1
|
Xu M, Zhang QT, Zhou L, Cai YW, Liu H, Zhao QL, Tian JH, Huang YK, Ren P, Huang X. Ferulic acid in Chaihu Shugan San modulates depression-like behavior, endothelial and gastrointestinal dysfunction in rats via the Ghrl-Edn1/Mecp2/P-mTOR/VEGFA pathway: A multi-omics study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119624. [PMID: 40127829 DOI: 10.1016/j.jep.2025.119624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/16/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In a global context of escalating multimorbidity, characterized by the co-occurrence of major depressive disorder (MDD), endothelial dysfunction (ED), and gastrointestinal dysregulation (GD), the quest for effective treatments has become paramount. Central to these interconnected conditions is oxidative stress (OS), a pivotal factor that has been extensively studied yet remains inadequately addressed. This study introduces Chaihu-Shugan-San (CSS) and its absorbed component ferulic acid (FA), a potent antioxidant derived from medicinal plants, as a novel therapeutic approach with the unique ability to counter the multifaceted effects of acute forced swimming (AFS)-induced depression, ED, and GD. Unlike traditional single-disease-focused studies, our research explores the synergistic effects of CSS and FA across these interrelated disorders, offering a groundbreaking perspective. AIM OF THE STUDY This study aims to evaluate CSS and FA in treating depression-related multimorbidity triggered by AFS and to uncover the shared underlying mechanisms of FA. MATERIALS AND METHODS A depression-like model in rats was induced by AFS, and an OS model was established in endothelial cells (ECs) through hydrogen peroxide treatment. We investigated the effects of CSS and FA on MDD, ED, and GD in rats and OS levels in ECs. Our assessments included hematoxylin and eosin (HE) staining, biochemical assays, and behavioral studies. We conducted an integrated analysis of transcriptomics, proteomics, and phosphoproteomics data to elucidate the underlying mechanisms. The identification of relevant targets was confirmed through Western blotting (WB), real-time quantitative polymerase chain reaction (RT-qPCR), molecular docking studies, and an extensive literature review. RESULTS Our findings indicate that CSS and FA not only significantly mitigate AFS-induced abnormalities in the open field test (OFT), forced swim test (FST), and related behaviors such as gastric emptying and intestinal transit in rats but also ameliorate depression, ED, GD, inflammation and OS-related biomarker levels, alongside HE staining in gastric sinus and aorta slices. The study also highlights that FA can influence OS and endothelial function in ECs. Moreover, a combined multi-omics analysis unveiled several OS-related pathways, including the mTOR and p53 signaling pathways. Our research elucidates that the Ghrl-Edn1/Mecp2/P-mTOR/Vegfa-associated OS signaling pathway is pivotal in countering AFS-induced multimorbidity, expanding beyond the conventional disease-specific focus. CONCLUSIONS This pioneering study underscores capability of CSS and FA to tackle AFS-induced multimorbidity concurrently and intricately details FA's antioxidative mechanisms within ECs. The insights gleaned offer a novel perspective on FA's role in multimorbidity regulation and its potential to modulate OS, especially in the complex environment of ECs. Given the urgent global health challenges, our research positions FA as a promising therapeutic contender, advocating for a paradigm shift in multimorbidity management.
Collapse
Affiliation(s)
- Min Xu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian-Tao Zhang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zhou
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ya-Wen Cai
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Liu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiu-Long Zhao
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Hua Tian
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun-Ke Huang
- Women's Hospital, Zhejiang University School of Medicine, Gynecology Department, Zhejiang, China
| | - Ping Ren
- Department of Geriatrics, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Spencer PS, Valdes Angues R, Palmer VS. Nodding syndrome: A role for environmental biotoxins that dysregulate MECP2 expression? J Neurol Sci 2024; 462:123077. [PMID: 38850769 DOI: 10.1016/j.jns.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Nodding syndrome is an epileptic encephalopathy associated with neuroinflammation and tauopathy. This initially pediatric brain disease, which has some clinical overlap with Methyl-CpG-binding protein 2 (MECP2) Duplication Syndrome, has impacted certain impoverished East African communities coincident with local civil conflict and internal displacement, conditions that forced dependence on contaminated food and water. A potential role in Nodding syndrome for certain biotoxins (freshwater cyanotoxins plus/minus mycotoxins) with neuroinflammatory, excitotoxic, tauopathic, and MECP2-dysregulating properties, is considered here for the first time.
Collapse
Affiliation(s)
- Peter S Spencer
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA; Gulu University School of Medicine, Gulu, Uganda.
| | - Raquel Valdes Angues
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Valerie S Palmer
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA; Gulu University School of Medicine, Gulu, Uganda
| |
Collapse
|
3
|
Allison K, Maletic-Savatic M, Pehlivan D. MECP2-related disorders while gene-based therapies are on the horizon. Front Genet 2024; 15:1332469. [PMID: 38410154 PMCID: PMC10895005 DOI: 10.3389/fgene.2024.1332469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
The emergence of new genetic tools has led to the discovery of the genetic bases of many intellectual and developmental disabilities. This creates exciting opportunities for research and treatment development, and a few genetic disorders (e.g., spinal muscular atrophy) have recently been treated with gene-based therapies. MECP2 is found on the X chromosome and regulates the transcription of thousands of genes. Loss of MECP2 gene product leads to Rett Syndrome, a disease found primarily in females, and is characterized by developmental regression, motor dysfunction, midline hand stereotypies, autonomic nervous system dysfunction, epilepsy, scoliosis, and autistic-like behavior. Duplication of MECP2 causes MECP2 Duplication Syndrome (MDS). MDS is found mostly in males and presents with developmental delay, hypotonia, autistic features, refractory epilepsy, and recurrent respiratory infections. While these two disorders share several characteristics, their differences (e.g., affected sex, age of onset, genotype/phenotype correlations) are important to distinguish in the light of gene-based therapy because they require opposite solutions. This review explores the clinical features of both disorders and highlights these important clinical differences.
Collapse
Affiliation(s)
- Katherine Allison
- Royal College of Surgeons in Ireland, School of Medicine, Dublin, Ireland
| | - Mirjana Maletic-Savatic
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
- Blue Bird Circle Rett Center, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
4
|
Powers S, Likhite S, Gadalla KK, Miranda CJ, Huffenberger AJ, Dennys C, Foust KD, Morales P, Pierson CR, Rinaldi F, Perry S, Bolon B, Wein N, Cobb S, Kaspar BK, Meyer KC. Novel MECP2 gene therapy is effective in a multicenter study using two mouse models of Rett syndrome and is safe in non-human primates. Mol Ther 2023; 31:2767-2782. [PMID: 37481701 PMCID: PMC10492029 DOI: 10.1016/j.ymthe.2023.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/10/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023] Open
Abstract
The AAV9 gene therapy vector presented in this study is safe in mice and non-human primates and highly efficacious without causing overexpression toxicity, a major challenge for clinical translation of Rett syndrome gene therapy vectors to date. Our team designed a new truncated methyl-CpG-binding protein 2 (MECP2) promoter allowing widespread expression of MECP2 in mice and non-human primates after a single injection into the cerebrospinal fluid without causing overexpression symptoms up to 18 months after injection. Additionally, this new vector is highly efficacious at lower doses compared with previous constructs as demonstrated in extensive efficacy studies performed by two independent laboratories in two different Rett syndrome mouse models carrying either a knockout or one of the most frequent human mutations of Mecp2. Overall, data from this multicenter study highlight the efficacy and safety of this gene therapy construct, making it a promising candidate for first-in-human studies to treat Rett syndrome.
Collapse
Affiliation(s)
- Samantha Powers
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Shibi Likhite
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kamal K Gadalla
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Carlos J Miranda
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Amy J Huffenberger
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Cassandra Dennys
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kevin D Foust
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Pablo Morales
- The Mannheimer Foundation Inc, Homestead, FL 33034, USA
| | - Christopher R Pierson
- The Department of Pathology & Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pathology and the Department of Biomedical Education & Anatomy, The Ohio State University, Columbus, OH 43210, USA
| | - Federica Rinaldi
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Stephanie Perry
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Stuart Cobb
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Brian K Kaspar
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Kathrin C Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Ramirez JM, Carroll MS, Burgraff N, Rand CM, Weese-Mayer DE. A narrative review of the mechanisms and consequences of intermittent hypoxia and the role of advanced analytic techniques in pediatric autonomic disorders. Clin Auton Res 2023; 33:287-300. [PMID: 37326924 DOI: 10.1007/s10286-023-00958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Disorders of autonomic functions are typically characterized by disturbances in multiple organ systems. These disturbances are often comorbidities of common and rare diseases, such as epilepsy, sleep apnea, Rett syndrome, congenital heart disease or mitochondrial diseases. Characteristic of many autonomic disorders is the association with intermittent hypoxia and oxidative stress, which can cause or exaggerate a variety of other autonomic dysfunctions, making the treatment and management of these syndromes very complex. In this review we discuss the cellular mechanisms by which intermittent hypoxia can trigger a cascade of molecular, cellular and network events that result in the dysregulation of multiple organ systems. We also describe the importance of computational approaches, artificial intelligence and the analysis of big data to better characterize and recognize the interconnectedness of the various autonomic and non-autonomic symptoms. These techniques can lead to a better understanding of the progression of autonomic disorders, ultimately resulting in better care and management.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
| | - Casey M Rand
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
A brief history of MECP2 duplication syndrome: 20-years of clinical understanding. Orphanet J Rare Dis 2022; 17:131. [PMID: 35313898 PMCID: PMC8939085 DOI: 10.1186/s13023-022-02278-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
MECP2 duplication syndrome (MDS) is a rare, X-linked, neurodevelopmental disorder caused by a duplication of the methyl-CpG-binding protein 2 (MECP2) gene-a gene in which loss-of-function mutations lead to Rett syndrome (RTT). MDS has an estimated live birth prevalence in males of 1/150,000. The key features of MDS include intellectual disability, developmental delay, hypotonia, seizures, recurrent respiratory infections, gastrointestinal problems, behavioural features of autism and dysmorphic features-although these comorbidities are not yet understood with sufficient granularity. This review has covered the past two decades of MDS case studies and series since the discovery of the disorder in 1999. After comprehensively reviewing the reported characteristics, this review has identified areas of limited knowledge that we recommend may be addressed by better phenotyping this disorder through an international data collection. This endeavour would also serve to delineate the clinical overlap between MDS and RTT.
Collapse
|
7
|
Sánchez-Lafuente CL, Kalynchuk LE, Caruncho HJ, Ausió J. The Role of MeCP2 in Regulating Synaptic Plasticity in the Context of Stress and Depression. Cells 2022; 11:cells11040748. [PMID: 35203405 PMCID: PMC8870391 DOI: 10.3390/cells11040748] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is a transcriptional regulator that is highly abundant in the brain. It binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. MeCP2 has mainly been studied for its role in neurodevelopmental disorders, but alterations in MeCP2 are also present in stress-related disorders such as major depression. Impairments in both stress regulation and synaptic plasticity are associated with depression, but the specific mechanisms underlying these changes have not been identified. Here, we review the interplay between stress, synaptic plasticity, and MeCP2. We focus our attention on the transcriptional regulation of important neuronal plasticity genes such as BDNF and reelin (RELN). Moreover, we provide evidence from recent studies showing a link between chronic stress-induced depressive symptoms and dysregulation of MeCP2 expression, underscoring the role of this protein in stress-related pathology. We conclude that MeCP2 is a promising target for the development of novel, more efficacious therapeutics for the treatment of stress-related disorders such as depression.
Collapse
Affiliation(s)
- Carla L. Sánchez-Lafuente
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (C.L.S.-L.); (L.E.K.); (H.J.C.)
| | - Lisa E. Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (C.L.S.-L.); (L.E.K.); (H.J.C.)
| | - Hector J. Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (C.L.S.-L.); (L.E.K.); (H.J.C.)
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
- Correspondence:
| |
Collapse
|
8
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Huff A, Burgraff N. Breathing disturbances in Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:139-151. [PMID: 36031301 PMCID: PMC10029146 DOI: 10.1016/b978-0-323-91532-8.00018-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rett Syndrome is an X-linked neurological disorder characterized by behavioral and neurological regression, seizures, motor deficits, and dysautonomia. A particularly prominent presentation includes breathing abnormalities characterized by breathing irregularities, hyperventilation, repetitive breathholding during wakefulness, obstructive and central apneas during sleep, and abnormal responses to hypoxia and hypercapnia. The condition and pathology of the respiratory system is further complicated by dysfunctions of breathing-motor coordination, which is reflected in dysphagia. The discovery of the X-linked mutations in the MECP2 gene has transformed our understanding of the cellular and molecular mechanisms that are at the root of various clinical phenotypes. However, the genotype-phenotype relationship is complicated by various factors which include not only X-inactivation but also consequences of the intermittent hypoxia and oxidative stress associated with the breathing abnormalities.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States.
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
9
|
Pascual-Alonso A, Martínez-Monseny AF, Xiol C, Armstrong J. MECP2-Related Disorders in Males. Int J Mol Sci 2021; 22:9610. [PMID: 34502518 PMCID: PMC8431762 DOI: 10.3390/ijms22179610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022] Open
Abstract
Methyl CpG binding protein 2 (MECP2) is located at Xq28 and is a multifunctional gene with ubiquitous expression. Loss-of-function mutations in MECP2 are associated with Rett syndrome (RTT), which is a well-characterized disorder that affects mainly females. In boys, however, mutations in MECP2 can generate a wide spectrum of clinical presentations that range from mild intellectual impairment to severe neonatal encephalopathy and premature death. Thus, males can be more difficult to classify and diagnose than classical RTT females. In addition, there are some variants of unknown significance in MECP2, which further complicate the diagnosis of these children. Conversely, the entire duplication of the MECP2 gene is related to MECP2 duplication syndrome (MDS). Unlike in RTT, in MDS, males are predominantly affected. Usually, the duplication is inherited from an apparently asymptomatic carrier mother. Both syndromes share some characteristics, but also differ in some aspects regarding the clinical picture and evolution. In the following review, we present a thorough description of the different types of MECP2 variants and alterations that can be found in males, and explore several genotype-phenotype correlations, although there is still a lot to understand.
Collapse
Affiliation(s)
- Ainhoa Pascual-Alonso
- Fundació Per la Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; (A.P.-A.); (C.X.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
| | - Antonio F. Martínez-Monseny
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
- Clinical Genetics, Molecular and Genetic Medicine Section, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Clara Xiol
- Fundació Per la Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; (A.P.-A.); (C.X.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
| | - Judith Armstrong
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
- Clinical Genetics, Molecular and Genetic Medicine Section, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
10
|
Signorini C, Leoncini S, Durand T, Galano JM, Guy A, Bultel-Poncé V, Oger C, Lee JCY, Ciccoli L, Hayek J, De Felice C. Circulating 4-F 4t-Neuroprostane and 10-F 4t-Neuroprostane Are Related to MECP2 Gene Mutation and Natural History in Rett Syndrome. Int J Mol Sci 2021; 22:ijms22084240. [PMID: 33921863 PMCID: PMC8073126 DOI: 10.3390/ijms22084240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Neuroprostanes, a family of non-enzymatic metabolites of the docosahexaenoic acid, have been suggested as potential biomarkers for neurological diseases. Objective biological markers are strongly needed in Rett syndrome (RTT), which is a progressive X-linked neurodevelopmental disorder that is mainly caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene with a predominant multisystemic phenotype. The aim of the study is to assess a possible association between MECP2 mutations or RTT disease progression and plasma levels of 4(RS)-4-F4t-neuroprostane (4-F4t-NeuroP) and 10(RS)-10-F4t-neuroprostane (10-F4t-NeuroP) in typical RTT patients with proven MECP2 gene mutation. Clinical severity and disease progression were assessed using the Rett clinical severity scale (RCSS) in n = 77 RTT patients. The 4-F4t-NeuroP and 10-F4t-NeuroP molecules were totally synthesized and used to identify the contents of the plasma of the patients. Neuroprostane levels were related to MECP2 mutation category (i.e., early truncating, gene deletion, late truncating, and missense), specific hotspot mutations (i.e., R106W, R133C, R168X, R255X, R270X, R294X, R306C, and T158M), and disease stage (II through IV). Circulating 4-F4t-NeuroP and 10-F4t-NeuroP were significantly related to (i) the type of MECP2 mutations where higher levels were associated to gene deletions (p ≤ 0.001); (ii) severity of common hotspot MECP2 mutation (large deletions, R168X, R255X, and R270X); (iii) disease stage, where higher concentrations were observed at stage II (p ≤ 0.002); and (iv) deficiency in walking (p ≤ 0.0003). This study indicates the biological significance of 4-F4t-NeuroP and 10-F4t-NeuroP as promising molecules to mark the disease progression and potentially gauge genotype-phenotype associations in RTT.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
- Correspondence: (C.S.); (C.D.F.); Tel.: +39-0577-234499 (C.S.)
| | - Silvia Leoncini
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (A.G.); (V.B.-P.); (C.O.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (A.G.); (V.B.-P.); (C.O.)
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (A.G.); (V.B.-P.); (C.O.)
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (A.G.); (V.B.-P.); (C.O.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (A.G.); (V.B.-P.); (C.O.)
| | | | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
- Pediatric Speciality Center “L’Isola di Bau”, 50052 Certaldo, Florence, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
- Correspondence: (C.S.); (C.D.F.); Tel.: +39-0577-234499 (C.S.)
| |
Collapse
|
11
|
Li N, Zhang T, He M, Mu Y. MeCP2 attenuates cardiomyocyte hypoxia/reperfusion-induced injury via regulation of the SFRP4/Wnt/β-catenin axis. Biomarkers 2021; 26:363-370. [PMID: 33726573 DOI: 10.1080/1354750x.2021.1903999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective: Methylated CpG binding protein 2 (MeCP2) is closely associated with heart failure, but its role in I/R injury remains unclear. The purpose of this study was to explore the role and underling mechanism of MeCP2 in myocardial I/R injury.Methods: Hypoxia/reperfusion (H/R)-induced H9c2 cardiomyocytes was used to establish an in vitro I/R injury model. Oxidative stress was assessed by measuring reactive oxygen species (ROS) generation, malondialdehyde (MDA) content and superoxide dismutase (SOD) activity. Cell viability and cell cycle arrest were evaluated by the Cell Counting Kit-8 assay and cell cycle assay, respectively. Apoptosis was determined using flow cytometry analysis.Results: The expression of MeCP2 in H9c2 cells was decreased after H/R treatment. The overexpression of MeCP2 inhibited H/R-induced oxidative stress, cell cycle arrest and apoptosis of H9c2 cells. Moreover, MeCP2 inhibited the activation of secreted frizzled related protein 4 (SFRP4)/Wnt/β-catenin axis, and SFRP4 relieved the effect of MeCP2 on oxidative stress, cell cycle arrest and apoptosis in H/R-induced H9c2 cells.Conclusions: MeCP2 attenuated H/R-induced injury in H9c2 cardiomyocytes by modulating the SFRP4/Wnt/β-catenin axis, which suggested that MeCP2 might serve as a therapeutic target of patients with AMI after reperfusion.
Collapse
Affiliation(s)
- Nan Li
- Department of Cardiology, Xi'an Central Hospital, Xi'an, China
| | - Tao Zhang
- Department of Cardiology, Xi'an Central Hospital, Xi'an, China
| | - Mengying He
- Department of Center sterile supply, Xi'an Hospital of Traditional Chinese Medicine, Shaanxi, China
| | - Yudong Mu
- Department of Clinical Laboratory, Shaanxi Provincial Tumor Hospital, Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Bressan P, Kramer P. Mental Health, Mitochondria, and the Battle of the Sexes. Biomedicines 2021; 9:biomedicines9020116. [PMID: 33530498 PMCID: PMC7911591 DOI: 10.3390/biomedicines9020116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/12/2023] Open
Abstract
This paper presents a broad perspective on how mental disease relates to the different evolutionary strategies of men and women and to growth, metabolism, and mitochondria—the enslaved bacteria in our cells that enable it all. Several mental disorders strike one sex more than the other; yet what truly matters, regardless of one’s sex, is how much one’s brain is “female” and how much it is “male”. This appears to be the result of an arms race between the parents over how many resources their child ought to extract from the mother, hence whether it should grow a lot or stay small and undemanding. An uneven battle alters the child’s risk of developing not only insulin resistance, diabetes, or cancer, but a mental disease as well. Maternal supremacy increases the odds of a psychosis-spectrum disorder; paternal supremacy, those of an autism-spectrum one. And a particularly lopsided struggle may invite one or the other of a series of syndromes that come in pairs, with diametrically opposite, excessively “male” or “female” characteristics. By providing the means for this tug of war, mitochondria take center stage in steadying or upsetting the precarious balance on which our mental health is built.
Collapse
|
13
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Bush NE, Carroll MS, Weese-Mayer DE, Huff A. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology (Bethesda) 2020; 35:375-390. [PMID: 33052774 PMCID: PMC7864239 DOI: 10.1152/physiol.00008.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
14
|
Fagiolini M, Patrizi A, LeBlanc J, Jin LW, Maezawa I, Sinnett S, Gray SJ, Molholm S, Foxe JJ, Johnston MV, Naidu S, Blue M, Hossain A, Kadam S, Zhao X, Chang Q, Zhou Z, Zoghbi H. Intellectual and Developmental Disabilities Research Centers: A Multidisciplinary Approach to Understand the Pathogenesis of Methyl-CpG Binding Protein 2-related Disorders. Neuroscience 2020; 445:190-206. [PMID: 32360592 DOI: 10.1016/j.neuroscience.2020.04.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Disruptions in the gene encoding methyl-CpG binding protein 2 (MECP2) underlie complex neurodevelopmental disorders including Rett Syndrome (RTT), MECP2 duplication disorder, intellectual disabilities, and autism. Significant progress has been made on the molecular and cellular basis of MECP2-related disorders providing a new framework for understanding how altered epigenetic landscape can derail the formation and refinement of neuronal circuits in early postnatal life and proper neurological function. This review will summarize selected major findings from the past years and particularly highlight the integrated and multidisciplinary work done at eight NIH-funded Intellectual and Developmental Disabilities Research Centers (IDDRC) across the US. Finally, we will outline a path forward with identification of reliable biomarkers and outcome measures, longitudinal preclinical and clinical studies, reproducibility of results across centers as a synergistic effort to decode and treat the pathogenesis of the complex MeCP2 disorders.
Collapse
Affiliation(s)
- Michela Fagiolini
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Annarita Patrizi
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jocelyn LeBlanc
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee-Way Jin
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Izumi Maezawa
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Sarah Sinnett
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael V Johnston
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Sakkubai Naidu
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Mary Blue
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Ahamed Hossain
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Shilpa Kadam
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhaolan Zhou
- Department of Genetic, Epigenetic Institute, University of Pennsylvania Perelman School of Medicine, Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Huda Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Aldosary M, Al-Bakheet A, Al-Dhalaan H, Almass R, Alsagob M, Al-Younes B, AlQuait L, Mustafa OM, Bulbul M, Rahbeeni Z, Alfadhel M, Chedrawi A, Al-Hassnan Z, AlDosari M, Al-Zaidan H, Al-Muhaizea MA, AlSayed MD, Salih MA, AlShammari M, Faiyaz-Ul-Haque M, Chishti MA, Al-Harazi O, Al-Odaib A, Kaya N, Colak D. Rett Syndrome, a Neurodevelopmental Disorder, Whole-Transcriptome, and Mitochondrial Genome Multiomics Analyses Identify Novel Variations and Disease Pathways. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:160-171. [PMID: 32105570 DOI: 10.1089/omi.2019.0192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder reported worldwide in diverse populations. RTT is diagnosed primarily in females, with clinical findings manifesting early in life. Despite the variable rates across populations, RTT has an estimated prevalence of ∼1 in 10,000 live female births. Among 215 Saudi Arabian patients with neurodevelopmental and autism spectrum disorders, we identified 33 patients with RTT who were subsequently examined by genome-wide transcriptome and mitochondrial genome variations. To the best of our knowledge, this is the first in-depth molecular and multiomics analyses of a large cohort of Saudi RTT cases with a view to informing the underlying mechanisms of this disease that impact many patients and families worldwide. The patients were unrelated, except for 2 affected sisters, and comprised of 25 classic and eight atypical RTT cases. The cases were screened for methyl-CpG binding protein 2 (MECP2), CDKL5, FOXG1, NTNG1, and mitochondrial DNA (mtDNA) variants, as well as copy number variations (CNVs) using a genome-wide experimental strategy. We found that 15 patients (13 classic and two atypical RTT) have MECP2 mutations, 2 of which were novel variants. Two patients had novel FOXG1 and CDKL5 variants (both atypical RTT). Whole mtDNA sequencing of the patients who were MECP2 negative revealed two novel mtDNA variants in two classic RTT patients. Importantly, the whole-transcriptome analysis of our RTT patients' blood and further comparison with previous expression profiling of brain tissue from patients with RTT revealed 77 significantly dysregulated genes. The gene ontology and interaction network analysis indicated potentially critical roles of MAPK9, NDUFA5, ATR, SMARCA5, RPL23, SRSF3, and mitochondrial dysfunction, oxidative stress response and MAPK signaling pathways in the pathogenesis of RTT genes. This study expands our knowledge on RTT disease networks and pathways as well as presents novel mutations and mtDNA alterations in RTT in a population sample that was not previously studied.
Collapse
Affiliation(s)
- Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - AlBandary Al-Bakheet
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Hesham Al-Dhalaan
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Banan Al-Younes
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Laila AlQuait
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Osama Mufid Mustafa
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mustafa Bulbul
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Genetics Division, Department of Pediatrics, King Abdullah Specialized Children Hospital, Riyadh, Saudi Arabia
| | - Aziza Chedrawi
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohammed AlDosari
- Center for Pediatric Neurosciences, Cleveland Clinic, Cleveland, Ohio
| | - Hamad Al-Zaidan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohammad A Al-Muhaizea
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Moeenaldeen D AlSayed
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mai AlShammari
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Mohammad Azhar Chishti
- Department of Biochemistry, King Khalid Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Al-Odaib
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Signorini C, Cardile V, Pannuzzo G, Graziano ACE, Durand T, Galano JM, Oger C, Leoncini S, Cortelazzo A, Lee JCY, Hayek J, De Felice C. Increased isoprostanoid levels in brain from murine model of Krabbe disease - Relevance of isoprostanes, dihomo-isoprostanes and neuroprostanes to disease severity. Free Radic Biol Med 2019; 139:46-54. [PMID: 31100476 DOI: 10.1016/j.freeradbiomed.2019.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023]
Abstract
Krabbe disease (KD) is a rare and devastating pediatric leukodystrophy caused by mutations in the galactocerebrosidase (GALC) gene. The disease leads to impaired myelin formation and extensive myelin damage in the brain. Oxidative stress is implicated in the pathogenesis of KD but insofar few information is available. The gray and white matter of the brain are rich in docosahexaenoic acid and adrenic acid respectively and under non-enzymatic oxidative stress, release isoprostanoids, i.e. F4-neuroprostanes (F4-NeuroPs) and F2-dihomo-isoprostanes (F2-dihomo-IsoPs). In this study, the formation of isoprostanoids in brain tissue was investigated in a well-established KD mouse model (twitcher) that recapitulates the human pathology. According to the genotype determinations, three groups of mice were selected: wild-type control mice (n = 13), heterozygotes mice (carriers of GALC mutations, n = 14) and homozygous twitcher mice (n = 13). Measurement of F2-dihomo-IsoP and F4-NeuroP levels were performed on whole brain tissue obtained at day 15 and day 35 of the life cycle. Brain isoprostanoid levels were significantly higher in the twitcher mice compared to the heterozygous and wild-type control mice. However, F2-dihomo-IsoP and F4-NeuroP levels did not differ in brain of day 15 compared to day 35 of the heterozygote mice. Interestingly, isoprostanoid levels were proportionally enhanced with disease severity (F2-dihomo-IsoPs, rho = 0.54; F4-NeuroPs, rho = 0.581; P values ≤ 0.05; n = 13). Our findings are the first to show the key role of polyunsaturated fatty acid oxidative damage to brain grey and white matter in the pathogenesis and progression of KD. This shed new insights on the biochemical indexes of KD progression, and potentially provide information for novel therapeutic targets.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Sect. of Physiology, University of Catania, Italy.
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Sect. of Physiology, University of Catania, Italy
| | | | - Thierry Durand
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Jetty Chung-Yung Lee
- The University of Hong Kong, School of Biological Sciences, Hong Kong Special Administrative Region
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Claudio De Felice
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| |
Collapse
|
17
|
Müller M. Disturbed redox homeostasis and oxidative stress: Potential players in the developmental regression in Rett syndrome. Neurosci Biobehav Rev 2019; 98:154-163. [PMID: 30639673 DOI: 10.1016/j.neubiorev.2018.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder affecting mostly girls. A seemingly normal initial development is followed by developmental stagnation and regression, leading to severe mental impairment with autistic features, motor dysfunction, irregular breathing and epilepsy. Currently, a cure does not exist. Due to the close association of RTT with mitochondrial alterations, cellular redox-impairment and oxidative stress, compounds stabilizing mitochondrial function, cellular redox-homeostasis, and oxidant detoxification are increasingly considered as treatment concepts. Indeed, antioxidants and free-radical scavengers ameliorate certain aspects of the complex and severe clinical presentation of RTT. To further evaluate these strategies, reliable biosensors are needed to quantify redox-conditions in brain and peripheral organs of mouse models or in patient-derived cells. Genetically-encoded redox-sensors meet these requirements. Expressed in transgenic mouse-models such as our unique Rett-redox indicator mice, they will report for any cell type desired the severity of oxidant stress throughout the various disease stages of RTT. Furthermore, these sensors will be crucial to evaluate in vitro and in vivo the outcome of mitochondria- and redox-balance targeted treatments.
Collapse
Affiliation(s)
- Michael Müller
- Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Humboldtallee 23, D-37073 Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro-und Sinnesphysiologie, Humboldtallee 23, D-37073 Göttingen, Germany.
| |
Collapse
|
18
|
Isoprostanoids in Clinical and Experimental Neurological Disease Models. Antioxidants (Basel) 2018; 7:antiox7070088. [PMID: 29997375 PMCID: PMC6071265 DOI: 10.3390/antiox7070088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/28/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Isoprostanoids are a large family of compounds derived from non-enzymatic oxidation of polyunsaturated fatty acids (PUFAs). Unlike other oxidative stress biomarkers, they provide unique information on the precursor of the targeted PUFA. Although they were discovered about a quarter of century ago, the knowledge on the role of key isoprostanoids in the pathogenesis of experimental and human disease models remains limited. This is mainly due to the limited availability of highly purified molecules to be used as a reference standard in the identification of biological samples. The accurate knowledge on their biological relevance is the critical step that could be translated from some mere technical/industrial advances into a reliable biological disease marker which is helpful in deciphering the oxidative stress puzzle related to neurological disorders. Recent research indicates the value of isoprostanoids in predicting the clinical presentation and evolution of the neurological diseases. This review focuses on the relevance of isoprostanoids as mediators and potential biomarkers in neurological diseases, a heterogeneous family ranging from rare brain diseases to major health conditions that could have worldwide socioeconomic impact in the health sector. The current challenge is to identify the preferential biochemical pathways that actually follow the oxidative reactions in the neurological diseases and the consequence of the specific isoprostanes in the underlying pathogenic mechanisms.
Collapse
|
19
|
Signorini C, De Felice C, Durand T, Galano JM, Oger C, Leoncini S, Ciccoli L, Carone M, Ulivelli M, Manna C, Cortelazzo A, Lee JCY, Hayek J. Relevance of 4-F 4t-neuroprostane and 10-F 4t-neuroprostane to neurological diseases. Free Radic Biol Med 2018; 115:278-287. [PMID: 29233794 DOI: 10.1016/j.freeradbiomed.2017.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022]
Abstract
F4-neuroprostanes (F4-NeuroPs) are non-enzymatic oxidized products derived from docosahexaenoic acid (DHA) and are suggested to be oxidative damage biomarkers of neurological diseases. However, 128 isomers can be formed from DHA oxidation and among them, 4(RS)-4-F4t-NeuroP (4-F4t-NeuroP) and 10(RS)-10-F4t-NeuroP (10-F4t-NeuroP) are the most studied. Here, we report the identification and the clinical relevance of 4-F4t-NeuroP and 10-F4t-NeuroP in plasma of four different neurological diseases, including multiple sclerosis (MS), autism spectrum disorders (ASD), Rett syndrome (RTT), and Down syndrome (DS). The identification and the optimization of the method were carried out by gas chromatography/negative-ion chemical ionization tandem mass spectrometry (GC/NICI-MS/MS) using chemically synthesized 4-F4t-NeuroP and 10-F4t-NeuroP standards and in oxidized DHA liposome. Both 4-F4t-NeuroP and 10-F4t-NeuroP were detectable in all plasma samples from MS (n = 16), DS (n = 16), ASD (n = 9) and RTT (n = 20) patients. While plasma 10-F4t-NeuroP content was significantly higher in patients of all diseases as compared to age and gender matched healthy control subjects (n = 61), 4-F4t-NeuroP levels were significantly higher in MS and RTT as compared to healthy controls. Significant positive relationships were observed between relative disease severity and 4-F4t-NeuroP levels (r = 0.469, P <0.0001), and 10-F4t-NeuroP levels (r = 0.757, P < 0.0001). The study showed that the plasma amount ratio of 10-F4t-NeuroP to 4-F4t-NeuroP and the plasma amount as individual isomer can be used to discriminate between different brain diseases. Overall, by comparing the different types of disease, our plasma data indicates that 4-F4t-NeuroP and 10-F4t -NeuroP: i) are biologically synthesized in vivo and circulated, ii) are related to clinical severity of neurological diseases, iii) are useful to identify shared pathogenetic pathways in distinct brain diseases, and iv) appears to be distinctive for different neurological conditions, thus representing potentially new biological disease markers. Our data strongly suggest that in vivo DHA oxidation follows preferential chemical rearrangements according to different brain diseases.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marisa Carone
- Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena, Italy
| | - Monica Ulivelli
- Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena, Italy
| | - Caterina Manna
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Naples, Italy"
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Clinical Pathology Laboratory Unit, University Hospital, AOUS, Siena, Italy
| | - Jetty Chung-Yung Lee
- The University of Hong Kong, School of Biological Sciences, Hong Kong Special Administrative Region
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
20
|
Insight into the contribution of isoprostanoids to the health effects of omega 3 PUFAs. Prostaglandins Other Lipid Mediat 2017; 133:111-122. [DOI: 10.1016/j.prostaglandins.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/07/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022]
|
21
|
Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JCY. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Prog Lipid Res 2017; 68:83-108. [PMID: 28923590 DOI: 10.1016/j.plipres.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades.
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
22
|
[MECP2 duplication syndrome: a clinical analysis of three cases and literature review]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19. [PMID: 28506334 PMCID: PMC7389140 DOI: 10.7499/j.issn.1008-8830.2017.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
MECP2 duplication syndrome (MDS) is a rare pediatric disease and mainly manifests as delayed motor development, language loss or delay, recurrent infection, severe intellectual disability, epilepsy, autistic symptoms, and early infantile hypotonia. In this article, the three children with this disease were all boys. Cases 1 and 2 had delayed motor development, and language loss or delay as initial manifestations, and case 3 had recurrent infection as initial manifestation. Physical examination showed hypotonia and negative pathological signs in each case. Case 1 had tonic-clonic seizures and electroencephalography showed focal seizures, for which he was given oxcarbazepine, levetiracetam, and clonazepam as the antiepileptic treatment to control seizures. Case 3 experienced one absence seizure and three head-nodding seizures with normal electroencephalographic findings during these seizures, and therefore, he was not given antiepileptic treatment. In each case, recurrent infection was improved with the increase in age, but there were no significant improvements in language or intelligence. Array-based comparative genomic hybridization (aCGH) showed MECP2 duplication in X chromosome in each case, and so they were diagnosed with MDS. MDS should be considered for children with delayed development complicated by recurrent infection and epileptic seizures, and early aCGH helps with the diagnosis of this disease.
Collapse
|
23
|
Zhao D, Mokhtari R, Pedrosa E, Birnbaum R, Zheng D, Lachman HM. Transcriptome analysis of microglia in a mouse model of Rett syndrome: differential expression of genes associated with microglia/macrophage activation and cellular stress. Mol Autism 2017; 8:17. [PMID: 28367307 PMCID: PMC5372344 DOI: 10.1186/s13229-017-0134-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a severe, neurodevelopmental disorder primarily affecting girls, characterized by progressive loss of cognitive, social, and motor skills after a relatively brief period of typical development. It is usually due to de novo loss of function mutations in the X-linked gene, MeCP2, which codes for the gene expression and chromatin regulator, methyl-CpG binding protein 2. Although the behavioral phenotype appears to be primarily due to neuronal Mecp2 deficiency in mice, other cell types, including astrocytes and oligodendrocytes, also appear to contribute to some aspects of the RTT phenotype. In addition, microglia may also play a role. However, the effect of Mecp2 deficiency in microglia on RTT pathogenesis is controversial. METHODS In the current study, we applied whole transcriptome analysis using RNA-seq to gain insight into molecular pathways in microglia that might be dysregulated during the transition, in female mice heterozygous for an Mecp2-null allele (Mecp2+/-; Het), from the pre-phenotypic (5 weeks) to the phenotypic phases (24 weeks). RESULTS We found a significant overlap in differentially expressed genes (DEGs) with genes involved in regulating the extracellular matrix, and those that are activated or inhibited when macrophages and microglia are stimulated towards the M1 and M2 activation states. However, the M1- and M2-associated genes were different in the 5- and 24-week samples. In addition, a substantial decrease in the expression of nine members of the heat shock protein (HSP) family was found in the 5-week samples, but not at 24 weeks. CONCLUSIONS These findings suggest that microglia from pre-phenotypic and phenotypic female mice are activated in a manner different from controls and that pre-phenotypic female mice may have alterations in their capacity to response to heat stress and other stressors that function through the HSP pathway.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Ryan Mokhtari
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Rayna Birnbaum
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Herbert M Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| |
Collapse
|
24
|
Janc OA, Hüser MA, Dietrich K, Kempkes B, Menzfeld C, Hülsmann S, Müller M. Systemic Radical Scavenger Treatment of a Mouse Model of Rett Syndrome: Merits and Limitations of the Vitamin E Derivative Trolox. Front Cell Neurosci 2016; 10:266. [PMID: 27895554 PMCID: PMC5109403 DOI: 10.3389/fncel.2016.00266] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder typically arising from spontaneous mutations in the X-chromosomal methyl-CpG binding protein 2 (MECP2) gene. The almost exclusively female Rett patients show an apparently normal development during their first 6-18 months of life. Subsequently, cognitive- and motor-impairment, hand stereotypies, loss of learned skills, epilepsy and irregular breathing manifest. Early mitochondrial impairment and oxidative challenge are considered to facilitate disease progression. Along this line, we recently confirmed in vitro that acute treatment with the vitamin E-derivative Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, ameliorates cellular redox balance and improves hypoxia tolerance in male MeCP2-deficient (Mecp2-/y ) mouse hippocampus. Pursuing these promising findings, we performed a preclinical study to define the merit of systemic Trolox administration. Blinded, placebo-controlled in vivo treatment of male mice started at postnatal day (PD) 10-11 and continued for ~40 days. Compounds (vehicle only, 10 mg/kg or 40 mg/kg Trolox) were injected intraperitoneally every 48 h. Detailed phenotyping revealed that in Mecp2-/y mice, blood glucose levels, lipid peroxidation, synaptic short-term plasticity, hypoxia tolerance and certain forms of environmental exploration were improved by Trolox. Yet, body weight and size, motor function and the rate and regularity of breathing did not improve. In conclusion, in vivo Trolox treatment partially ameliorated a subset of symptoms of the complex Rett phenotype, thereby confirming a partial merit of the vitamin E-derivative based pharmacotherapy. Yet, it also became evident that frequent animal handling and the route of drug administration are critical issues to be optimized in future trials.
Collapse
Affiliation(s)
- Oliwia A Janc
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Marc A Hüser
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Germany
| | - Katharina Dietrich
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Belinda Kempkes
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Germany
| | - Christiane Menzfeld
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Swen Hülsmann
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Klinik für Anästhesiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Michael Müller
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| |
Collapse
|