts. However, IGF1 is not sufficient to sustain T-ALL in vitro, implicating additional myeloid-mediated signals in leukemia progression. Here, we find that T-ALL cells require close contact with myeloid cells to survive. Transcriptional profiling and in vitro assays demonstrate that integrin-mediated cell adhesion activates downstream focal adhesion kinase (FAK)/ proline-rich tyrosine kinase 2 (PYK2), which are required for myeloid-mediated T-ALL support, partly through activation of IGF1R. Blocking integrin ligands or inhibiting FAK/PYK2 signaling diminishes leukemia burden in multiple organs and confers a survival advantage in a mouse model of T-ALL. Inhibiting integrin-mediated adhesion or FAK/PYK2 also reduces survival of primary patient T-ALL cells co-cultured with myeloid cells. Furthermore, elevated integrin pathway gene signatures correlate with higher FAK signaling and myeloid gene signatures and are associated with an inferior prognosis in pediatric T-ALL patients. Together, these findings demonstrate that integrin activation and downstream FAK/PYK2 signaling are important mechanisms underlying myeloid-mediated support of T-ALL progression.
Collapse
Affiliation(s)
- Aram Lyu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tyler A Durham
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
6
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Roy MJ, Surudoi MG, Kropp A, Hou J, Dai W, Hardy JM, Liang LY, Cotton TR, Lechtenberg BC, Dite TA, Ma X, Daly RJ, Patel O, Lucet IS. Structural mapping of PEAK pseudokinase interactions identifies 14-3-3 as a molecular switch for PEAK3 signaling. Nat Commun 2023; 14:3542. [PMID: 37336884 DOI: 10.1038/s41467-023-38869-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 06/21/2023] Open
Abstract
PEAK pseudokinases regulate cell migration, invasion and proliferation by recruiting key signaling proteins to the cytoskeleton. Despite lacking catalytic activity, alteration in their expression level is associated with several aggressive cancers. Here, we elucidate the molecular details of key PEAK signaling interactions with the adapter proteins CrkII and Grb2 and the scaffold protein 14-3-3. Our findings rationalize why the dimerization of PEAK proteins has a crucial function in signal transduction and provide biophysical and structural data to unravel binding specificity within the PEAK interactome. We identify a conserved high affinity 14-3-3 motif on PEAK3 and demonstrate its role as a molecular switch to regulate CrkII binding and signaling via Grb2. Together, our studies provide a detailed structural snapshot of PEAK interaction networks and further elucidate how PEAK proteins, especially PEAK3, act as dynamic scaffolds that exploit adapter proteins to control signal transduction in cell growth/motility and cancer.
Collapse
Affiliation(s)
- Michael J Roy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Minglyanna G Surudoi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashleigh Kropp
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jianmei Hou
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Weiwen Dai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joshua M Hardy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Lung-Yu Liang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Thomas R Cotton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Bernhard C Lechtenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Toby A Dite
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Xiuquan Ma
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
8
|
Li X, Ormsby MJ, Fallata G, Meikle LM, Walker D, Xu D, Wall DM. PF-431396 hydrate inhibition of kinase phosphorylation during adherent-invasive Escherichia coli infection inhibits intra-macrophage replication and inflammatory cytokine release. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37311220 DOI: 10.1099/mic.0.001337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adherent-invasive Escherichia coli (AIEC) have been implicated in the aetiology of Crohn's disease (CD). They are characterized by an ability to adhere to and invade intestinal epithelial cells, and to replicate intracellularly in macrophages resulting in inflammation. Proline-rich tyrosine kinase 2 (PYK2) has previously been identified as a risk locus for inflammatory bowel disease and a regulator of intestinal inflammation. It is overexpressed in patients with colorectal cancer, a major long-term complication of CD. Here we show that Pyk2 levels are significantly increased during AIEC infection of murine macrophages while the inhibitor PF-431396 hydrate, which blocks Pyk2 activation, significantly decreased intramacrophage AIEC numbers. Imaging flow cytometry indicated that Pyk2 inhibition blocked intramacrophage replication of AIEC with no change in the overall number of infected cells, but a significant reduction in bacterial burden per cell. This reduction in intracellular bacteria resulted in a 20-fold decrease in tumour necrosis factor α secretion by cells post-AIEC infection. These data demonstrate a key role for Pyk2 in modulating AIEC intracellular replication and associated inflammation and may provide a new avenue for future therapeutic intervention in CD.
Collapse
Affiliation(s)
- Xiang Li
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Michael J Ormsby
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
- Present address: Biological and Environmental Sciences, Faculty of Natural Science, University of Stirling, Stirling, FK49 4LA, UK
| | - Ghaith Fallata
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia
| | - Lynsey M Meikle
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Daniel Walker
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Damo Xu
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Daniel M Wall
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
9
|
Palhano Zanela TM, Woudenberg A, Romero Bello KG, Underbakke ES. Activation loop phosphorylation tunes conformational dynamics underlying Pyk2 tyrosine kinase activation. Structure 2023; 31:447-454.e5. [PMID: 36870334 DOI: 10.1016/j.str.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Pyk2 is a multidomain non-receptor tyrosine kinase that undergoes a multistage activation mechanism. Activation is instigated by conformational rearrangements relieving autoinhibitory FERM domain interactions. The kinase autophosphorylates a central linker residue to recruit Src kinase. Pyk2 and Src mutually phosphorylate activation loops to confer full activation. While the mechanisms of autoinhibition are established, the conformational dynamics associated with autophosphorylation and Src recruitment remain unclear. We employ hydrogen/deuterium exchange mass spectrometry and kinase activity profiling to map the conformational dynamics associated with substrate binding and Src-mediated activation loop phosphorylation. Nucleotide engagement stabilizes the autoinhibitory interface, while phosphorylation deprotects both FERM and kinase regulatory surfaces. Phosphorylation organizes active site motifs linking catalytic loop with activation segment. Dynamics of the activation segment anchor propagate to EF/G helices to prevent reversion of the autoinhibitory FERM interaction. We employ targeted mutagenesis to dissect how phosphorylation-induced conformational rearrangements elevate kinase activity above the basal autophosphorylation rate.
Collapse
Affiliation(s)
- Tania M Palhano Zanela
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Alexzandrea Woudenberg
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Karen G Romero Bello
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
10
|
Lee D, Hong JH. Activated PyK2 and Its Associated Molecules Transduce Cellular Signaling from the Cancerous Milieu for Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232415475. [PMID: 36555115 PMCID: PMC9779422 DOI: 10.3390/ijms232415475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.
Collapse
|
11
|
Mizuta K, Matsubara T, Goto A, Addison WN, Nakatomi M, Matsuo K, Tada-Shigeyama Y, Yaginuma T, Honda H, Yoshioka I, Kokabu S. Plectin promotes tumor formation by B16 mouse melanoma cells via regulation of Rous sarcoma oncogene activity. BMC Cancer 2022; 22:936. [PMID: 36038818 PMCID: PMC9426213 DOI: 10.1186/s12885-022-10033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melanoma is a malignant tumor characterized by high proliferation and aggressive metastasis. To address the molecular mechanisms of the proto-oncogene, Rous sarcoma oncogene (Src), which is highly activated and promotes cell proliferation, migration, adhesion, and metastasis in melanoma. Plectin, a cytoskeletal protein, has recently been identified as a Src-binding protein that regulates Src activity in osteoclasts. Plectin is a candidate biomarker of certain tumors because of its high expression and the target of anti-tumor reagents such as ruthenium pyridinecarbothioamide. The molecular mechanisms by which plectin affects melanoma is still unclear. In this study, we examined the role of plectin in melanoma tumor formation. METHODS We used CRISPR/Cas9 gene editing to knock-out plectin in B16 mouse melanoma cells. Protein levels of plectin and Src activity were examined by western blotting analysis. In vivo tumor formation was assessed by subcutaneous injection of B16 cells into nude mice and histological analysis performed after 2 weeks by Hematoxylin-Eosin (H&E) staining. Cell proliferation was evaluated by direct cell count, cell counting kit-8 assays, cyclin D1 mRNA expression and Ki-67 immunostaining. Cell aggregation and adhesion were examined by spheroid formation, dispase-based dissociation assay and cell adhesion assays. RESULTS In in vivo tumor formation assays, depletion of plectin resulted in low-density tumors with large intercellular spaces. In vitro experiments revealed that plectin-deficient B16 cells exhibit reduced cell proliferation and reduced cell-to-cell adhesion. Since Src activity is reduced in plectin-deficient melanomas, we examined the relationship between plectin and Src signaling. Src overexpression in plectin knockout B16 cells rescued cell proliferation and improved cell-to-cell adhesion and cell to extracellular matrix adhesion. CONCLUSION These results suggest that plectin plays critical roles in tumor formation by promoting cell proliferation and cell-to-cell adhesion through Src signaling activity in melanoma cells.
Collapse
Affiliation(s)
- Kana Mizuta
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Japan.,Division of Oral Medicine, Department of Science of Physical Function, Kyushu Dental University, Kitakyushu, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Japan.
| | - Akino Goto
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Japan
| | - William N Addison
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kou Matsuo
- Division of Oral Pathology, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Japan
| | - Yukiyo Tada-Shigeyama
- Division of Dental Anesthesiology, Department of Science of Physical Function, Kyushu Dental University, Kitakyushu, Japan
| | - Tatsuki Yaginuma
- Division of Oral and Maxillofacial Surgery, Department of Science and Physical Function, Kyushu Dental University, Kitakyushu, Japan
| | - Hiromi Honda
- School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Japan
| | - Izumi Yoshioka
- Division of Oral Medicine, Department of Science of Physical Function, Kyushu Dental University, Kitakyushu, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Japan.
| |
Collapse
|
12
|
Zhao M, Finlay D, Kwong E, Liddington R, Viollet B, Sasaoka N, Vuori K. Cell adhesion suppresses autophagy via Src/FAK-mediated phosphorylation and inhibition of AMPK. Cell Signal 2022; 89:110170. [PMID: 34673141 PMCID: PMC8602780 DOI: 10.1016/j.cellsig.2021.110170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023]
Abstract
Autophagy is a multi-step process regulated in part by AMP-activated protein kinase (AMPK). Phosphorylation of threonine 172 on the AMPK α-subunit enhances AMPK kinase activity, resulting in activation of downstream signaling. Integrin-mediated cell adhesion activates Src/ Focal Adhesion Kinase (FAK) signaling complex, which regulates multiple cellular processes including cell survival. We show here that Src signaling leads to direct phosphorylation of the AMPK-α subunit on a novel site, tyrosine 179, resulting in suppression of AMPK-T172 phosphorylation and autophagy upon integrin-mediated cell adhesion. By using chemical inhibitors, genetic cell models and targeted mutagenesis, we confirm an important role for Src and FAK in suppressing AMPK signaling and autophagy induced by various additional stimuli, including glucose starvation. Furthermore, we found that autophagy suppression by hydroxychloroquine promotes apoptosis in a cancer cell model that had been treated with Src inhibitors. Our findings reveal a link between the Src/ FAK complex and AMPK/ autophagy regulation, which may play an important role in the maintenance of normal cellular homeostasis and tumor progression.
Collapse
Affiliation(s)
- Ming Zhao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Darren Finlay
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elizabeth Kwong
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert Liddington
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, 75014, France
| | - Norio Sasaoka
- Sumitomo Chemical Co., Ltd., 1-98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Kristiina Vuori
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA,Correpsonding author.
| |
Collapse
|
13
|
Ryzhakov G, Almuttaqi H, Corbin AL, Berthold DL, Khoyratty T, Eames HL, Bullers S, Pearson C, Ai Z, Zec K, Bonham S, Fischer R, Jostins-Dean L, Travis SPL, Kessler BM, Udalova IA. Defactinib inhibits PYK2 phosphorylation of IRF5 and reduces intestinal inflammation. Nat Commun 2021; 12:6702. [PMID: 34795257 PMCID: PMC8602323 DOI: 10.1038/s41467-021-27038-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, and has a key pathogenic function in gut inflammation, but how IRF5 is modulated is still unclear. Having performed a kinase inhibitor library screening in macrophages, here we identify protein-tyrosine kinase 2-beta (PTK2B/PYK2) as a putative IRF5 kinase. PYK2-deficient macrophages display impaired endogenous IRF5 activation, leading to reduction of inflammatory gene expression. Meanwhile, a PYK2 inhibitor, defactinib, has a similar effect on IRF5 activation in vitro, and induces a transcriptomic signature in macrophages similar to that caused by IRF5 deficiency. Finally, defactinib reduces pro-inflammatory cytokines in human colon biopsies from patients with ulcerative colitis, as well as in a mouse colitis model. Our results thus implicate a function of PYK2 in regulating the inflammatory response in the gut via the IRF5 innate sensing pathway, thereby opening opportunities for related therapeutic interventions for inflammatory bowel diseases and other inflammatory conditions.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Hannah Almuttaqi
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Alastair L Corbin
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Dorothée L Berthold
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Tariq Khoyratty
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Hayley L Eames
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Samuel Bullers
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Claire Pearson
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Zhichao Ai
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Kristina Zec
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Luke Jostins-Dean
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Simon P L Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Irina A Udalova
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom.
| |
Collapse
|
14
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
15
|
Bhuyan F, de Jesus AA, Mitchell J, Leikina E, VanTries R, Herzog R, Onel KB, Oler A, Montealegre Sanchez GA, Johnson KA, Bichell L, Marrero B, De Castro LF, Huang Y, Calvo KR, Collins MT, Ganesan S, Chernomordik LV, Ferguson PJ, Goldbach-Mansky R. Novel Majeed Syndrome-Causing LPIN2 Mutations Link Bone Inflammation to Inflammatory M2 Macrophages and Accelerated Osteoclastogenesis. Arthritis Rheumatol 2021; 73:1021-1032. [PMID: 33314777 PMCID: PMC8252456 DOI: 10.1002/art.41624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022]
Abstract
Objective To identify novel heterozygous LPIN2 mutations in a patient with Majeed syndrome and characterize the pathomechanisms that lead to the development of sterile osteomyelitis. Methods Targeted genetic analysis and functional studies assessing monocyte responses, macrophage differentiation, and osteoclastogenesis were conducted to compare the pathogenesis of Majeed syndrome to interleukin‐1 (IL‐1)–mediated diseases including neonatal‐onset multisystem inflammatory disease (NOMID) and deficiency of the IL‐1 receptor antagonist (DIRA). Results A 4‐year‐old girl of mixed ethnic background presented with sterile osteomyelitis and elevated acute‐phase reactants. She had a 17.8‐kb deletion on the maternal LPIN2 allele and a splice site mutation, p.R517H, that variably spliced out exons 10 and 11 on the paternal LPIN2 allele. The patient achieved long‐lasting remission receiving IL‐1 blockade with canakinumab. Compared to controls, monocytes and monocyte‐derived M1‐like macrophages from the patient with Majeed syndrome and those with NOMID or DIRA had elevated caspase 1 activity and IL‐1β secretion. In contrast, lipopolysaccharide‐stimulated, monocyte‐derived, M2‐like macrophages from the patient with Majeed syndrome released higher levels of osteoclastogenic mediators (IL‐8, IL‐6, tumor necrosis factor, CCL2, macrophage inflammatory protein 1α/β, CXCL8, and CXCL1) compared to NOMID patients and healthy controls. Accelerated osteoclastogenesis in the patient with Majeed syndrome was associated with higher NFATc1 levels, enhanced JNK/MAPK, and reduced Src kinase activation, and partially responded to JNK inhibition and IL‐1 (but not IL‐6) blockade. Conclusion We report 2 novel compound heterozygous disease‐causing mutations in LPIN2 in an American patient with Majeed syndrome. LPIN2 deficiency drives differentiation of proinflammatory M2‐like macrophages and enhances intrinsic osteoclastogenesis. This provides a model for the pathogenesis of sterile osteomyelitis which differentiates Majeed syndrome from other IL‐1–mediated autoinflammatory diseases.
Collapse
Affiliation(s)
- Farzana Bhuyan
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Adriana A de Jesus
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Jacob Mitchell
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Evgenia Leikina
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Rachel VanTries
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | | | - Andrew Oler
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Kim A Johnson
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Lena Bichell
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Bernadette Marrero
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Yan Huang
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Michael T Collins
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Sundar Ganesan
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Leonid V Chernomordik
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | | | | |
Collapse
|
16
|
Wang H, Hong X, Kinsey WH. Sperm-oocyte signaling: the role of IZUMO1R and CD9 in PTK2B activation and actin remodeling at the sperm binding site†. Biol Reprod 2021; 104:1292-1301. [PMID: 33724343 PMCID: PMC8182024 DOI: 10.1093/biolre/ioab048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/09/2021] [Accepted: 03/15/2021] [Indexed: 01/19/2023] Open
Abstract
Sperm-oocyte binding initiates an outside-in signaling event in the mouse oocyte that triggers recruitment and activation of the cytosolic protein kinase PTK2B in the cortex underlying the bound sperm. While not involved in gamete fusion, PTK2B activity promotes actin remodeling events important during sperm incorporation. However, the mechanism by which sperm-oocyte binding activates PTK2B is unknown, and the present study examined the possibility that sperm interaction with specific oocyte surface proteins plays an important role in PTK2B activation. Imaging studies revealed that as IZUMO1R and CD9 became concentrated at the sperm binding site, activated (phosphorylated) PTK2B accumulated in the cortex underlying the sperm head and in microvilli partially encircling the sperm head. In order to determine whether IZUMO1R and/or CD9 played a significant role in PTK2B recruitment and activation at the sperm binding site, the ability of oocytes null for Izumo1r or Cd9, to initiate an increase in PTK2B content and activation was tested. The results revealed that IZUMO1R played a minor role in PTK2B activation and had no effect on actin remodeling; however, CD9 played a very significant role in PTK2B activation and subsequent actin remodeling at the sperm binding site. These findings suggest the possibility that interaction of sperm surface proteins with CD9 or CD9-associated oocyte proteins triggers PTK2B activation at the sperm binding site.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Xiaoman Hong
- Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA,Correspondence: Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA. E-mail:
| |
Collapse
|
17
|
Erkens R, Totzeck M, Brum A, Duse D, Bøtker HE, Rassaf T, Kelm M. Endothelium-dependent remote signaling in ischemia and reperfusion: Alterations in the cardiometabolic continuum. Free Radic Biol Med 2021; 165:265-281. [PMID: 33497796 DOI: 10.1016/j.freeradbiomed.2021.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Intact endothelial function plays a fundamental role for the maintenance of cardiovascular (CV) health. The endothelium is also involved in remote signaling pathway-mediated protection against ischemia/reperfusion (I/R) injury. However, the transfer of these protective signals into clinical practice has been hampered by the complex metabolic alterations frequently observed in the cardiometabolic continuum, which affect redox balance and inflammatory pathways. Despite recent advances in determining the distinct roles of hyperglycemia, insulin resistance (InR), hyperinsulinemia, and ultimately diabetes mellitus (DM), which define the cardiometabolic continuum, our understanding of how these conditions modulate endothelial signaling remains challenging. It is widely accepted that endothelial cells (ECs) undergo functional changes within the cardiometabolic continuum. Beyond vascular tone and platelet-endothelium interaction, endothelial dysfunction may have profound negative effects on outcome during I/R. In this review, we summarize the current knowledge of the influence of hyperglycemia, InR, hyperinsulinemia, and DM on endothelial function and redox balance, their influence on remote protective signaling pathways, and their impact on potential therapeutic strategies to optimize protective heterocellular signaling.
Collapse
Affiliation(s)
- Ralf Erkens
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Amanda Brum
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Dragos Duse
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hans Erik Bøtker
- Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
18
|
Das P, Pal S, Oldfield CM, Thillai K, Bala S, Carnevale KA, Cathcart MK, Bhattacharjee A. A PKCβ-LYN-PYK2 Signaling Axis Is Critical for MCP-1-Dependent Migration and Adhesion of Monocytes. THE JOURNAL OF IMMUNOLOGY 2021; 206:181-192. [PMID: 33277387 DOI: 10.4049/jimmunol.1900706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/02/2020] [Indexed: 11/19/2022]
Abstract
MCP-1-induced monocyte chemotaxis is a crucial event in inflammation and atherogenesis. Identifying the important signal transduction pathways that control monocyte chemotaxis can unravel potential targets for preventive therapies in inflammatory disease conditions. Previous studies have shown that the focal adhesion kinase Pyk2 plays a critical role in monocyte motility. In this study, we investigated the MCP-1-mediated activation of Pyk2 (particularly by the phosphorylation of Tyr402) in primary human peripheral blood monocytes. We showed that MCP-1 induces Src phosphorylation in a similar time frame and that the MCP-1-induced Pyk2 tyrosine phosphorylation is controlled by the Src family kinase. We also report, in this study, that PKCβ, an isoform of PKC, is required for both Src and Pyk2 activation/phosphorylation in response to MCP-1 stimulation. We identified Lyn as the specific Src kinase isoform that is activated by MCP-1 and acts upstream of Pyk2 in primary monocytes. Furthermore, Lyn is found to be indispensable for monocyte migration in response to MCP-1 stimulation. Moreover, our coimmunoprecipitation studies in monocytes revealed that PKCβ, Pyk2, and Lyn exist constitutively in a molecular complex. To our knowledge, our study has uncovered a novel PKCβ-Lyn-Pyk2 signaling cascade in primary monocytes that regulates MCP-1-induced monocyte adhesion and migration.
Collapse
Affiliation(s)
- Pradip Das
- Department of Biotechnology, National Institute of Technology-Durgapur, Durgapur 713209, Burdwan, West Bengal, India
| | - Srabani Pal
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| | - Claudine M Oldfield
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| | - Kowsalya Thillai
- Department of Biotechnology, National Institute of Technology-Durgapur, Durgapur 713209, Burdwan, West Bengal, India
| | - Sinjini Bala
- Department of Biotechnology, National Institute of Technology-Durgapur, Durgapur 713209, Burdwan, West Bengal, India
| | - Kevin A Carnevale
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| | - Martha K Cathcart
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology-Durgapur, Durgapur 713209, Burdwan, West Bengal, India;
| |
Collapse
|
19
|
Pyk2 Regulates Human Papillomavirus Replication by Tyrosine Phosphorylation of the E2 Protein. J Virol 2020; 94:JVI.01110-20. [PMID: 32727877 DOI: 10.1128/jvi.01110-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 12/29/2022] Open
Abstract
The human papillomavirus (HPV) E2 protein is a key regulator of viral transcription and replication. In this study, we demonstrate that the nonreceptor tyrosine kinase Pyk2 phosphorylates tyrosine 131 in the E2 transactivation domain. Both depletion of Pyk2 and treatment with a Pyk2 kinase inhibitor increased viral DNA content in keratinocytes that maintain viral episomes. The tyrosine-to-glutamic acid (E) mutant Y131E, which may mimic phosphotyrosine, failed to stimulate transient DNA replication, and genomes with this mutation were unable to establish stable episomes in keratinocytes. Using coimmunoprecipitation assays, we demonstrate that the Y131E is defective for binding to the C-terminal motif (CTM) of Bromodomain-containing protein 4 (Brd4). These data imply that HPV replication depends on E2 Y131 interaction with the pTEFb binding domain of Brd4.IMPORTANCE Human papillomaviruses are the major causative agents of cervical, oral, and anal cancers. The present study demonstrates that the Pyk2 tyrosine kinase phosphorylates E2 at tyrosine 131, interfering with genome replication. We provide evidence that phosphorylation of E2 prevents binding to the Brd4-CTM. Our findings add to the understanding of molecular pathways utilized by the virus during its vegetative life cycle and offers insights into the host-virus interactome.
Collapse
|
20
|
Zheng L, Trease AJ, Katsurada K, Spagnol G, Li H, Shi W, Duan B, Patel KP, Sorgen PL. Inhibition of Pyk2 and Src activity improves Cx43 gap junction intercellular communication. J Mol Cell Cardiol 2020; 149:27-40. [PMID: 32956670 DOI: 10.1016/j.yjmcc.2020.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
Identification of proteins that interact with Cx43 has been instrumental in the understanding of gap junction (GJ) regulation. An in vitro phosphorylation screen identified that Protein tyrosine kinase 2 beta (Pyk2) phosphorylated purified Cx43CT and this led us to characterize the impact of this phosphorylation on Cx43 function. Mass spectrometry identified Pyk2 phosphorylates Cx43 residues Y247, Y265, Y267, and Y313. Western blot and immunofluorescence staining using HeLaCx43 cells, HEK 293 T cells, and neonatal rat ventricular myocytes (NRVMs) revealed Pyk2 can be activated by Src and active Pyk2 interacts with Cx43 at the plasma membrane. Overexpression of Pyk2 increases Cx43 phosphorylation and knock-down of Pyk2 decreases Cx43 phosphorylation, without affecting the level of active Src. In HeLaCx43 cells treated with PMA to activate Pyk2, a decrease in Cx43 GJ intercellular communication (GJIC) was observed when assayed by dye transfer. Moreover, PMA activation of Pyk2 could be inhibited by the small molecule PF4618433. This partially restored GJIC, and when paired with a Src inhibitor, returned GJIC to the no PMA control-level. The ability of Pyk2 and Src inhibitors to restore Cx43 function in the presence of PMA was also observed in NRVMs. Additionally, an animal model of myocardial infarction induced heart failure showed a higher level of active Pyk2 activity and increased interaction with Cx43 in ventricular myocytes. Src inhibitors have been used to reverse Cx43 remodeling and improve heart function after myocardial infarction; however, they alone could not fully restore proper Cx43 function. Our data suggest that Pyk2 may need to be inhibited, in addition to Src, to further (if not completely) reverse Cx43 remodeling and improve intercellular communication.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hanjun Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wen Shi
- Division of Cardiology, Department of Internal Medicine/Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Division of Cardiology, Department of Internal Medicine/Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
21
|
Higa‐Nakamine S, Okitsu‐Sakurayama S, Kina S, Yamamoto H. Fyn‐mediated phosphorylation of Pyk2 promotes its activation and dissociation downstream of gonadotropin‐releasing hormone receptor. FEBS J 2020; 287:3551-3564. [DOI: 10.1111/febs.15231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/13/2019] [Accepted: 01/27/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Sayomi Higa‐Nakamine
- Department of Biochemistry Graduate School of Medicine University of the Ryukyus Okinawa Japan
| | - Shiho Okitsu‐Sakurayama
- Department of Biochemistry Graduate School of Medicine University of the Ryukyus Okinawa Japan
| | - Shinichiro Kina
- Department of Oral and Maxillofacial Functional Rehabilitation Graduate School of Medicine University of the Ryukyus Okinawa Japan
| | - Hideyuki Yamamoto
- Department of Biochemistry Graduate School of Medicine University of the Ryukyus Okinawa Japan
| |
Collapse
|
22
|
Oono K, Ohtake K, Watanabe C, Shiba S, Sekiya T, Kasono K. Contribution of Pyk2 pathway and reactive oxygen species (ROS) to the anti-cancer effects of eicosapentaenoic acid (EPA) in PC3 prostate cancer cells. Lipids Health Dis 2020; 19:15. [PMID: 32005121 PMCID: PMC6993438 DOI: 10.1186/s12944-019-1122-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background n-3 polyunsaturated fatty acids (n-3 PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are thought to exert protective effects in cardiovascular diseases. In addition, n-3 PUFAs have demonstrated anti-cancer effects in vitro and in vivo. Objective We investigated the anti-cancer effects and mechanism of action of EPA on PC3 prostate cancer cells in vitro. Methods PC3 cells were treated with various concentrations of EPA, and cell survival and the abilities of migration and invasion were evaluated. The time course of the growth inhibitory effect of EPA on PC3 cells was also assessed. The mechanism underlying the anti-cancer effects of EPA was investigated by human phosphokinase and human apoptosis antibody arrays, and confirmed by western blot analysis. We also examined the contribution of reactive oxygen species (ROS) to the effects of EPA using the ROS inhibitor N-acetyl cysteine. Results EPA decreased the survival of PC3 cells in a dose-dependent manner within 3 h of application, with an effective concentration of 500 μmol/L. EPA inhibited proline-rich tyrosine kinase (Pyk)2 and extracellular signal-regulated kinase 1/2 phosphorylation as determined by western blotting and the antibody arrays. The growth of PC3 cells was inhibited by EPA, which was dependent on ROS induction, while EPA inhibited Pyk2 phosphorylation independent of ROS production. Conclusions Inhibition of Pyk2 phosphorylation and ROS production contribute to the anticancer effects of EPA on PC3 cells.
Collapse
Affiliation(s)
- Keiichi Oono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kazuo Ohtake
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Chie Watanabe
- Laboratory of Clinical Pathology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Sachiko Shiba
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Takashi Sekiya
- Laboratory of Clinical Pathology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Keizo Kasono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
23
|
T Cell-Derived IL-17A Induces Vascular Dysfunction via Perivascular Fibrosis Formation and Dysregulation of ·NO/cGMP Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6721531. [PMID: 31396305 PMCID: PMC6668561 DOI: 10.1155/2019/6721531] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Aims The neutrophil recruiting cytokine Interleukin-17A (IL-17A) is a key component in vascular dysfunction and arterial hypertension. Moreover, IL-17A has a central role for the vascular infiltration of myeloid cells into the arterial wall in Angiotensin II-induced vascular inflammation. The intention of our study was to analyze the impact of T cell-derived IL-17A on hypertension, vascular function, and inflammation. Methods and Results Chronic IL-17A overexpression in T cells (CD4-IL-17Aind/+ mice) resulted in elevated reactive oxygen species in the peripheral blood and a significant vascular dysfunction compared to control mice. The vascular dysfunction seen in the CD4-IL-17Aind/+ mice was only accompanied by a modest and nonsignificant accumulation of inflammatory cells within the vessel wall. Therefore, infiltrating myeloid cells did not serve as an explanation of the vascular dysfunction seen in a chronic IL-17A-driven mouse model. In addition to vascular dysfunction, CD4-IL-17Aind/+ mice displayed vascular fibrosis with highly proliferative fibroblasts. This fibroblast proliferation was induced by exposure to IL-17A as confirmed by in vitro experiments with primary murine fibroblastic cells. We also found that the ·NO/cGMP pathway was downregulated in the vasculature of the CD4-IL-17Aind/+ mice, while levels of protein tyrosine kinase 2 (PYK2), an oxidative stress-triggered process associated with T cell activation, were upregulated in the perivascular fat tissue (PVAT). Conclusions Our data demonstrate that T cell-derived IL-17A elicits vascular dysfunction by mediating proliferation of fibroblasts and subsequent vascular fibrosis associated with PYK2 upregulation.
Collapse
|
24
|
Li C, Götz J. Pyk2 is a Novel Tau Tyrosine Kinase that is Regulated by the Tyrosine Kinase Fyn. J Alzheimers Dis 2019; 64:205-221. [PMID: 29782321 PMCID: PMC6004899 DOI: 10.3233/jad-180054] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The protein tyrosine kinase Pyk2 is encoded by PTK2B, a novel Alzheimer’s disease (AD) susceptibility variant, with the PTK2B risk allele being associated with increased mRNA levels, suggestive of increased Pyk2 levels. However, the role of Pyk2, a member of the focal adhesion kinase (FAK) family, in AD pathology and its regulation are largely unknown. To address this, we generated mice with neuronal expression of human Pyk2. Because we had previously reported an association of Pyk2 and hyperphosphorylated tau (a hallmark feature of AD) in human tau transgenic pR5 mice, we also generated Pyk2/tau double-transgenic mice, which exhibit increased tyrosine phosphorylation and accumulation of tau. We further demonstrated that Pyk2 colocalizes, interacts with, and phosphorylates tau in vivo and in vitro. Importantly, although Pyk2 interacts with the established tyrosine-directed tau kinase Fyn, we identified an increased Pyk2 activity in mice which constitutively overexpress Fyn (FynCA), and a decreased activity in mice lacking Fyn (FynKO). Together, our study reveals a novel role for Pyk2 as a direct tyrosine kinase of tau that is active downstream of Fyn. Our analysis may enhance the understanding of how the PTK2B risk allele contributes to tauopathy.
Collapse
Affiliation(s)
- Chuanzhou Li
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus (Brisbane), QLD, Australia.,Department of Medical Genetics, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus (Brisbane), QLD, Australia
| |
Collapse
|
25
|
Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss. J Neurosci 2018; 39:758-772. [PMID: 30518596 DOI: 10.1523/jneurosci.1873-18.2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/28/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022] Open
Abstract
Dozens of genes have been implicated in late onset Alzheimer's disease (AD) risk, but none has a defined mechanism of action in neurons. Here, we show that the risk factor Pyk2 (PTK2B) localizes specifically to neurons in adult brain. Absence of Pyk2 has no major effect on synapse formation or the basal parameters of synaptic transmission in the hippocampal Schaffer collateral pathway. However, the induction of synaptic LTD is suppressed in Pyk2-null slices. In contrast, deletion of Pyk2 expression does not alter LTP under control conditions. Of relevance for AD pathophysiology, Pyk2-/- slices are protected from amyloid-β-oligomer (Aβo)-induced suppression of LTP in hippocampal slices. Acutely, a Pyk2 kinase inhibitor also prevents Aβo-induced suppression of LTP in WT slices. Female and male transgenic AD model mice expressing APPswe/PSEN1ΔE9 require Pyk2 for age-dependent loss of synaptic markers and for impairment of learning and memory. However, absence of Pyk2 does not alter Aβ accumulation or gliosis. Therefore, the Pyk2 risk gene is directly implicated in a neuronal Aβo signaling pathway impairing synaptic anatomy and function.SIGNIFICANCE STATEMENT Genetic variation at the Pyk2 (PTK2B) locus is a risk for late onset Alzheimer's disease (AD), but the pathophysiological role of Pyk2 is not clear. Here, we studied Pyk2 neuronal function in mice lacking expression with and without transgenes generating amyloid-β (Aβ) plaque pathology. Pyk2 is not required for basal synaptic transmission or LTP, but participates in LTD. Hippocampal slices lacking Pyk2 are protected from AD-related Aβ oligomer suppression of synaptic plasticity. In transgenic AD model mice, deletion of Pyk2 rescues synaptic loss and learning/memory deficits. Therefore, Pyk2 plays a central role in AD-related synaptic dysfunction mediating Aβ-triggered dysfunction.
Collapse
|
26
|
Hirschler-Laszkiewicz I, Chen SJ, Bao L, Wang J, Zhang XQ, Shanmughapriya S, Keefer K, Madesh M, Cheung JY, Miller BA. The human ion channel TRPM2 modulates neuroblastoma cell survival and mitochondrial function through Pyk2, CREB, and MCU activation. Am J Physiol Cell Physiol 2018; 315:C571-C586. [PMID: 30020827 PMCID: PMC6230687 DOI: 10.1152/ajpcell.00098.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transient receptor potential melastatin channel subfamily member 2 (TRPM2) has an essential function in cell survival and is highly expressed in many cancers. Inhibition of TRPM2 in neuroblastoma by depletion with CRISPR technology or expression of dominant negative TRPM2-S has been shown to significantly reduce cell viability. Here, the role of proline-rich tyrosine kinase 2 (Pyk2) in TRPM2 modulation of neuroblastoma viability was explored. In TRPM2-depleted cells, phosphorylation and expression of Pyk2 and cAMP-responsive element-binding protein (CREB), a downstream target, were significantly reduced after application of the chemotherapeutic agent doxorubicin. Overexpression of wild-type Pyk2 rescued cell viability. Reduction of Pyk2 expression with shRNA decreased cell viability and CREB phosphorylation and expression, demonstrating Pyk2 modulates CREB activation. TRPM2 depletion impaired phosphorylation of Src, an activator of Pyk2, and this may be a mechanism to reduce Pyk2 phosphorylation. TRPM2 inhibition was previously demonstrated to decrease mitochondrial function. Here, CREB, Pyk2, and phosphorylated Src were reduced in mitochondria of TRPM2-depleted cells, consistent with their role in modulating expression and activation of mitochondrial proteins. Phosphorylated Src and phosphorylated and total CREB were reduced in TRPM2-depleted nuclei. Expression and function of mitochondrial calcium uniporter (MCU), a target of phosphorylated Pyk2 and CREB, were significantly reduced. Wild-type TRPM2 but not Ca2+-impermeable mutant E960D reconstituted phosphorylation and expression of Pyk2 and CREB in TRPM2-depleted cells exposed to doxorubicin. Results demonstrate that TRPM2 expression protects the viability of neuroblastoma through Src, Pyk2, CREB, and MCU activation, which play key roles in maintaining mitochondrial function and cellular bioenergetics.
Collapse
Affiliation(s)
| | - Shu-Jen Chen
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Lei Bao
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - JuFang Wang
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Santhanam Shanmughapriya
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Biochemistry, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Kerry Keefer
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Muniswamy Madesh
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Biochemistry, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Joseph Y Cheung
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Barbara A Miller
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
27
|
Expression of the serotonin receptor 2B in uveal melanoma and effects of an antagonist on cell lines. Clin Exp Metastasis 2018; 35:123-134. [PMID: 29696577 DOI: 10.1007/s10585-018-9894-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/23/2018] [Indexed: 12/25/2022]
Abstract
Uveal melanoma (UM) is the most common primary tumor in the adult, and disseminates to the liver in half of patients. A 15-gene expression profile prognostic assay allows to determine the likelihood of metastasis in patients using their ocular tumor DNA, but a cure still remains to be discovered. The serotonin receptor 2B represents the discriminant gene of this molecular signature with the greatest impact on the prognosis of UM. However, its contribution to the metastatic potential of UM remains unexplored. The purpose of this study was to investigate the effects of a selective serotonin receptor 2B antagonist on cellular and molecular behaviours of UM cells. UM cell lines expressing high level of serotonin receptor 2B proteins were selected by Western blotting. The selective serotonin receptor 2B antagonist PRX-08066 was evaluated for its impact on UM cells using viability assays, phosphorylated histone H3 immunostainings, clonogenic assays, migration assays, invasion assays and membrane-based protein kinase phosphorylation antibody arrays. The pharmacological inhibition of the serotonin receptor 2B reduced the viability of UM cells and the population in mitosis, and impaired their clonogenicity and potential of migration. It also decreased the phosphorylation of kinases from signaling pathways classically activated by the serotonin receptor 2B, as well as kinases β-catenin, Proline-rich tyrosine kinase 2, and Signal transducer and activator of transcription 5. Our findings support a role for the serotonin receptor 2B in the proliferation and migration of UM cells, through activation of many signaling pathways such as WNT, Focal adhesion kinase and Janus kinase/STAT.
Collapse
|
28
|
Zacchia M, Tian X, Zona E, Alpern RJ, Preisig PA. Acid Stimulation of the Citrate Transporter NaDC-1 Requires Pyk2 and ERK1/2 Signaling Pathways. J Am Soc Nephrol 2018; 29:1720-1730. [PMID: 29678998 DOI: 10.1681/asn.2017121268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
Background Urine citrate is reabsorbed exclusively along the renal proximal tubule via the apical Na+-dicarboxylate cotransporter NaDC-1. We previously showed that an acid load in vivo and media acidification in vitro increase NaDC-1 activity through endothelin-1 (ET-1)/endothelin B (ETB) signaling. Here, we further examined the signaling pathway mediating acid-induced NaDC-1 activity.Methods We transiently transfected cultured opossum kidney cells, a model of the proximal tubule, with NaDC-1 and ETB and measured [14C]-citrate uptake after media acidification under various experimental conditions, including inactivation of Pyk2 and c-Src, which were previously shown to be activated by media acidification. Wild-type (Pyk2+/+) and Pyk2-null (Pyk2-/-) mice were exposed to NH4Cl loading and euthanized after various end points, at which time we harvested the kidneys for immunoblotting and brush border membrane NaDC-1 activity studies.Results Inhibition of Pyk2 or c-Src prevented acid stimulation but not ET-1 stimulation of NaDC-1 in vitro Consistent with these results, NH4Cl loading stimulated NaDC-1 activity in kidneys of wild-type but not Pyk2-/- mice. In cultured cells and in mice, ERK1/2 was rapidly phosphorylated by acid loading, even after Pyk2 knockdown, and it was required for acid but not ET-1/ETB stimulation of NaDC-1 in vitro Media acidification also induced the phosphorylation of Raf1 and p90RSK, components of the ERK1/2 pathway, and inhibition of these proteins blocked acid stimulation of NaDC-1 activity.Conclusions Acid stimulation of NaDC-1 activity involves Pyk2/c-Src and Raf1-ERK1/2-p90RSK signaling pathways, but these pathways are not downstream of ET-1/ETB in this process.
Collapse
Affiliation(s)
- Miriam Zacchia
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy; and
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Enrica Zona
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy; and
| | - Robert J Alpern
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Patricia A Preisig
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
29
|
Maxson ME, Naj X, O'Meara TR, Plumb JD, Cowen LE, Grinstein S. Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes. eLife 2018; 7:34798. [PMID: 29553370 PMCID: PMC5897098 DOI: 10.7554/elife.34798] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022] Open
Abstract
Candida albicans hyphae can reach enormous lengths, precluding their internalization by phagocytes. Nevertheless, macrophages engulf a portion of the hypha, generating incompletely sealed tubular phagosomes. These frustrated phagosomes are stabilized by a thick cuff of F-actin that polymerizes in response to non-canonical activation of integrins by fungal glycan. Despite their continuity, the surface and invaginating phagosomal membranes retain a strikingly distinct lipid composition. PtdIns(4,5)P2 is present at the plasmalemma but is not detectable in the phagosomal membrane, while PtdIns(3)P and PtdIns(3,4,5)P3 co-exist in the phagosomes yet are absent from the surface membrane. Moreover, endo-lysosomal proteins are present only in the phagosomal membrane. Fluorescence recovery after photobleaching revealed the presence of a diffusion barrier that maintains the identity of the open tubular phagosome separate from the plasmalemma. Formation of this barrier depends on Syk, Pyk2/Fak and formin-dependent actin assembly. Antimicrobial mechanisms can thereby be deployed, limiting the growth of the hyphae.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Xenia Naj
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Teresa R O'Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jonathan D Plumb
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Iskander SM, Feeney MM, Yee K, Rosenblum ND. Protein Kinase 2 β Is Expressed in Neural Crest-Derived Urinary Pacemaker Cells and Required for Pyeloureteric Contraction. J Am Soc Nephrol 2018; 29:1198-1209. [PMID: 29436516 DOI: 10.1681/asn.2017090951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/10/2018] [Indexed: 01/31/2023] Open
Abstract
Nonobstructive hydronephrosis, defined as dilatation of the renal pelvis with or without dilatation of the ureter, is the most common antenatal abnormality detected by fetal ultrasound. Yet, the etiology of nonobstructive hydronephrosis is poorly defined. We previously demonstrated that defective development of urinary tract pacemaker cells (utPMCs) expressing hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) and the stem cell marker cKIT causes abnormal ureteric peristalsis and nonobstructive hydronephrosis. However, further investigation of utPMC development and function is limited by lack of knowledge regarding the embryonic derivation, development, and molecular apparatus of these cells. Here, we used lineage tracing in mice to identify cells that give rise to utPMCs. Neural crest cells (NCCs) indelibly labeled with tdTomato expressed HCN3 and cKIT. Furthermore, purified HCN3+ and cKIT+ utPMCs were enriched in Sox10 and Tfap-2α, markers of NCCs. Sequencing of purified RNA from HCN3+ cells revealed enrichment of a small subset of RNAs, including RNA encoding protein kinase 2β (PTK2β), a Ca2+-dependent tyrosine kinase that regulates ion channel activity in neurons. Immunofluorescence analysis in situ revealed PTK2β expression in NCCs as early as embryonic day 12.5 and in HCN3+ and cKIT+ utPMCs as early as embryonic day 15.5, with sustained expression in HCN3+ utPMCs until postnatal week 8. Pharmacologic inhibition of PTK2β in murine pyeloureteral tissue explants inhibited contraction frequency. Together, these results demonstrate that utPMCs are derived from NCCs, identify new markers of utPMCs, and demonstrate a functional contribution of PTK2β to utPMC function.
Collapse
Affiliation(s)
- Samir M Iskander
- Program in Developmental and Stem Cell Biology and.,Departments of Laboratory Medicine and Pathobiology and
| | - Meghan M Feeney
- Program in Developmental and Stem Cell Biology and.,Departments of Laboratory Medicine and Pathobiology and
| | - Kirby Yee
- Program in Developmental and Stem Cell Biology and
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology and .,Departments of Laboratory Medicine and Pathobiology and.,Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; and.,Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Mastroeni D, Nolz J, Sekar S, Delvaux E, Serrano G, Cuyugan L, Liang WS, Beach TG, Rogers J, Coleman PD. Laser-captured microglia in the Alzheimer's and Parkinson's brain reveal unique regional expression profiles and suggest a potential role for hepatitis B in the Alzheimer's brain. Neurobiol Aging 2017; 63:12-21. [PMID: 29207277 DOI: 10.1016/j.neurobiolaging.2017.10.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 01/24/2023]
Abstract
Expression array data from dozens of laboratories, including our own, show significant changes in expression of many genes in Alzheimer's disease (AD) patients compared with normal controls. These data typically rely on brain homogenates, and information about transcripts specific to microglia and other central nervous system (CNS) cell types, which far outnumber microglia-specific transcripts, is lost. We therefore used single-cell laser capture methods to assess the full range of microglia-specific expression changes that occur in different brain regions (substantia nigra and hippocampus CA1) and disease states (AD, Parkinson's disease, and normal controls). Two novel pathways, neuronal repair and viral processing were identified. Based on KEGG analysis (Kyoto Encyclopedia of Genes and Genomes, a collection of biological pathways), one of the most significant viruses was hepatitis B virus (HBV) (false discovery rate < 0.00000001). Immunohistochemical analysis using HBV-core antibody in HBV-positive control, amnestic mild cognitive impairment, and HBV-positive AD cases show increased HBV immunoreactivity as disease pathology increases. These results are the first, to our knowledge, to show regional differences in human microglia. In addition, these data reveal new functions for microglia and suggest a novel risk factor for AD.
Collapse
Affiliation(s)
- Diego Mastroeni
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Jennifer Nolz
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Shobana Sekar
- Translational Genomics Institute, Phoenix, Arizona, USA
| | - Elaine Delvaux
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Lori Cuyugan
- Translational Genomics Institute, Phoenix, Arizona, USA
| | | | | | | | - Paul D Coleman
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA
| |
Collapse
|
32
|
Narendra Talabattula VA, Morgan P, Frech MJ, Uhrmacher AM, Herchenröder O, Pützer BM, Rolfs A, Luo J. Non-canonical pathway induced by Wnt3a regulates β-catenin via Pyk2 in differentiating human neural progenitor cells. Biochem Biophys Res Commun 2017; 491:40-46. [DOI: 10.1016/j.bbrc.2017.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
33
|
Tsukahara R, Umazume K, McDonald K, Kaplan HJ, Tamiya S. Focal adhesion kinase family is involved in matrix contraction by transdifferentiated Müller cells. Exp Eye Res 2017; 164:90-94. [PMID: 28818394 DOI: 10.1016/j.exer.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 01/01/2023]
Abstract
Transdifferentiated Müller cells that adopt a fibroblastic/myofibroblastic phenotype have been identified in epiretinal membranes (ERMs) in several ocular disorders, and have been implicated to play a role in the formation and/or the contraction of ERMs. We have previously demonstrated that dasatinib, a dual inhibitor of Src-family kinases and Abl kinase, can prevent matrix contraction by transdifferentiated Müller cells. In this study, we examined molecules involved in matrix contraction downstream of primary dasatinib targets. Tyrosine phosphorylation of focal adhesion kinase (FAK) family members FAK and PYK2 was significantly reduced by dasatinib, and select inhibitors for these kinases PF431396, which inhibits both FAK and PYK2, and PF573228, which only inhibits FAK and not PYK2, significantly reduced matrix contraction by transdifferentiated Müller cells. Dasatinib and PF431396 significantly reduced phosphorylation of Hic-5, a protein implicated to play a role in focal adhesions and cell signaling. Our data shows that FAK family members are involved in matrix contraction by transdifferentiated Müller cells, and also implicates that Hic-5 is situated downstream of the FAK family within the signaling pathway.
Collapse
Affiliation(s)
- Rintaro Tsukahara
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA; Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki-gun, Ibaraki 300-0332, Japan
| | - Kazuhiko Umazume
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-Shijuku, Shinjuku, Tokyo 160-0023, Japan
| | - Kevin McDonald
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Shigeo Tamiya
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E Muhammad Ali Blvd., Louisville, KY 40202, USA.
| |
Collapse
|
34
|
Mastroeni D, Sekar S, Nolz J, Delvaux E, Lunnon K, Mill J, Liang WS, Coleman PD. ANK1 is up-regulated in laser captured microglia in Alzheimer's brain; the importance of addressing cellular heterogeneity. PLoS One 2017; 12:e0177814. [PMID: 28700589 PMCID: PMC5507536 DOI: 10.1371/journal.pone.0177814] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/03/2017] [Indexed: 01/19/2023] Open
Abstract
Recent epigenetic association studies have identified a new gene, ANK1, in the pathogenesis of Alzheimer’s disease (AD). Although strong associations were observed, brain homogenates were used to generate the data, introducing complications because of the range of cell types analyzed. In order to address the issue of cellular heterogeneity in homogenate samples we isolated microglial, astrocytes and neurons by laser capture microdissection from CA1 of hippocampus in the same individuals with a clinical and pathological diagnosis of AD and matched control cases. Using this unique RNAseq data set, we show that in the hippocampus, ANK1 is significantly (p<0.0001) up-regulated 4-fold in AD microglia, but not in neurons or astrocytes from the same individuals. These data provide evidence that microglia are the source of ANK1 differential expression previously identified in homogenate samples in AD.
Collapse
Affiliation(s)
- Diego Mastroeni
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Banner Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ, United States of America
- * E-mail:
| | - Shobana Sekar
- Translational Genomics Institute, 445 North Fifth Street, Phoenix, AZ, United States of America
| | - Jennifer Nolz
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Elaine Delvaux
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Katie Lunnon
- University of Exeter Medical School, RILD, University of Exeter, Devon, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, RILD, University of Exeter, Devon, United Kingdom
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom
| | - Winnie S. Liang
- Translational Genomics Institute, 445 North Fifth Street, Phoenix, AZ, United States of America
| | - Paul D. Coleman
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Banner Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ, United States of America
| |
Collapse
|
35
|
Huang H, Svoboda RA, Lazenby AJ, Saowapa J, Chaika N, Ding K, Wheelock MJ, Johnson KR. Up-regulation of N-cadherin by Collagen I-activated Discoidin Domain Receptor 1 in Pancreatic Cancer Requires the Adaptor Molecule Shc1. J Biol Chem 2016; 291:23208-23223. [PMID: 27605668 DOI: 10.1074/jbc.m116.740605] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinomas are highly malignant cancers characterized by extensive invasion into surrounding tissues, metastasis to distant organs, and a limited response to therapy. A main feature of pancreatic ductal adenocarcinomas is desmoplasia, which leads to extensive deposition of collagen I. We have demonstrated that collagen I can induce epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. A hallmark of EMT is an increase in the expression of the mesenchymal cadherin N-cadherin. Previously we showed up-regulation of N-cadherin promotes tumor cell invasion and that collagen I-induced EMT is mediated by two collagen receptors, α2β1-integrin and discoidin domain receptor 1 (DDR1). DDR1 is a receptor-tyrosine kinase widely expressed during embryonic development and in many adult tissues and is also highly expressed in many different cancers. In the signaling pathway initiated by collagen, we have shown proline-rich tyrosine kinase 2 (Pyk2) is downstream of DDR1. In this study we found isoform b of DDR1 is responsible for collagen I-induced up-regulation of N-cadherin and tyrosine 513 of DDR1b is necessary. Knocking down Shc1, which binds to tyrosine 513 of DDR1b via its PTB (phosphotyrosine binding) domain, eliminates the up-regulation of N-cadherin. The signaling does not require a functional SH2 domain or the tyrosine residues commonly phosphorylated in Shc1 but is mediated by the interaction between a short segment of the central domain of Shc1 and the proline-rich region of Pyk2. Taken together, these data illustrate DDR1b, but not DDR1a, mediates collagen I-induced N-cadherin up-regulation, and Shc1 is involved in this process by coupling to both DDR1 and Pyk2.
Collapse
Affiliation(s)
- Huocong Huang
- From the Department of Biochemistry and Molecular Biology, College of Medicine
| | | | - Audrey J Lazenby
- Department of Pathology and Microbiology, College of Medicine, and
| | | | - Nina Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198
| | - Ke Ding
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China, and
| | - Margaret J Wheelock
- From the Department of Biochemistry and Molecular Biology, College of Medicine.,Department of Oral Biology, College of Dentistry.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198
| | - Keith R Johnson
- From the Department of Biochemistry and Molecular Biology, College of Medicine, .,Department of Oral Biology, College of Dentistry.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|