1
|
Brocklehurst RJ, Fahn-Lai L, Biewener A, Pierce SE. Relationship between joint shape and function as revealed through ex vivo XROMM. J Exp Biol 2025; 228:jeb249261. [PMID: 40181760 DOI: 10.1242/jeb.249261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Skeletal joint morphology and mobility underlie movement, behavior and ecology in vertebrates. Joints can be categorized by their shape and articulation type, but such schemes might be unreliable for inferring function across the full diversity of vertebrates. We test hypothesized relationships between joint form and function by collecting marker-based ex vivo, cadaveric XROMM data on the shoulder and elbow joints of the tegu lizard (Salvator merianae) and Virginia opossum (Didelphis virginiana), which between them contain articulations historically classified as ball-and-socket, hemi-sellar, hinge and condylar joints. We measured 3D rotational and translational mobility at each joint and compared our experimental results against predictions based on articular morphology. Contrary to our predictions, the opossum ball-and-socket shoulder joint was less mobile - it had a smaller 3D range of motion envelope - than the tegu hemi-sellar shoulder joint and even the tegu condylar elbow joint, challenging the notion that ball-and-socket joints provide an inherent mobility advantage. However, the ball-and-socket opossum shoulder also had a less complex mobility envelope, with fewer interactions between degrees of freedom, allowing it to transition between poses more easily. Matching osteological predictions, the hinge elbow of the opossum was the least mobile. All joints exhibited coupling between rotational and translational degrees of freedom, further emphasizing the need to incorporate translational motion and soft tissue constraints for accurately modeling joint mobility. Our findings underscore the complexity of form-function relationships in vertebrate skeletal joints, and demonstrate that joint morphology alone, in the absence of soft tissues, does not provide a complete picture of joint mobility.
Collapse
Affiliation(s)
- Robert J Brocklehurst
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - L Fahn-Lai
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01730, USA
| | - Andrew Biewener
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01730, USA
| | - Stephanie E Pierce
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Demuth OE, Herbst E, Polet DT, Wiseman ALA, Hutchinson JR. Modern three-dimensional digital methods for studying locomotor biomechanics in tetrapods. J Exp Biol 2023; 226:jeb245132. [PMID: 36810943 PMCID: PMC10042237 DOI: 10.1242/jeb.245132] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Here, we review the modern interface of three-dimensional (3D) empirical (e.g. motion capture) and theoretical (e.g. modelling and simulation) approaches to the study of terrestrial locomotion using appendages in tetrapod vertebrates. These tools span a spectrum from more empirical approaches such as XROMM, to potentially more intermediate approaches such as finite element analysis, to more theoretical approaches such as dynamic musculoskeletal simulations or conceptual models. These methods have much in common beyond the importance of 3D digital technologies, and are powerfully synergistic when integrated, opening a wide range of hypotheses that can be tested. We discuss the pitfalls and challenges of these 3D methods, leading to consideration of the problems and potential in their current and future usage. The tools (hardware and software) and approaches (e.g. methods for using hardware and software) in the 3D analysis of tetrapod locomotion have matured to the point where now we can use this integration to answer questions we could never have tackled 20 years ago, and apply insights gleaned from them to other fields.
Collapse
Affiliation(s)
- Oliver E. Demuth
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Eva Herbst
- Palaeontological Institute and Museum, University of Zurich, 8006 Zürich, Switzerland
| | - Delyle T. Polet
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, AL9 7TA, UK
| | - Ashleigh L. A. Wiseman
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, CB2 3ER, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, AL9 7TA, UK
| |
Collapse
|
3
|
The role of sensory feedback from carpal sinus hairs in locomotor kinematics of rats (Rattus norvegicus, Rodentia) during walking on narrow substrates. ZOOLOGY 2022; 155:126055. [PMID: 36423499 DOI: 10.1016/j.zool.2022.126055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Carpal sinus hairs on the forearms are assumed to have evolved within the stem lineage of Theria. The presence and similar position of these specialized tactile hairs in scansorial and terrestrial species as well as earlier studies on rats indicate a biological role in sensing substrate irregularities in high structured environments to ensure the dynamic stability of the body during locomotion. While these sensors were considered as one functional unit until so far, the present study deals with the biological role of the single tactile hairs of the trident, assuming a role in sensing substrate diameters and adapting limb coordination and body posture to different arboreal inclinations. To investigate the influence of each hair, we studied the locomotion of rats on poles of two different diameters whereby we selectively removed individual carpal sinus hairs. The rats walked at speeds ranging from 0.12 m/s to 0.58 m/s. Normal-light high-speed cameras and x-ray fluoroscopy visualized the hairs and body dynamics during locomotion. The time lag between first contact of the hairs to the branch until contact of the forepaw was 56-108 ms. Within this time window the pronation/supination of the paw and anterior body posture are adjusted to the substrate diameter. We presume that the most proximal sinus hair (located between the medial and lateral one) senses the paw-substrate distance through the increasing bend from its first branch-contact until the contact of the paw. The medial and the lateral hairs touch the pole sides and thereby, may collect information about the properties of the small-diameter substrate. The removal of single hairs from the group results in minor changes of kinematic parameters, but locomotor stability is seriously impaired when more than one hair is cut. The kinematic responses span from a more crouched body posture and higher forearm pronation to paw slipping, muscle tremor or complete refusal to walk on the narrow substrate.
Collapse
|
4
|
Monsees A, Voit KM, Wallace DJ, Sawinski J, Charyasz E, Scheffler K, Macke JH, Kerr JND. Estimation of skeletal kinematics in freely moving rodents. Nat Methods 2022; 19:1500-1509. [PMID: 36253644 PMCID: PMC9636019 DOI: 10.1038/s41592-022-01634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
Abstract
Forming a complete picture of the relationship between neural activity and skeletal kinematics requires quantification of skeletal joint biomechanics during free behavior; however, without detailed knowledge of the underlying skeletal motion, inferring limb kinematics using surface-tracking approaches is difficult, especially for animals where the relationship between the surface and underlying skeleton changes during motion. Here we developed a videography-based method enabling detailed three-dimensional kinematic quantification of an anatomically defined skeleton in untethered freely behaving rats and mice. This skeleton-based model was constrained using anatomical principles and joint motion limits and provided skeletal pose estimates for a range of body sizes, even when limbs were occluded. Model-inferred limb positions and joint kinematics during gait and gap-crossing behaviors were verified by direct measurement of either limb placement or limb kinematics using inertial measurement units. Together we show that complex decision-making behaviors can be accurately reconstructed at the level of skeletal kinematics using our anatomically constrained model.
Collapse
Affiliation(s)
- Arne Monsees
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany.
| | - Kay-Michael Voit
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Damian J Wallace
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Juergen Sawinski
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Edyta Charyasz
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jakob H Macke
- Machine Learning in Science, Eberhard Karls University of Tübingen, Tübingen, Germany
- Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Jason N D Kerr
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany.
| |
Collapse
|
5
|
Preuschoft H, Krahl A, Werneburg I. From sprawling to parasagittal locomotion in Therapsida: A preliminary study of historically collected museum specimens. VERTEBRATE ZOOLOGY 2022. [DOI: 10.3897/vz.72.e85989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapsids covered the entire spectrum of terrestrial locomotion from sprawling to parasagittal. Switching between sprawling and more erect locomotion may have been possible in earlier taxa. First, the axial skeleton shows little regionalization and allows lateral undulation, evolving then increasingly towards regionalization enabling dorsoventral swinging. During terrestrial locomotion, every step invokes a ground reaction force and functional loadings which the musculoskeletal system needs to accomodate. First insights into the functional loading regime of the fore- and hindlimb skeleton and the body stem of therapsids presented herein are based on the assessment and preliminary measurements of the historical collection of therapsids exhibited in the Paleontological Collection of Eberhard Karls Universität Tübingen, Germany. The specimens included are the archosaur Hyperodapedon sanjuanensis, the early synapsid Dimetrodon limbatus for comparison, and the therapsids Keratocephalus moloch, Sauroctonus parringtoni, Tetragonias njalilus, and Belesodon magnificus. The vertebral columns and ribs of the mounts were carefully assessed for original fossil material and, when preserved, ribs, sacral, and anterior caudal vertebrae were measured. The body of a tetrapod is exposed to forces as well as bending and torsional moments. To resist these functional stresses, certain musculoskeletal specializations evolved. These include: 1) compression resistant plate-like pectoral and pelvic girdle bones, 2) a vertebral column combined with tendinous and muscular structures to withstand compressive and tensile forces and moments, and 3) ribs and intercostal muscles to resist the transverse forces and torsional moments. The legs are compressive stress-resistant, carry the body weight, and support the body against gravity. Tail reduction leads to restructuring of the musculoskeletal system of the pelvic girdle.
Collapse
|
6
|
Doshi RM, Reid MY, Dixit NN, Fawcett EB, Cole JH, Saul KR. Location of brachial plexus birth injury affects functional outcomes in a rat model. J Orthop Res 2022; 40:1281-1292. [PMID: 34432311 PMCID: PMC8873217 DOI: 10.1002/jor.25173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 02/04/2023]
Abstract
Brachial plexus birth injury (BPBI) results in shoulder and elbow paralysis with shoulder internal rotation and elbow flexion contracture as frequent sequelae. The purpose of this study was to develop a technique for measuring functional movement and examine the effect of brachial plexus injury location (preganglionic and postganglionic) on functional movement outcomes in a rat model of BPBI, which we achieved through integration of gait analysis with musculoskeletal modeling and simulation. Eight weeks following unilateral brachial plexus injury, sagittal plane shoulder and elbow angles were extracted from gait recordings of young rats (n = 18), after which rats were sacrificed for bilateral muscle architecture measurements. Musculoskeletal models reflecting animal-specific muscle architecture parameters were used to simulate gait and extract muscle fiber lengths. The preganglionic neurectomy group spent significantly less (p = 0.00116) time in stance and walked with significantly less (p < 0.05) elbow flexion and shoulder protraction in the affected limb than postganglionic neurectomy or control groups. Linear regression revealed no significant linear relationship between passive shoulder external rotation and functional shoulder protraction range of motion. Despite significant restriction in longitudinal muscle growth, normalized functional fiber excursions did not differ significantly between groups. In fact, when superimposed on a normalized force-length curve, neurectomy-impaired muscle fibers (except subscapularis) accessed regions of the curve that overlapped with the control group. Our results suggest the presence of compensatory motor control strategies during locomotion following BPBI. The clinical implications of our findings support emphasis on functional movement analysis in treatment of BPBI, as functional and passive outcomes may differ substantially.
Collapse
Affiliation(s)
- Raveena M. Doshi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| | - Monique Y. Reid
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Nikhil N. Dixit
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| | - Emily B. Fawcett
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Jacqueline H. Cole
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Katherine R. Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| |
Collapse
|
7
|
Scheidt A, Ditzel PC, Geiger SM, Wagner FC, Mülling CKW, Nyakatura JA. A therian mammal with sprawling kinematics? Gait and 3D forelimb X-ray motion analysis in tamanduas. J Exp Biol 2022; 225:275397. [PMID: 35554550 DOI: 10.1242/jeb.243625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Therian mammals are known to move their forelimbs in a parasagittal plane, retracting the mobilised scapula during stance phase. Non-cursorial therian mammals often abduct the elbow out of the shoulder-hip parasagittal plane. This is especially prominent in Tamandua (Xenarthra), which suggests they employ aspects of sprawling (e.g., lizard-like-) locomotion. Here, we test if tamanduas use sprawling forelimb kinematics, i.e., a largely immobile scapula with pronounced lateral spine bending and long-axis rotation of the humerus. We analyse high speed videos and use X-ray motion analysis of tamanduas walking and balancing on branches of varying inclinations and provide a quantitative characterization of gaits and forelimb kinematics. Tamanduas displayed lateral sequence lateral-couplets gaits on flat ground and horizontal branches, but increased diagonality on steeper in- and declines, resulting in lateral sequence diagonal-couplets gaits. This result provides further evidence for high diagonality in arboreal species, likely maximising stability in arboreal environments. Further, the results reveal a mosaic of sprawling and parasagittal kinematic characteristics. The abducted elbow results from a constantly internally rotated scapula about its long axis and a retracted humerus. Scapula retraction contributes considerably to stride length. However, lateral rotation in the pectoral region of the spine (range: 21°) is higher than reported for other therian mammals. Instead, it is similar to skinks and alligators, indicating an aspect generally associated with sprawling locomotion is characteristic for forelimb kinematics of tamanduas. Our study contributes to a growing body of evidence of highly variable non-cursorial therian mammal locomotor kinematics.
Collapse
Affiliation(s)
- Adrian Scheidt
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Paulo C Ditzel
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Sandra M Geiger
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Franziska C Wagner
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Christoph K W Mülling
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
8
|
Wiseman ALA, Demuth OE, Hutchinson JR. A Guide to Inverse Kinematic Marker-Guided Rotoscoping using IK Solvers. Integr Org Biol 2022; 4:obac002. [PMID: 35261964 PMCID: PMC8896983 DOI: 10.1093/iob/obac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
X-ray Reconstruction of Moving Morphology (XROMM) permits researchers to see beneath the skin, usually to see musculoskeletal movements. These movements can be tracked and later used to provide information regarding the mechanics of movement. Here, we discuss “IK marker-guided rotoscoping”—a method that combines inverse kinematic solvers with that of traditional scientific rotoscoping methods to quickly and efficiently overlay 3D bone geometries with the X-ray shadows from XROMM data. We use a case study of three Nile crocodiles’ (Crocodylus niloticus) forelimbs and hindlimbs to evaluate this method. Within these limbs, different marker configurations were used: some configurations had six markers, others had five markers, and all forelimb data only had three markers. To evaluate IK marker-guided rotoscoping, we systematically remove markers in the six-marker configuration and then test the magnitudes of deviation in translations and rotations of the rigged setup with fewer markers versus those of the six-marker configuration. We establish that IK marker-guided rotoscoping is a suitable method for “salvaging” data that may have too few markers.
Collapse
Affiliation(s)
- Ashleigh L A Wiseman
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Oliver E Demuth
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
9
|
Iijima M, Munteanu VD, Elsey RM, Blob RW. Ontogenetic changes in limb posture, kinematics, forces and joint moments in American alligators (Alligator mississippiensis). J Exp Biol 2021; 224:273379. [PMID: 34746961 DOI: 10.1242/jeb.242990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022]
Abstract
As animals increase in size, common patterns of morphological and physiological scaling may require them to perform behaviors such as locomotion while experiencing a reduced capacity to generate muscle force and an increased risk of tissue failure. Large mammals are known to manage increased mechanical demands by using more upright limb posture. However, the presence of such size-dependent changes in limb posture has rarely been tested in animals that use non-parasagittal limb kinematics. Here, we used juvenile to subadult American alligators (total length 0.46-1.27 m, body mass 0.3-5.6 kg) and examined their limb kinematics, forces, joint moments and center of mass (CoM) to test for ontogenetic shifts in posture and limb mechanics. Larger alligators typically walked with a more adducted humerus and femur and a more extended knee. Normalized peak joint moments reflected these postural patterns, with shoulder and hip moments imposed by the ground reaction force showing relatively greater magnitudes in the smallest individuals. Thus, as larger alligators use more upright posture, they incur relatively smaller joint moments than smaller alligators, which could reduce the forces that the shoulder and hip adductors of larger alligators must generate. The CoM shifted nonlinearly from juveniles through subadults. The more anteriorly positioned CoM in small alligators, together with their compliant hindlimbs, contributes to their higher forelimb and lower hindlimb normalized peak vertical forces in comparison to larger alligators. Future studies of alligators that approach maximal adult sizes could give further insight into how animals with non-parasagittal limb posture modulate locomotor patterns as they increase in mass and experience changes in the CoM.
Collapse
Affiliation(s)
- Masaya Iijima
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.,Nagoya University Museum, Furocho, Chikusa-Ku, Nagoya, Aichi 464-8601, Japan
| | - V David Munteanu
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, 5476 Grand Chenier Highway, Grand Chenier, LA 70643, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
10
|
Richards HL, Bishop PJ, Hocking DP, Adams JW, Evans AR. Low elbow mobility indicates unique forelimb posture and function in a giant extinct marsupial. J Anat 2021; 238:1425-1441. [PMID: 33533053 PMCID: PMC8128769 DOI: 10.1111/joa.13389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Joint mobility is a key factor in determining the functional capacity of tetrapod limbs, and is important in palaeobiological reconstructions of extinct animals. Recent advances have been made in quantifying osteological joint mobility using virtual computational methods; however, these approaches generally focus on the proximal limb joints and have seldom been applied to fossil mammals. Palorchestes azael is an enigmatic, extinct ~1000 kg marsupial with no close living relatives, whose functional ecology within Australian Pleistocene environments is poorly understood. Most intriguing is its flattened elbow morphology, which has long been assumed to indicate very low mobility at this important joint. Here, we tested elbow mobility via virtual range of motion (ROM) mapping and helical axis analysis, to quantitatively explore the limits of Palorchestes' elbow movement and compare this with their living and extinct relatives, as well as extant mammals that may represent functional analogues. We find that Palorchestes had the lowest elbow mobility among mammals sampled, even when afforded joint translations in addition to rotational degrees of freedom. This indicates that Palorchestes was limited to crouched forelimb postures, something highly unusual for mammals of this size. Coupled flexion and abduction created a skewed primary axis of movement at the elbow, suggesting an abducted forelimb posture and humeral rotation gait that is not found among marsupials and unlike that seen in any large mammals alive today. This work introduces new quantitative methods and demonstrates the utility of comparative ROM mapping approaches, highlighting that Palorchestes' forelimb function was unlike its contemporaneous relatives and appears to lack clear functional analogues among living mammals.
Collapse
Affiliation(s)
- Hazel L. Richards
- School of Biological SciencesMonash UniversityClaytonVicAustralia
- GeosciencesMuseums VictoriaMelbourneVicAustralia
| | - Peter J. Bishop
- Structure and Motion LaboratoryDepartment of Comparative Biomedical SciencesRoyal Veterinary CollegeHatfieldUK
- Geosciences ProgramQueensland MuseumBrisbaneQldAustralia
| | - David P. Hocking
- School of Biological SciencesMonash UniversityClaytonVicAustralia
- GeosciencesMuseums VictoriaMelbourneVicAustralia
| | - Justin W. Adams
- Department of Anatomy & Developmental BiologySchool of Biomedical SciencesFaculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVicAustralia
| | - Alistair R. Evans
- School of Biological SciencesMonash UniversityClaytonVicAustralia
- GeosciencesMuseums VictoriaMelbourneVicAustralia
| |
Collapse
|
11
|
Etienne C, Houssaye A, Hutchinson JR. Limb myology and muscle architecture of the Indian rhinoceros Rhinoceros unicornis and the white rhinoceros Ceratotherium simum (Mammalia: Rhinocerotidae). PeerJ 2021; 9:e11314. [PMID: 34026351 PMCID: PMC8121076 DOI: 10.7717/peerj.11314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Land mammals support and move their body using their musculoskeletal system. Their musculature usually presents varying adaptations with body mass or mode of locomotion. Rhinocerotidae is an interesting clade in this regard, as they are heavy animals potentially reaching three tons but are still capable of adopting a galloping gait. However, their musculature has been poorly studied. Here we report the dissection of both forelimb and hindlimb of one neonate and one adult each for two species of rhinoceroses, the Indian rhinoceros (Rhinoceros unicornis) and the white rhinoceros (Ceratotherium simum). We show that their muscular organisation is similar to that of their relatives, equids and tapirs, and that few evolutionary convergences with other heavy mammals (e.g. elephants and hippopotamuses) are present. Nevertheless, they show clear adaptations to their large body mass, such as more distal insertions for the protractor and adductor muscles of the limbs, giving them longer lever arms. The quantitative architecture of rhino muscles is again reminiscent of that of horses and tapirs, although contrary to horses, the forelimb is much stronger than the hindlimb, which is likely due to its great role in body mass support. Muscles involved mainly in counteracting gravity (e.g. serratus ventralis thoracis, infraspinatus, gastrocnemius, flexores digitorum) are usually highly pennate with short fascicles facilitating strong joint extension. Muscles involved in propulsion (e.g. gluteal muscles, gluteobiceps, quadriceps femoris) seem to represent a compromise between a high maximal isometric force and long fascicles, allowing a reasonably fast and wide working range. Neonates present higher normalized maximal isometric force than the adults for almost every muscle, except sometimes for the extensor and propulsor muscles, which presumably acquire their great force-generating capacity during the growth of the animal. Our study clarifies the way the muscles of animals of cursorial ancestry can adapt to support a greater body mass and calls for further investigations in other clades of large body mass.
Collapse
Affiliation(s)
- Cyril Etienne
- UMR 7179 Mécanismes adaptatifs et évolution (MECADEV), Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris, France
| | - Alexandra Houssaye
- UMR 7179 Mécanismes adaptatifs et évolution (MECADEV), Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris, France
| | - John R Hutchinson
- Structure and Motion Laboratory, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
12
|
Ramalingasetty ST, Danner SM, Arreguit J, Markin SN, Rodarie D, Kathe C, Courtine G, Rybak IA, Ijspeert AJ. A Whole-Body Musculoskeletal Model of the Mouse. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:163861-163881. [PMID: 35211364 PMCID: PMC8865483 DOI: 10.1109/access.2021.3133078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Neural control of movement cannot be fully understood without careful consideration of interactions between the neural and biomechanical components. Recent advancements in mouse molecular genetics allow for the identification and manipulation of constituent elements underlying the neural control of movement. To complement experimental studies and investigate the mechanisms by which the neural circuitry interacts with the body and the environment, computational studies modeling motor behaviors in mice need to incorporate a model of the mouse musculoskeletal system. Here, we present the first fully articulated musculoskeletal model of the mouse. The mouse skeletal system has been developed from anatomical references and includes the sets of bones in all body compartments, including four limbs, spine, head and tail. Joints between all bones allow for simulation of full 3D mouse kinematics and kinetics. Hindlimb and forelimb musculature has been implemented using Hill-type muscle models. We analyzed the mouse whole-body model and described the moment-arms for different hindlimb and forelimb muscles, the moments applied by these muscles on the joints, and their involvement in limb movements at different limb/body configurations. The model represents a necessary step for the subsequent development of a comprehensive neuro-biomechanical model of freely behaving mice; this will close the loop between the neural control and the physical interactions between the body and the environment.
Collapse
Affiliation(s)
- Shravan Tata Ramalingasetty
- Biorobotic Laboratory (BioRob), School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19104, USA
| | - Jonathan Arreguit
- Biorobotic Laboratory (BioRob), School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sergey N. Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19104, USA
| | - Dimitri Rodarie
- BBP-CORE, Campus Biotech, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Claudia Kathe
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19104, USA
| | - Auke Jan Ijspeert
- Biorobotic Laboratory (BioRob), School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Abstract
X-Ray Reconstruction of Moving Morphology (XROMM), though traditionally used for studies of in vivo skeletal kinematics, can also be used to precisely and accurately measure ex vivo range of motion from cadaveric manipulations. The workflow for these studies is holistically similar to the in vivo XROMM workflow but presents several unique challenges. This paper aims to serve as a practical guide by walking through each step of the ex vivo XROMM process: how to acquire and prepare cadaveric specimens, how to manipulate specimens to collect X-ray data, and how to use these data to compute joint rotational mobility. Along the way, it offers recommendations for best practices and for avoiding common pitfalls to ensure a successful study.
Collapse
Affiliation(s)
- Armita R Manafzadeh
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
14
|
Fahn-Lai P, Biewener AA, Pierce SE. Broad similarities in shoulder muscle architecture and organization across two amniotes: implications for reconstructing non-mammalian synapsids. PeerJ 2020; 8:e8556. [PMID: 32117627 PMCID: PMC7034385 DOI: 10.7717/peerj.8556] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
The evolution of upright limb posture in mammals may have enabled modifications of the forelimb for diverse locomotor ecologies. A rich fossil record of non-mammalian synapsids holds the key to unraveling the transition from "sprawling" to "erect" limb function in the precursors to mammals, but a detailed understanding of muscle functional anatomy is a necessary prerequisite to reconstructing postural evolution in fossils. Here we characterize the gross morphology and internal architecture of muscles crossing the shoulder joint in two morphologically-conservative extant amniotes that form a phylogenetic and morpho-functional bracket for non-mammalian synapsids: the Argentine black and white tegu Salvator merianae and the Virginia opossum Didelphis virginiana. By combining traditional physical dissection of cadavers with nondestructive three-dimensional digital dissection, we find striking similarities in muscle organization and architectural parameters. Despite the wide phylogenetic gap between our study species, distal muscle attachments are notably similar, while differences in proximal muscle attachments are driven by modifications to the skeletal anatomy of the pectoral girdle that are well-documented in transitional synapsid fossils. Further, correlates for force production, physiological cross-sectional area (PCSA), muscle gearing (pennation), and working range (fascicle length) are statistically indistinguishable for an unexpected number of muscles. Functional tradeoffs between force production and working range reveal muscle specializations that may facilitate increased girdle mobility, weight support, and active stabilization of the shoulder in the opossum-a possible signal of postural transformation. Together, these results create a foundation for reconstructing the musculoskeletal anatomy of the non-mammalian synapsid pectoral girdle with greater confidence, as we demonstrate by inferring shoulder muscle PCSAs in the fossil non-mammalian cynodont Massetognathus pascuali.
Collapse
Affiliation(s)
- Philip Fahn-Lai
- Museum of Comparative Zoology, Concord Field Station and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew A. Biewener
- Concord Field Station and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
15
|
Strickson EC, Hutchinson JR, Wilkinson DM, Falkingham PL. Can skeletal surface area predict in vivo foot surface area? J Anat 2020; 236:72-84. [PMID: 31713855 PMCID: PMC6904632 DOI: 10.1111/joa.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
The surface area of feet in contact with the ground is a key morphological feature that influences animal locomotion. Underfoot pressures (and consequently stresses experienced by the foot), as well as stability of an animal during locomotion, depend on the size and shape of this area. Here we tested whether the area of a skeletal foot could predict in vivo soft tissue foot surface area. Computed tomography scans of 29 extant tetrapods (covering mammals, reptiles, birds and amphibians) were used to produce models of both the soft tissues and the bones of their feet. Soft tissue models were oriented to a horizontal plane, and their outlines projected onto a surface to produce two-dimensional silhouettes. Silhouettes of skeletal models were generated either from bones in CT pose or with all autopodial bones aligned to the horizontal plane. Areas of these projections were calculated using alpha shapes (mathematical tight-fitting outline). Underfoot area of soft tissue was approximately 1.67 times that of skeletal tissue area (~ 2 times for manus, ~ 1.6 times for pes, if analysed separately). This relationship between skeletal foot area and soft tissue area, while variable in some of our study taxa, could provide information about the size of the organisms responsible for fossil trackways, suggest what size of tracks might be expected from potential trackmakers known only from skeletal remains, and aid in soft tissue reconstruction of skeletal remains for biomechanical modelling.
Collapse
Affiliation(s)
- E. Catherine Strickson
- School of Natural Sciences and PsychologyFaculty of ScienceSchool of Biological and Environmental SciencesLiverpoolUK
| | - John R. Hutchinson
- Structure and Motion LaboratoryDepartment of Comparative Biomedical SciencesThe Royal Veterinary CollegeHatfieldUK
| | | | - Peter L. Falkingham
- School of Natural Sciences and PsychologyFaculty of ScienceSchool of Biological and Environmental SciencesLiverpoolUK
| |
Collapse
|
16
|
Lin YF, Konow N, Dumont ER. How moles walk; it's all thumbs. Biol Lett 2019; 15:20190503. [PMID: 31662063 PMCID: PMC6832175 DOI: 10.1098/rsbl.2019.0503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/07/2019] [Indexed: 11/12/2022] Open
Abstract
A recurring theme in the evolution of tetrapods is the shift from sprawling posture with laterally orientated limbs to erect posture with the limbs extending below the body. However, in order to invade particular locomotor niches, some tetrapods secondarily evolved a sprawled posture. This includes moles, some of the most specialized digging tetrapods. Although their forelimb anatomy and posture facilitates burrowing, moles also walk long distances to forage for and transport food. Here, we use X-ray Reconstruction Of Moving Morphology (XROMM) to determine if the mole humerus rotates around its long axis during walking, as it does when moles burrow and echidnas walk, or alternatively protracts and retracts at the shoulder in the horizontal plane as seen in sprawling reptiles. Our results reject both hypotheses and demonstrate that forelimb kinematics during mole walking are unusual among those described for tetrapods. The humerus is retracted and protracted in the parasagittal plane above, rather than below the shoulder joint and the 'false thumb', a sesamoid bone (os falciforme), supports body weight during the stance phase, which is relatively short. Our findings broaden our understanding of the diversity of tetrapod limb posture and locomotor evolution, demonstrate the importance of X-ray-based techniques for revealing hidden kinematics and highlight the importance of examining locomotor function at the level of individual joint mobility.
Collapse
Affiliation(s)
- Yi-Fen Lin
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01852, USA
| | - Elizabeth R. Dumont
- School of Natural Sciences, University of California Merced, Merced, CA 95340, USA
| |
Collapse
|
17
|
Maghsoudi OH, Vahedipour A, Hallowell T, Spence A. Open-source Python software for analysis of 3D kinematics from quadrupedal animals. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Jäger KRK, Luo ZX, Martin T. Postcranial Skeleton of Henkelotherium guimarotae (Cladotheria, Mammalia) and Locomotor Adaptation. J MAMM EVOL 2019. [DOI: 10.1007/s10914-018-09457-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Fischer MS, Lehmann SV, Andrada E. Three-dimensional kinematics of canine hind limbs: in vivo, biplanar, high-frequency fluoroscopic analysis of four breeds during walking and trotting. Sci Rep 2018; 8:16982. [PMID: 30451855 PMCID: PMC6242825 DOI: 10.1038/s41598-018-34310-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/12/2018] [Indexed: 01/27/2023] Open
Abstract
The first high-precision 3D in vivo hindlimb kinematic data to be recorded in normal dogs of four different breeds (Beagle, French bulldog, Malinois, Whippet) using biplanar, high-frequency fluoroscopy combined with a 3D optoelectric system followed by a markerless XROMM analysis (Scientific Rotoscoping, SR or 3D-2D registration process) reveal a) 3D hindlimb kinematics to an unprecedented degree of precision and b) substantial limitations to the use of skin marker-based data. We expected hindlimb kinematics to differ in relation to body shape. But, a comparison of the four breeds sets the French bulldog aside from the others in terms of trajectories in the frontal plane (abduction/adduction) and long axis rotation of the femur. French bulldogs translate extensive femoral long axis rotation (>30°) into a strong lateral displacement and rotations about the craniocaudal (roll) and the distal-proximal (yaw) axes of the pelvis in order to compensate for a highly abducted hindlimb position from the beginning of stance. We assume that breeds which exhibit unusual kinematics, especially high femoral abduction, might be susceptible to a higher long-term loading of the cruciate ligaments.
Collapse
Affiliation(s)
- Martin S Fischer
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany.
| | - Silvia V Lehmann
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany
| | - Emanuel Andrada
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany
| |
Collapse
|
20
|
Regnault S, Pierce SE. Pectoral girdle and forelimb musculoskeletal function in the echidna ( Tachyglossus aculeatus): insights into mammalian locomotor evolution. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181400. [PMID: 30564424 PMCID: PMC6281926 DOI: 10.1098/rsos.181400] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/19/2018] [Indexed: 05/30/2023]
Abstract
Although evolutionary transformation of the pectoral girdle and forelimb appears to have had a profound impact on mammalian locomotor and ecological diversity, both the sequence of anatomical changes and the functional implications remain unclear. Monotremes can provide insight into an important stage of this evolutionary transformation, due to their phylogenetic position as the sister-group to therian mammals and their mosaic of plesiomorphic and derived features. Here we build a musculoskeletal computer model of the echidna pectoral girdle and forelimb to estimate joint ranges of motion (ROM) and muscle moment arms (MMA)-two fundamental descriptors of biomechanical function. We find that the echidna's skeletal morphology restricts scapulocoracoid mobility and glenohumeral flexion-extension compared with therians. Estimated shoulder ROMs and MMAs for muscles crossing the shoulder indicate that morphology of the echidna pectoral girdle and forelimb is optimized for humeral adduction and internal rotation, consistent with limited in vivo data. Further, more muscles act to produce humeral long-axis rotation in the echidna compared to therians, as a consequence of differences in muscle geometry. Our musculoskeletal model allows correlation of anatomy and function, and can guide hypotheses regarding function in extinct taxa and the morphological and locomotor transformation leading to therian mammals.
Collapse
Affiliation(s)
- Sophie Regnault
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| | | |
Collapse
|
21
|
Balbinot G, Schuch CP, Jeffers MS, McDonald MW, Livingston-Thomas JM, Corbett D. Post-stroke kinematic analysis in rats reveals similar reaching abnormalities as humans. Sci Rep 2018; 8:8738. [PMID: 29880827 PMCID: PMC5992226 DOI: 10.1038/s41598-018-27101-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
A coordinated pattern of multi-muscle activation is essential to produce efficient reaching trajectories. Disruption of these coordinated activation patterns, termed synergies, is evident following stroke and results in reaching deficits; however, preclinical investigation of this phenomenon has been largely ignored. Furthermore, traditional outcome measures of post-stroke performance seldom distinguish between impairment restitution and compensatory movement strategies. We sought to address this by using kinematic analysis to characterize reaching movements and kinematic synergies of rats performing the Montoya staircase task, before and after ischemic stroke. Synergy was defined as the simultaneous movement of the wrist and other proximal forelimb joints (i.e. shoulder, elbow) during reaching. Following stroke, rats exhibited less individuation between joints, moving the affected limb more as a unit. Moreover, abnormal flexor synergy characterized by concurrent elbow flexion, shoulder adduction, and external rotation was evident. These abnormalities ultimately led to inefficient and unstable reaching trajectories, and decreased reaching performance (pellets retrieved). The observed reaching abnormalities in this preclinical stroke model are similar to those classically observed in humans. This highlights the potential of kinematic analysis to better align preclinical and clinical outcome measures, which is essential for developing future rehabilitation strategies following stroke.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Clarissa Pedrini Schuch
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew S Jeffers
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | - Matthew W McDonald
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | - Jessica M Livingston-Thomas
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
22
|
Fujiwara S. Fitting unanchored puzzle pieces in the skeleton: appropriate 3D scapular positions for the quadrupedal support in tetrapods. J Anat 2018; 232:857-869. [PMID: 29322521 PMCID: PMC5879960 DOI: 10.1111/joa.12778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 11/27/2022] Open
Abstract
Deducing the scapular positions of extinct tetrapod skeletons remains difficult, because the scapulae and rib cage are connected with each other not directly by skeletal joint, but by thoracic muscles. In extant non-testudine quadrupedal tetrapods, the top positions of the scapulae/suprascapulae occur at the anterior portion of the rib cage, above the vertebral column and near the median plane. The adequacy of this position was tested using three-dimensional mechanical models of Felis, Rattus and Chamaeleo that assumed stances on a forelimb on a single side and the hindlimbs. The net moment about the acetabulum generated by the gravity force and the contractive forces of the anti-gravity thoracic muscles, and the resistance of the rib to vertical compression between the downward gravity and upward lifting force from the anti-gravity thoracic muscle depend on the scapular position. The scapular position common among quadrupeds corresponds to the place at which the roll and yaw moments of the uplifted portion of the body are negligible, where the pitch moment is large enough to lift the body, and above the ribs having high strength against vertical compression. These relationships between scapular position and rib cage morphology should allow reliable reconstruction of limb postures of extinct taxa.
Collapse
|
23
|
Moore TY, Rivera AM, Biewener AA. Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage. Front Zool 2017; 14:32. [PMID: 28680452 PMCID: PMC5496339 DOI: 10.1186/s12983-017-0215-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous historical descriptions of the Lesser Egyptian jerboa, Jaculus jaculus, a small bipedal mammal with elongate hindlimbs, make special note of their extraordinary leaping ability. We observed jerboa locomotion in a laboratory setting and performed inverse dynamics analysis to understand how this small rodent generates such impressive leaps. We combined kinematic data from video, kinetic data from a force platform, and morphometric data from dissections to calculate the relative contributions of each hindlimb muscle and tendon to the total movement. RESULTS Jerboas leapt in excess of 10 times their hip height. At the maximum recorded leap height (not the maximum observed leap height), peak moments for metatarso-phalangeal, ankle, knee, and hip joints were 13.1, 58.4, 65.1, and 66.9 Nmm, respectively. Muscles acting at the ankle joint contributed the most work (mean 231.6 mJ / kg Body Mass) to produce the energy of vertical leaping, while muscles acting at the metatarso-phalangeal joint produced the most stress (peak 317.1 kPa). The plantaris, digital flexors, and gastrocnemius tendons encountered peak stresses of 25.6, 19.1, and 6.0 MPa, respectively, transmitting the forces of their corresponding muscles (peak force 3.3, 2.0, and 3.8 N, respectively). Notably, we found that the mean elastic energy recovered in the primary tendons of both hindlimbs comprised on average only 4.4% of the energy of the associated leap. CONCLUSIONS The limited use of tendon elastic energy storage in the jerboa parallels the morphologically similar heteromyid kangaroo rat, Dipodomys spectabilis. When compared to larger saltatory kangaroos and wallabies that sustain hopping over longer periods of time, these small saltatory rodents store and recover less elastic strain energy in their tendons. The large contribution of muscle work, rather than elastic strain energy, to the vertical leap suggests that the fitness benefit of rapid acceleration for predator avoidance dominated over the need to enhance locomotor economy in the evolutionary history of jerboas.
Collapse
Affiliation(s)
- Talia Y Moore
- Concord Field Station, Harvard University, 100 Old Causeway Road, Bedford, MA 01730 USA.,University of Michigan, Museum of Zoology and Department of Ecology and Evolutionary Biology, Ruthven Museum, 1109 Geddes Ave, Ann Arbor, MI 48109 USA
| | - Alberto M Rivera
- Concord Field Station, Harvard University, 100 Old Causeway Road, Bedford, MA 01730 USA
| | - Andrew A Biewener
- Concord Field Station, Harvard University, 100 Old Causeway Road, Bedford, MA 01730 USA
| |
Collapse
|
24
|
Karantanis NE, Rychlik L, Herrel A, Youlatos D. Vertical Locomotion in Micromys minutus (Rodentia: Muridae): Insights into the Evolution of Eutherian Climbing. J MAMM EVOL 2016. [DOI: 10.1007/s10914-016-9374-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Knörlein BJ, Baier DB, Gatesy SM, Laurence-Chasen JD, Brainerd EL. Validation of XMALab software for marker-based XROMM. J Exp Biol 2016; 219:3701-3711. [DOI: 10.1242/jeb.145383] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022]
Abstract
Marker-based XROMM requires software tools for: 1) correcting fluoroscope distortion; 2) calibrating X-ray cameras; 3) tracking radio-opaque markers; and 4) calculating rigid body motion. In this paper we describe and validate XMALab, a new open-source software package for marker-based XROMM (C++ source and compiled versions on Bitbucket). Most marker-based XROMM studies to date have used XrayProject in MATLAB. XrayProject can produce results with excellent accuracy and precision, but it is somewhat cumbersome to use and requires a MATLAB license. We have designed XMALab to accelerate the XROMM process and to make it more accessible to new users. Features include the four XROMM steps (listed above) in one cohesive user interface, real-time plot windows for detecting errors, and integration with an online data management system, XMAPortal. Accuracy and precision of XMALab when tracking markers in a machined object are ±0.010 and ±0.043 mm, respectively. Mean precision for nine users tracking markers in a tutorial dataset of minipig feeding was ±0.062 mm in XMALab and ±0.14 mm in XrayProject. Reproducibility of 3D point locations across nine users was tenfold greater in XMALab than in XrayProject, and six degree-of-freedom bone motions calculated with a joint coordinate system were three- to sixfold more reproducible in XMALab. XMALab is also suitable for tracking white or black markers in standard light videos with optional checkerboard calibration. We expect XMALab to increase both the quality and quantity of animal motion data available for comparative biomechanics research.
Collapse
Affiliation(s)
| | - David B. Baier
- Department of Biology, Providence College, Providence RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence RI, USA
| | - Stephen M. Gatesy
- Department of Ecology and Evolutionary Biology, Brown University, Providence RI, USA
| | - J. D. Laurence-Chasen
- Department of Ecology and Evolutionary Biology, Brown University, Providence RI, USA
| | - Elizabeth L. Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence RI, USA
| |
Collapse
|