1
|
Sehgal V, Pandey SP, Singh PK. Prospects of charged cyclodextrins in biomedical applications. Carbohydr Polym 2024; 323:121348. [PMID: 37940240 DOI: 10.1016/j.carbpol.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 11/10/2023]
Abstract
Cyclodextrins (CDs), recognized for their unique ability to form inclusion complexes, have seen broad utilization across various scientific fields. Recently, there has been a surge of interest in the use of charged cyclodextrins for biomedical applications, owing to their enhanced properties, such as superior solubility and improved molecular recognition compared to neutral CDs. Despite the growing literature, a comprehensive review of the biomedical utilisations of multi-charged cyclodextrins is scarce. This review provides a comprehensive exploration of the emerging prospects of charged cyclodextrin-based assemblies in the field of biomedical applications. Focusing on drug delivery systems, the review details how charged CDs enhance drug solubility and stability, reduce toxicity, and enable targeted and controlled drug release. Furthermore, the review highlights the role of charged CDs in gene therapy, notably their potential for DNA/RNA binding, cellular uptake, degradation protection, and targeted gene delivery. The promising potential of charged CDs in antibacterial and antiviral therapies, including photodynamic therapies, biofilm control, and viral replication inhibition, is discussed. Concluding with a future outlook, this review highlights the potential challenges and advancements that could propel charged CDs to the forefront of biomedicine.
Collapse
Affiliation(s)
- Vidhi Sehgal
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W), 400 056, India
| | - Shrishti P Pandey
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W), 400 056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India.
| |
Collapse
|
2
|
Haijer F, Koets-Shajari S, Heegsma J, Serna-Salas S, Blokzijl T, Buist-Homan M, Moshage H, Faber KN. Hydroxyurea attenuates hepatic stellate cell proliferation in vitro and liver fibrogenesis in vivo. FASEB J 2023; 37:e23124. [PMID: 37552464 DOI: 10.1096/fj.202300920r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
Liver fibrosis results from excessive proliferation of, and collagen production by hepatic stellate cells (HSCs) that is caused by chronic liver injury. No drugs are available to cure liver fibrosis. Hydroxyurea is an anti-proliferative drug that is used in benign and malignant disorders. Here, we studied the effect of hydroxyurea on primary HSCs and its anti-fibrotic effect in the CCl4 mouse model of liver fibrosis. Primary rat HSCs were cultured in the absence or presence of hydroxyurea (0.1-1.0 mmol/L). CCl4 or vehicle was administered to C57BL/6/J mice for 4 weeks, with or without hydroxyurea (100 mg/kg/day) co-treatment. We used real-time cell proliferation analysis, Oil Red O (lipid droplet) staining, immunohistochemistry, Acridine Orange staining (apoptosis), Sytox green staining (necrosis), RT-qPCR, ELISA, and Western Blotting for analysis. Hydroxyurea dose-dependently suppressed lipid droplet-loss and mRNA levels of Col1α1 and Acta2 in transdifferentiating HSCs. In fully-activated HSCs, hydroxyurea dose-dependently attenuated PCNA protein levels and BrdU incorporation, but did not reverse Col1α1 and Acta2 mRNA expression. Hydroxyurea did not induce apoptosis or necrosis in HSCs or hepatocytes. Hydroxyurea suppressed accumulation of desmin-positive HSCs and hepatic collagen deposition after CCl4 treatment. CCl4 -induced regenerative hepatocyte proliferation, Col1α1 and Acta2 mRNA expression and α-SMA protein levels were not affected. This study demonstrates that hydroxyurea inhibits HSC proliferation in vitro and attenuates early development of liver fibrosis in vivo, while preserving hepatocyte regeneration after toxic insults by CCl4. Thus, hydroxyurea may have therapeutic value against liver fibrosis.
Collapse
Affiliation(s)
- Floris Haijer
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shiva Koets-Shajari
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janette Heegsma
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sandra Serna-Salas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tjasso Blokzijl
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Geng Y, Arroyave-Ospina JC, Buist-Homan M, Plantinga J, Olinga P, Reijngoud DJ, Van Vilsteren FGI, Blokzijl H, Kamps JAAM, Moshage H. Differential effects of oleate on vascular endothelial and liver sinusoidal endothelial cells reveal its toxic features in vitro. J Nutr Biochem 2023; 114:109255. [PMID: 36623779 DOI: 10.1016/j.jnutbio.2022.109255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
Several fatty acids, in particular saturated fatty acids like palmitic acid, cause lipotoxicity in the context of non-alcoholic fatty liver disease . Unsaturated fatty acids (e.g. oleic acid) protect against lipotoxicity in hepatocytes. However, the effect of oleic acid on other liver cell types, in particular liver sinusoidal endothelial cells (LSECs), is unknown. Human umbilical vein endothelial cells (HUVECs) are often used as a substitute for LSECs, however, because of the unique phenotype of LSECs, HUVECs cannot represent the same biological features as LSECs. In this study, we investigate the effects of oleate and palmitate (the sodium salts of oleic acid and palmitic acid) on primary rat LSECs in comparison to their effects on HUVECs. Oleate induces necrotic cell death in LSECs, but not in HUVECs. Necrotic cell death of LSECs can be prevented by supplementation of 2-stearoylglycerol, which promotes cellular triglyceride (TG) synthesis. Repressing TG synthesis, by knocking down DGAT1 renders HUVECs sensitive to oleate-induced necrotic death. Mechanistically, oleate causes a sharp drop of intracellular ATP level and impairs mitochondrial respiration in LSECs. The combination of oleate and palmitate reverses the toxic effect of oleate in both LSECs and HUVECs. These results indicate that oleate is toxic and its toxicity can be attenuated by stimulating TG synthesis. The toxicity of oleate is characterized by mitochondrial dysfunction and necrotic cell death. Moreover, HUVECs are not suitable as a substitute model for LSECs.
Collapse
Affiliation(s)
- Yana Geng
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Johanna C Arroyave-Ospina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Josée Plantinga
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frederike G I Van Vilsteren
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Study on the mechanism of anti-hepatic fibrosis of Glycyrrhiza Uralensis-Salvia miltiorrhiza prescription based on serum and urine metabolomics and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1209:123416. [PMID: 36027704 DOI: 10.1016/j.jchromb.2022.123416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022]
Abstract
Hepatic fibrosis (HF) is a kind of chronic epidemic liver disease. Glycyrrhiza Uralensis and Salvia Miltiorrhiza (GUSM), traditional Chinese medicine, has the obvious clinical treatment of liver fibrosis. This study aimed to investigate the mechanisms of GUSM against HF by an integrated strategy combining untargeted metabolomics with network pharmacology. The results showed that GUSM prescription can improve the morphology and structure of liver tissue, inhibit the proliferation of collagen fibers and reducing the inflammatory response of the liver and so on. Endogenous metabolites and HF-related potential biomarkers in serum and urine were detected by ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The metabolic pathways were enriched by MetaboAnalyst. GUSM prescription showed an antifibrotic effect on rats by regulating metabolic pathways, mainly pentose and glucuronate interconversions and arachidonic acid metabolism. Network pharmacology was then applied to find 42 overlapping targets of GUSM-HF. Quercetin was found to be the main active component and STAT3 was the main active target in GUSM prescription. Molecular docking showed high affinities between quercetin and STAT3. Therefore, GUSM has protective effects on HF by regulating the metabolism and different signaling pathways. The work also shows that the metabolomic and network pharmacology methods are promising tools to gain insight into the efficacy and mechanism research of traditional Chinese medicines.
Collapse
|
5
|
González-Ponce HA, Martínez-Saldaña MC, Tepper PG, Quax WJ, Buist-Homan M, Faber KN, Moshage H. Betacyanins, major components in Opuntia red-purple fruits, protect against acetaminophen-induced acute liver failure. Food Res Int 2020; 137:109461. [PMID: 33233135 DOI: 10.1016/j.foodres.2020.109461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/05/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
Acetaminophen (APAP) misuse or overdose is the most important cause of drug-induced acute liver failure. Overdoses of acetaminophen induce oxidative stress and liver injury by the electrophilic metabolite N-acetyl-p-benzoquinone imine (NAPQI). Plant-based medicine has been used for centuries against diseases or intoxications due to their biological activities. The aim of this study was to evaluate the therapeutic value of Opuntia robusta and Opuntia streptacantha fruit extracts against acetaminophen-induced liver damage and to identify the major biocomponents on them. Opuntia fruit extracts were obtained by peeling and squeezing each specie, followed by lyophilization. HPLC was used to characterize the extracts. The effect of the extracts against acetaminophen-induced acute liver injury was evaluated both in vivo and in vitro using biochemical, molecular and histological determinations. The results showed that betacyanins are the main components in the analyzed Opuntia fruit extracts, with betanin as the highest concentration. Therapeutic treatments with Opuntia extracts reduced biochemical, molecular and histological markers of liver (in vivo) and hepatocyte (in vitro) injury. Opuntia extracts reduced the APAP-increased expression of the stress-related gene Gadd45b. Furthermore, Opuntia extracts exerted diverse effects on the antioxidant related genes Sod2, Gclc and Hmox1, independent of their ROS-scavenging ability. Therefore, betacyanins as betanin from Opuntia robusta and Opuntia streptacantha fruits are promising nutraceutical compounds against oxidative liver damage.
Collapse
Affiliation(s)
- Herson Antonio González-Ponce
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands.
| | | | - Pieter G Tepper
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, the Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, the Netherlands.
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
6
|
Geng Y, Wu Z, Buist-Homan M, Blokzijl H, Moshage H. Hesperetin protects against palmitate-induced cellular toxicity via induction of GRP78 in hepatocytes. Toxicol Appl Pharmacol 2020; 404:115183. [PMID: 32763355 DOI: 10.1016/j.taap.2020.115183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022]
Abstract
Lipotoxicity plays a critical role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Hesperetin, a flavonoid derivative, has anti-oxidant, anti-inflammatory and cytoprotective properties. In the present study, we aim to examine whether hesperetin protects against palmitate-induced lipotoxic cell death and to investigate the underlying mechanisms in hepatocytes. Primary rat hepatocytes and HepG2 cells were pretreated with hesperetin for 30 min and then exposed to palmitate (1.0 mmol/L in primary rat hepatocytes; 0.5 mmol/L in HepG2 cells) in the presence or absence of hesperetin. Necrotic cell death was measured via Sytox green nuclei staining and quantified by LDH release assay. Apoptotic cell death was determined by caspase 3/7 activity and the protein level of cleaved-PARP. The unfolded protein response (UPR) was assessed by measuring the expression of GRP78, sXBP1, ATF4 and CHOP. Results show that hesperetin (50 μmol/L and 100 μmol/L) protected against palmitate-induced cell death and inhibited palmitate-induced endoplasmic reticulum (ER) stress in both primary rat hepatocytes and HepG2 cells. Hesperetin (100 μmol/L) significantly activated sXBP1/GRP78 signaling, whereas a high concentration of hesperetin (200 μmol/L) activated p-eIF2α and caused hepatic cell death. Importantly, GRP78 knockdown via siRNA abolished the protective effects of hesperetin in HepG2 cells. In conclusion, hesperetin protected against palmitate-induced hepatic cell death via activation of the sXBP1/GRP78 signaling pathway, thus inhibiting palmitate-induced ER stress. Moreover, high concentrations of hesperetin induce ER stress and subsequently cause cell death in hepatocytes.
Collapse
Affiliation(s)
- Yana Geng
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Protective effect of metformin against palmitate-induced hepatic cell death. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165621. [DOI: 10.1016/j.bbadis.2019.165621] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
|
8
|
The gut–liver axis in hepatocarcinoma: a focus on the nuclear receptor FXR and the enterokine FGF19. Curr Opin Pharmacol 2018; 43:93-98. [DOI: 10.1016/j.coph.2018.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
|
9
|
Zhang F, Xi L, Duan Y, Qin H, Wei M, Wu Y, Li B, Zhou Y, Wu X. The ileum-liver Farnesoid X Receptor signaling axis mediates the compensatory mechanism of 17α-ethynylestradiol-induced cholestasis via increasing hepatic biosynthesis of chenodeoxycholic acids in rats. Eur J Pharm Sci 2018; 123:404-415. [DOI: 10.1016/j.ejps.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/19/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
|
10
|
Mitchell EL, Khan Z. Liver Disease in Alpha-1 Antitrypsin Deficiency: Current Approaches and Future Directions. CURRENT PATHOBIOLOGY REPORTS 2017; 5:243-252. [PMID: 29399420 PMCID: PMC5780543 DOI: 10.1007/s40139-017-0147-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review The aim of the study is to review the liver disease caused by alpha-1 antitrypsin deficiency (A1ATD), including pathogenesis, epidemiology, diagnostic testing, and recent therapeutic developments. Recent Findings Therapeutic approaches target several intracellular pathways to reduce the cytotoxic effects of the misfolded mutant globular protein (ATZ) on the hepatocyte. These include promoting ATZ transport out of the endoplasmic reticulum (ER), enhancing ATZ degradation, and preventing ATZ globule-aggregation. Summary A1ATD is the leading genetic cause of liver disease among children. It is a protein-folding disorder in which toxic insoluble ATZ proteins aggregate in the ER of hepatocytes leading to inflammation, fibrosis, cirrhosis, and increased risk of hepatocellular carcinoma. The absence of the normal A1AT serum protein also predisposes patients to pan lobar emphysema as adults. At this time, the only approved therapy for A1ATD-associated liver disease is orthotopic liver transplantation, which is curative. However, there has been significant recent progress in the development of small molecule therapies with potential both to preserve the native liver and prevent hepatotoxicity.
Collapse
Affiliation(s)
- Ellen L Mitchell
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Faculty Pavilion 6th Fl, Pittsburgh, PA 15224-1334 USA.,2Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Zahida Khan
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Faculty Pavilion 6th Fl, Pittsburgh, PA 15224-1334 USA.,2Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,3Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,4McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,5Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
11
|
Zhang YM, Xu X, Yu Q, Liu YH, Zhang YH, Chen LX, Liu Y. Reversing the Cytotoxicity of Bile Acids by Supramolecular Encapsulation. J Med Chem 2017; 60:3266-3274. [PMID: 28398754 DOI: 10.1021/acs.jmedchem.6b01536] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supramolecular encapsulation has been developed into a powerful tool in clearance of toxic substances and hazardous waste from living body and external environments. Herein we tested the special efficacy of tyramine-modified β-cyclodextrin (1) in inhibiting and reversing of the inherent cytotoxicity of deoxycholic acid (DCA). The decarboxylation from tyrosine to tyramine in 1 is crucial to the mutual electrostatic communication, ultimately leading to great enhancement in binding affinity and molecular selectivity toward bile acids. As a result, the DCA-mediated cytotoxicity could be largely eliminated by the biocompatible 1. Meanwhile, the excess DCA could be rapidly excreted by 1 via rat urinary clearance, thus facilitating the decrease of DCA concentration in blood. This study presents a proof of principle that the supramolecular encapsulation with functional cyclodextrin derivatives can efficiently modulate the cell progression and remove the cytotoxic DCA, which provides a practical approach to prevent or treat bile acid-involved diseases.
Collapse
Affiliation(s)
- Ying-Ming Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, P. R. China
| | - Xun Xu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, P. R. China
| | - Qilin Yu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, P. R. China
| | - Yao-Hua Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, P. R. China
| | - Yu-Hui Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, P. R. China
| | - Li-Xia Chen
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, P. R. China
| | - Yu Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071, P. R. China
| |
Collapse
|