1
|
Mukherjee P, Zhou X, Galli S, Davidson B, Zhang L, Ahn J, Aljuhani R, Benicky J, Ailles L, Pomin VH, Olsen M, Goldman R. Aspartate β-Hydroxylase Is Upregulated in Head and Neck Squamous Cell Carcinoma and Regulates Invasiveness in Cancer Cell Models. Int J Mol Sci 2024; 25:4998. [PMID: 38732216 PMCID: PMC11084744 DOI: 10.3390/ijms25094998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Aspartate β-hydroxylase (ASPH) is a protein associated with malignancy in a wide range of tumors. We hypothesize that inhibition of ASPH activity could have anti-tumor properties in patients with head and neck cancer. In this study, we screened tumor tissues of 155 head and neck squamous cell carcinoma (HNSCC) patients for the expression of ASPH using immunohistochemistry. We used an ASPH inhibitor, MO-I-1151, known to inhibit the catalytic activity of ASPH in the endoplasmic reticulum, to show its inhibitory effect on the migration of SCC35 head and neck cancer cells in cell monolayers and in matrix-embedded spheroid co-cultures with primary cancer-associated fibroblast (CAF) CAF 61137 of head and neck origin. We also studied a combined effect of MO-I-1151 and HfFucCS, an inhibitor of invasion-blocking heparan 6-O-endosulfatase activity. We found ASPH was upregulated in HNSCC tumors compared to the adjacent normal tissues. ASPH was uniformly high in expression, irrespective of tumor stage. High expression of ASPH in tumors led us to consider it as a therapeutic target in cell line models. ASPH inhibitor MO-I-1151 had significant effects on reducing migration and invasion of head and neck cancer cells, both in monolayers and matrix-embedded spheroids. The combination of the two enzyme inhibitors showed an additive effect on restricting invasion in the HNSCC cell monolayers and in the CAF-containing co-culture spheroids. We identify ASPH as an abundant protein in HNSCC tumors. Targeting ASPH with inhibitor MO-I-1151 effectively reduces CAF-mediated cellular invasion in cancer cell models. We propose that the additive effect of MO-I-1151 with HfFucCS, an inhibitor of heparan 6-O-endosulfatases, on HNSCC cells could improve interventions and needs to be further explored.
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Xin Zhou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Biotechnology Program, Northern Virginia Community College, Manassas, VA 20109, USA
| | - Susana Galli
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Bruce Davidson
- Department of Otolaryngology-Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, DC 20057, USA
| | - Lihua Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Reem Aljuhani
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Vitor H. Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA;
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy Glendale Campus, Midwestern University, Glendale, AZ 85308, USA
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL 60515, USA
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
2
|
Kanwal M, Polakova I, Olsen M, Kasi MK, Tachezy R, Smahel M. Heterogeneous Response of Tumor Cell Lines to Inhibition of Aspartate β-hydroxylase. J Cancer 2024; 15:3466-3480. [PMID: 38817852 PMCID: PMC11134442 DOI: 10.7150/jca.94452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/14/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Cancer development involves alterations in key cellular pathways, with aspartate β-hydroxylase (ASPH) emerging as an important player in tumorigenesis. ASPH is upregulated in various cancer types, where it promotes cancer progression mainly by regulating the Notch1 and SRC pathways. Methods: This study explored the responses of various human cervical, pharyngeal, and breast tumor cell lines to second- and third-generation ASPH inhibitors (MO-I-1151 and MO-I-1182) using proliferation, migration, and invasion assays; western blotting; and cell cycle analysis. Results: ASPH inhibition significantly reduced cell proliferation, migration, and invasion and disrupted both the canonical and noncanonical Notch1 pathways. The noncanonical pathway was particularly mediated by AKT signaling. Cell cycle analysis revealed a marked reduction in cyclin D1 expression, further confirming the inhibitory effect of ASPH inhibitors on cell proliferation. Additional analysis revealed G0/G1 arrest and restricted progression into S phase, highlighting the regulatory impact of ASPH inhibitors on the cell cycle. Furthermore, ASPH inhibition induced distinctive alterations in nuclear morphology. The high heterogeneity in the responses of individual tumor cell lines to ASPH inhibitors, both quantitatively and qualitatively, underscores the complex network of mechanisms that are regulated by ASPH and influence the efficacy of ASPH inhibition. The effects of ASPH inhibitors on Notch1 pathway activity, cyclin D1 expression, and nuclear morphology contribute to the understanding of the multifaceted effects of these inhibitors on cancer cell behavior. Conclusion: This study not only suggests that ASPH inhibitors are effective against tumor cell progression, in part through the induction of cell cycle arrest, but also highlights the diverse and heterogeneous effects of these inhibitors on the behavior of tumor cells of different origins.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ingrid Polakova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy - Glendale, Midwestern University, Glendale, AZ, USA
| | - Murtaza Khan Kasi
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
3
|
Nagaoka K, Bai X, Liu D, Cao K, Mulla J, Ji C, Chen H, Nisar MA, Bay A, Mueller W, Hildebrand G, Gao JS, Lu S, Setoyama H, Tanaka Y, Wands JR, Huang CK. Elevated 2-oxoglutarate antagonizes DNA damage responses in cholangiocarcinoma chemotherapy through regulating aspartate beta-hydroxylase. Cancer Lett 2024; 580:216493. [PMID: 37977350 DOI: 10.1016/j.canlet.2023.216493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cholangiocarcinoma (CCA) is resistant to systemic chemotherapies that kill malignant cells mainly through DNA damage responses (DDRs). Recent studies suggest that the involvement of 2-oxoglutarate (2-OG) dependent dioxygenases in DDRs may be associated with chemoresistance in malignancy, but how 2-OG impacts DDRs in CCA chemotherapy remains elusive. We examined serum 2-OG levels in CCA patients before receiving chemotherapy. CCA patients are classified as progressive disease (PD), partial response (PR), and stable disease (SD) after receiving chemotherapy. CCA patients classified as PD showed significantly higher serum 2-OG levels than those defined as SD and PR. Treating CCA cells with 2-OG reduced DDRs. Overexpression of full-length aspartate beta-hydroxylase (ASPH) could mimic the effects of 2-OG on DDRs, suggesting the important role of ASPH in chemoresistance. Indeed, the knockdown of ASPH improved chemotherapy in CCA cells. Targeting ASPH with a specific small molecule inhibitor also enhanced the effects of chemotherapy. Mechanistically, ASPH modulates DDRs by affecting ATM and ATR, two of the major regulators finely controlling DDRs. More importantly, targeting ASPH improved the therapeutic potential of chemotherapy in two preclinical CCA models. Our data suggested the impacts of elevated 2-OG and ASPH on chemoresistance through antagonizing DDRs. Targeting ASPH may enhance DDRs, improving chemotherapy in CCA patients.
Collapse
Affiliation(s)
- Katsuya Nagaoka
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA; Department of Gastroenterology & Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xuewei Bai
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Dan Liu
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin Cao
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Joud Mulla
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Chengcheng Ji
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongze Chen
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA, USA
| | - Muhammad Azhar Nisar
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA, USA
| | - Amalia Bay
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - William Mueller
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Grace Hildebrand
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Jin-Song Gao
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Hiroko Setoyama
- Department of Gastroenterology & Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology & Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jack R Wands
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Chiung-Kuei Huang
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
4
|
Kanwal M, Smahelova J, Ciharova B, Johari SD, Nunvar J, Olsen M, Smahel M. Aspartate β-hydroxylase Regulates Expression of Ly6 Genes. J Cancer 2024; 15:1138-1152. [PMID: 38356711 PMCID: PMC10861829 DOI: 10.7150/jca.90422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 02/16/2024] Open
Abstract
Background: Overexpression of aspartate β-hydroxylase (ASPH) in human tumors contributes to their progression by stimulating cell proliferation, migration, and invasion. Several signaling pathways affected by ASPH have been identified, but the high number of potential targets of ASPH hydroxylation suggests that additional mechanisms may be involved. This study was performed to reveal new targets of ASPH signaling. Methods: The effect of ASPH on the oncogenicity of three mouse tumor cell lines was tested using proliferation assays, transwell assays, and spheroid invasion assays after inhibition of ASPH with the small molecule inhibitor MO-I-1151. ASPH was also deactivated with the CRISPR/Cas9 system. A transcriptomic analysis was then performed with bulk RNA sequencing and differential gene expression was evaluated. Expression data were verified by quantitative PCR and immunoblotting. Results: Inhibition or abrogation of ASPH reduced proliferation of the cell lines and their migration and invasiveness. Among the genes with differential expression in more than one cell line, two members of the lymphocyte antigen 6 (Ly6) family, Ly6a and Ly6c1, were found. Their downregulation was confirmed at the protein level by immunoblotting, which also showed their reduction after ASPH inhibition in other mouse cell lines. Reduced production of the Ly6D and Ly6K proteins was shown after ASPH inhibition in human tumor cell lines. Conclusions: Since increased expression of Ly6 genes is associated with the development and progression of both mouse and human tumors, these results suggest a novel mechanism of ASPH oncogenicity and support the utility of ASPH as a target for cancer therapy.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jana Smahelova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Barbora Ciharova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Shweta Dilip Johari
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jaroslav Nunvar
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy - Glendale, Midwestern University, Glendale, AZ, USA
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
5
|
Liu D, Shi Y, Chen H, Nisar MA, Jabara N, Langwinski N, Mattson S, Nagaoka K, Bai X, Lu S, Huang CK. Molecular profiling reveals potential targets in cholangiocarcinoma. World J Gastroenterol 2023; 29:4053-4071. [PMID: 37476584 PMCID: PMC10354586 DOI: 10.3748/wjg.v29.i25.4053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a devastating malignancy and has a very poor prognosis if tumors spread outside the liver. Understanding the molecular mechanisms underlying the CCA progression will likely yield therapeutic approaches toward treating this deadly disease. AIM To determine the molecular pathogenesis in CCA progression. METHODS In silico analysis, in vitro cell culture, CCA transgenic animals, histological, and molecular assays were adopted to determine the molecular pathogenesis. RESULTS The transcriptomic data of human CCA samples were retrieved from The Cancer Genome Atlas (TGCA, CHOL), European Bioinformatics Institute (EBI, GAD00001001076), and Gene Expression Omnibus (GEO, GSE107943) databases. Using Gene set enrichment analysis, the cell cycle and Notch related pathways were demonstrated to be significantly activated in CCA in TCGA and GEO datasets. We, through differentially expressed genes, found several cell cycle and notch associated genes were significantly up-regulated in cancer tissues when compared with the non-cancerous control samples. The associated genes, via quantitative real-time PCR and western blotting assays, were further examined in normal human cholangiocytes, CCA cell lines, mouse normal bile ducts, and mouse CCA tumors established by specifically depleting P53 and expressing KrasG12D mutation in the liver. Consistently, we validated that the cell cycle and Notch pathways are up-regulated in CCA cell lines and mouse CCA tumors. Interestingly, targeting cell cycle and notch pathways using small molecules also exhibited significant beneficial effects in controlling tumor malignancy. More importantly, we demonstrated that several cell cycle and Notch associated genes are significantly associated with poor overall survival and disease-free survival using the Log-Rank test. CONCLUSION In summary, our study comprehensively analyzed the gene expression pattern of CCA samples using publicly available datasets and identified the cell cycle and Notch pathways are potential therapeutic targets in this deadly disease.
Collapse
Affiliation(s)
- Dan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yang Shi
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hongze Chen
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Muhammad Azhar Nisar
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Nicholas Jabara
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Noah Langwinski
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sophia Mattson
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Katsuya Nagaoka
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Xuewei Bai
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Shaolei Lu
- Department of Pathology, Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Chiung-Kuei Huang
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
6
|
Isidan A, Yenigun A, Soma D, Aksu E, Lopez K, Park Y, Cross-Najafi A, Li P, Kundu D, House MG, Chakraborty S, Glaser S, Kennedy L, Francis H, Zhang W, Alpini G, Ekser B. Development and Characterization of Human Primary Cholangiocarcinoma Cell Lines. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1200-1217. [PMID: 35640676 PMCID: PMC9472155 DOI: 10.1016/j.ajpath.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver tumor and is associated with late diagnosis, limited treatment options, and a 5-year survival rate of around 30%. CCA cell lines were first established in 1971, and since then, only 70 to 80 CCA cell lines have been established. These cell lines have been essential in basic and translational research to understand and identify novel mechanistic pathways, biomarkers, and disease-specific genes. Each CCA cell line has unique characteristics, reflecting a specific genotype, sex-related properties, and patient-related signatures, making them scientifically and commercially valuable. CCA cell lines are crucial in the use of novel technologies, such as three-dimensional organoid models, which help to model the tumor microenvironment and cell-to-cell crosstalk between tumor-neighboring cells. This review highlights crucial information on CCA cell lines, including: i) type of CCA (eg, intra- or extrahepatic), ii) isolation source (eg, primary tumor or xenograft), iii) chemical digestion method (eg, trypsin or collagenase), iv) cell-sorting method (colony isolation or removal of fibroblasts), v) maintenance-medium choice (eg, RPMI or Dulbecco's modified Eagle's medium), vi) cell morphology (eg, spindle or polygonal shape), and vii) doubling time of cells.
Collapse
Affiliation(s)
- Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ali Yenigun
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Department of General Surgery, Yeditepe University Faculty of Medicine, Istanbul, Turkey
| | - Daiki Soma
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Division of Transplantation & Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Eric Aksu
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Arthur Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Michael G House
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
7
|
Tong M, Ziplow JL, Mark P, de la Monte SM. Dietary Soy Prevents Alcohol-Mediated Neurocognitive Dysfunction and Associated Impairments in Brain Insulin Pathway Signaling in an Adolescent Rat Model. Biomolecules 2022; 12:676. [PMID: 35625605 PMCID: PMC9139005 DOI: 10.3390/biom12050676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcohol-related brain degeneration is linked to cognitive-motor deficits and impaired signaling through insulin/insulin-like growth factor type 1 (IGF-1)-Akt pathways that regulate cell survival, plasticity, metabolism, and homeostasis. In addition, ethanol inhibits Aspartyl-asparaginyl-β-hydroxylase (ASPH), a downstream target of insulin/IGF-1-Akt signaling and an activator of Notch networks. Previous studies have suggested that early treatment with insulin sensitizers or dietary soy could reduce or prevent the long-term adverse effects of chronic ethanol feeding. OBJECTIVE The goal of this study was to assess the effects of substituting soy isolate for casein to prevent or reduce ethanol's adverse effects on brain structure and function. METHODS Young adolescent male and female Long Evans were used in a 4-way model as follows: Control + Casein; Ethanol + Casein; Control + Soy; Ethanol + Soy; Control = 0% ethanol; Ethanol = 26% ethanol (caloric). Rats were fed isocaloric diets from 4 to 11 weeks of age. During the final experimental week, the Morris Water maze test was used to assess spatial learning (4 consecutive days), after which the brains were harvested to measure the temporal lobe expression of the total phospho-Akt pathway and downstream target proteins using multiplex bead-based enzyme-linked immunosorbent assays (ELISAs) and duplex ELISAs. RESULTS Ethanol inhibited spatial learning and reduced brain weight, insulin signaling through Akt, and the expression of ASPH when standard casein was provided as the protein source. The substitution of soy isolate for casein largely abrogated the adverse effects of chronic ethanol feeding. In contrast, Notch signaling protein expression was minimally altered by ethanol or soy isolate. CONCLUSIONS These novel findings suggest that the insulin sensitizer properties of soy isolate may prevent some of the adverse effects that chronic ethanol exposure has on neurobehavioral function and insulin-regulated metabolic pathways in adolescent brains.
Collapse
Affiliation(s)
- Ming Tong
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Jason L. Ziplow
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Princess Mark
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Suzanne M. de la Monte
- Liver Research Center, Division of Gastroenterology, Departments of Medicine, Neurology and Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI 02808, USA
- Women and Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence VA Medical Center, Providence, RI 02808, USA
| |
Collapse
|
8
|
Vanaroj P, Chaijaroenkul W, Na-Bangchang K. Notch signaling in the pathogenesis, progression and identification of potential targets for cholangiocarcinoma (Review). Mol Clin Oncol 2022; 16:66. [PMID: 35154706 PMCID: PMC8825743 DOI: 10.3892/mco.2022.2499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/03/2022] [Indexed: 11/05/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive type of bile duct cancer that is characterized by a high mortality rate due to its late diagnosis and ineffective treatment. The aim of the present systematic review was to analyze the association between Notch signaling and CCA in terms of its pathogenesis, progression and potential treatment targets. Relevant information was gathered from the PubMed, ScienceDirect and Scopus databases using the search terms 'cholangiocarcinoma' AND 'Notch signaling'. Of the 90 articles identified, 28 fulfilled the eligibility criteria and were included in the analysis. It was concluded that overexpression/upregulation of Notch ligands, such as Jagged1 and Notch receptors (Notch1, Notch2 and Notch3), as well as upregulation of the upstream Notch signaling pathway, promoted CCA development and progression. In addition, downregulation of Notch1 signaling through several possible interventions appears to be a promising strategy for inhibition of CCA development and progression. Therefore, the Notch signaling pathway may be considered as a potential target for CCA control.
Collapse
Affiliation(s)
- Peeranate Vanaroj
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Wanna Chaijaroenkul
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120 Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, 12120 Thailand
| |
Collapse
|
9
|
Holtzman NG, Lebowitz MS, Koka R, Baer MR, Malhotra K, Shahlaee A, Ghanbari HA, Bentzen SM, Emadi A. Aspartate β-Hydroxylase (ASPH) Expression in Acute Myeloid Leukemia: A Potential Novel Therapeutic Target. Front Oncol 2022; 11:783744. [PMID: 35004304 PMCID: PMC8727599 DOI: 10.3389/fonc.2021.783744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Background Aspartate β-hydroxylase (ASPH) is an embryonic transmembrane protein aberrantly upregulated in cancer cells, associated with malignant transformation and, in some reports, with poor clinical prognosis. Objective To report the expression patterns of ASPH in acute myeloid leukemia (AML). Methods Cell surface expression of ASPH was measured via 8-color multiparameter flow cytometry in 41 AML patient samples (31 bone marrow, 10 blood) using fluorescein isothiocyanate (FITC)-conjugated anti-ASPH antibody, SNS-622. A mean fluorescent intensity (MFI) of 10 was used as a cutoff for ASPH surface expression positivity. Data regarding patient and disease characteristics were collected. Results ASPH surface expression was found on AML blasts in 16 samples (39%). Higher ASPH expression was seen in myeloblasts of African American patients (p=0.02), but no correlation was found between ASPH expression and other patient or disease characteristics. No association was found between ASPH status and CR rate (p=0.53), EFS (p=0.87), or OS (p=0.17). Conclusions ASPH is expressed on blasts in approximately 40% of AML cases, and may serve as a new therapeutically targetable leukemia-associated antigen.
Collapse
Affiliation(s)
- Noa G Holtzman
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Rima Koka
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria R Baer
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kanam Malhotra
- Sensei Biotherapeutics Inc., Gaithersburg, MD, United States
| | - Amir Shahlaee
- Sensei Biotherapeutics Inc., Gaithersburg, MD, United States
| | | | - Søren M Bentzen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Epidemiology and Biostatistics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ashkan Emadi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, Zhang S, Zhang Z, Kong X, Xu Q, He F, Liu D, Bai X, Sun B, Hung MC, Liu L, Wands JR, Dong X. Multi-organ metastasis as destination for breast cancer cells guided by biomechanical architecture. Am J Cancer Res 2021; 11:2537-2567. [PMID: 34249415 PMCID: PMC8263653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/25/2021] [Indexed: 06/13/2023] Open
Abstract
A majority of breast cancer patients die of widespread aggressive multidrug-resistant tumors. Aspartate β-hydroxylase (ASPH) is an α-ketoglutarate-dependent dioxygenase and oncofetal antigen involved in embryogenesis. To illustrate if ASPH could be targeted for metastatic breast cancer, embedded and on-top three-dimensional (3-D) cultures, 3-D invasion, mammosphere formation, immunofluorescence, immunohistochemistry, Western blot, co-IP and microarray were conducted. In vitro metastasis was developed to imitate how cancer cells invade basement membrane at the primary site, transendothelially migrate, consequently colonize and outgrow at distant sites. Orthotopic and experimental pulmonary metastatic (tail vein injection) murine models were established using stable breast cancer cell lines. Cox proportional hazards regression models and Kaplan-Meier plots were applied to assess clinical outcome of breast cancer patients. In adult non-cancerous breast tissue, ASPH is undetectable. Pathologically, ASPH expression re-emerged at ductal carcinoma in situ (DCIS), and enhanced with disease progression, from early-stage invasive ductal carcinoma (IDC) to late-stage carcinoma. ASPH at moderate to high levels contribute to aggressive molecular subtypes, early relapse or more frequent progression and metastases, whereas substantially shortened overall survival and disease-free survival of breast cancer patients. Through direct physical interactions with A disintegrin and metalloproteinase domain-containing protein (ADAM)-12/ADAM-15, ASPH could activate SRC cascade, thus upregulating downstream components attributed to multifaceted metastasis. ASPH-SRC axis initiated pro-invasive invadopodium formation causing breakdown/disorganization of extracellular matrix (ECM), simultaneously potentiated epithelial-mesenchymal transition (EMT), induced cancer stem cell markers (CD44 and EpCAM), enhanced mammosphere formation and intensified 3-dimentional invasion. Oncogenic SRC upregulated matrix metallopeptidases (MMPs) were assembled by invadopodia, acting as executive effectors for multi-step metastasis. ASPH-SRC signal guided multi-organ metastases (to lungs, liver, bone, spleen, lymph nodes, mesentery or colon) in immunocompromised mice. Malignant phenotypes induced by ASPH-SRC axis were reversed by the third-generation small molecule inhibitor (SMI) specifically against β-hydroxylase activity of ASPH in pre-clinical models of metastatic breast cancer. Collectively, ASPH could activate ADAMs-SRC-MMPs cascades to promote breast cancer tumor progression and metastasis. ASPH could direct invadopodium construction as a biomechanical sensor and pro-metastatic outlet. ASPH-mediated cancer progression could be specifically/efficiently subverted by SMIs of β-hydroxylase activity. Therefore, ASPH emerges as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Qiushi Lin
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences CenterOK 731014, USA
| | - Xuesong Chen
- Department of Internal Medical Oncology, Harbin Medical University Cancer HospitalHeilongjiang Province, P. R. China
| | - Fanzheng Meng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
| | - Kosuke Ogawa
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Min Li
- Immunobiology & Transplant Science Center, Houston Methodist Research InstituteHouston, Texas 77030, USA
| | - Ruipeng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
| | - Shugeng Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
| | - Ziran Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
| | - Xianglu Kong
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
| | - Qinggang Xu
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences CenterOK 731014, USA
- School of Life Sciences, Jiangsu UniversityJiangsu Province, P. R. China
| | - Fuliang He
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences CenterOK 731014, USA
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, The 9 Affiliated Hospital of Peking UniversityP. R. China
| | - Dan Liu
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou UniversityHenan Province, P. R. China
| | - Xuewei Bai
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education; The First Affiliated Hospital of Harbin Medical UniversityHeilongjiang Province, P. R. China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education; The First Affiliated Hospital of Harbin Medical UniversityHeilongjiang Province, P. R. China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, The University of Sciences and Technology of ChinaAnhui Province, P. R. China
| | - Jack R Wands
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Xiaoqun Dong
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences CenterOK 731014, USA
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| |
Collapse
|
11
|
Nagaoka K, Ogawa K, Ji C, Cao KY, Bai X, Mulla J, Cheng Z, Wands JR, Huang CK. Targeting Aspartate Beta-Hydroxylase with the Small Molecule Inhibitor MO-I-1182 Suppresses Cholangiocarcinoma Metastasis. Dig Dis Sci 2021; 66:1080-1089. [PMID: 32445050 DOI: 10.1007/s10620-020-06330-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cholangiocarcinoma is a devastating disease with a 2% 5-year survival if the disease has spread outside the liver. The enzyme aspartate beta-hydroxylase (ASPH) has been demonstrated to be highly expressed in cholangiocarcinoma but not in normal bile ducts and found to stimulate tumor cell migration. In addition, it was found that targeting ASPH inhibits cholangiocarcinoma malignant progression. However, it is not clear whether targeting ASPH with the small molecule inhibitor MO-I-1182 suppresses cholangiocarcinoma metastasis. The current study aims to study the efficacy of MO-I-1182 in suppressing cholangiocarcinoma metastasis. METHODS The analysis was performed in vitro and in vivo with a preclinical animal model by using molecular and biochemical strategies to regulate ASPH expression and function. RESULTS Knockdown of ASPH substantially inhibited cell migration and invasion in two human cholangiocarcinoma cell lines. Targeting ASPH with a small molecule inhibitor suppressed cholangiocarcinoma progression. Molecular mechanism studies demonstrated that knockdown of ASPH subsequently suppressed protein levels of the matrix metalloproteinases. The ASPH knockdown experiments suggest that this enzyme may modulate cholangiocarcinoma metastasis by regulating matrix metalloproteinases expression. Furthermore, using an ASPH inhibitor in a rat cholangiocarcinoma intrahepatic model established with BED-Neu-CL#24 cholangiocarcinoma cells, it was found that targeting ASPH inhibited intrahepatic cholangiocarcinoma metastasis and downstream expression of the matrix metalloproteinases. CONCLUSION ASPH may modulate cholangiocarcinoma metastasis via matrix metalloproteinases expression. Taken together, targeting ASPH function may inhibit intrahepatic cholangiocarcinoma metastasis and improve survival.
Collapse
Affiliation(s)
- Katsuya Nagaoka
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Kousuke Ogawa
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Chengcheng Ji
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Kevin Y Cao
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Xuewei Bai
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Joud Mulla
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Zhixiang Cheng
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Jack R Wands
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Chiung-Kuei Huang
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA.
| |
Collapse
|
12
|
Zhang SN, Li HM, Li XZ, Yang WD, Zhou Y. Integrated omics and bioinformatics analyses for the toxic mechanism and material basis of Sophorae Tonkinensis radix et rhizome-induced hepatotoxicity. J Pharm Biomed Anal 2021; 198:113994. [PMID: 33676169 DOI: 10.1016/j.jpba.2021.113994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
In traditional Chinese medicine theory, Sophorae Tonkinensis radix et rhizome (ST) has the effects of treating tonsillitis, sore throats, and heat-evil-induced diseases. However, the utilization of ST is relatively restricted owing to its toxicity. The previous studies have made some progress on the mechanism and material basis of ST-induced hepatotoxicity, but there is still no significant breakthrough. In this study, integrated omics and bioinformatics analyses were used to investigate the mechanism and material basis of ST-induced hepatotoxicity. Integrated omics were used to analyze the differentially expressed proteins and metabolites, based on which the significantly dysregulated pathways were analyzed by using MetaboAnalyst. Bioinformatics was applied to screen the toxic targets and material basis. Integrated omics revealed that 254 proteins and 42 metabolites were differentially expressed after the treatment with ST, out of which 7 proteins were significantly enriched in 3 pathways. Bioinformatics showed that 20 compounds may interfere with the expression of 7 toxic targets of ST. Multiple toxic targets of ST-induced hepatotoxicity were found in the study, whose dysregulation may trigger hepatocyte necrosis/apoptosis, liver metastasis, and liver cirrhosis. Multiple compounds may be the toxic material basis in response to these effects.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, 550025, PR China
| | - Hong-Mei Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, 550025, PR China
| | - Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, 550025, PR China.
| | - Wu-de Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, 550025, PR China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, 550025, PR China.
| |
Collapse
|
13
|
Brewitz L, Tumber A, Zhang X, Schofield CJ. Small-molecule active pharmaceutical ingredients of approved cancer therapeutics inhibit human aspartate/asparagine-β-hydroxylase. Bioorg Med Chem 2020; 28:115675. [PMID: 33069066 PMCID: PMC7588595 DOI: 10.1016/j.bmc.2020.115675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022]
Abstract
Human aspartate/asparagine-β-hydroxylase (AspH) is a 2-oxoglutarate (2OG) dependent oxygenase that catalyses the hydroxylation of Asp/Asn-residues of epidermal growth factor-like domains (EGFDs). AspH is reported to be upregulated on the cell surface of invasive cancer cells in a manner distinguishing healthy from cancer cells. We report studies on the effect of small-molecule active pharmaceutical ingredients (APIs) of human cancer therapeutics on the catalytic activity of AspH using a high-throughput mass spectrometry (MS)-based inhibition assay. Human B-cell lymphoma-2 (Bcl-2)-protein inhibitors, including the (R)-enantiomer of the natural product gossypol, were observed to efficiently inhibit AspH, as does the antitumor antibiotic bleomycin A2. The results may help in the design of AspH inhibitors with the potential of increased selectivity compared to the previously identified Fe(II)-chelating or 2OG-competitive inhibitors. With regard to the clinical use of bleomycin A2 and of the Bcl-2 inhibitor venetoclax, the results suggest that possible side-effects mediated through the inhibition of AspH and other 2OG oxygenases should be considered.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Xiaojin Zhang
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.
| |
Collapse
|
14
|
Zheng W, Wang X, Hu J, Bai B, Zhu H. Diverse molecular functions of aspartate β‑hydroxylase in cancer (Review). Oncol Rep 2020; 44:2364-2372. [PMID: 33125119 PMCID: PMC7610305 DOI: 10.3892/or.2020.7792] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Aspartate/asparagine β-hydroxylase (AspH) is a type II transmembrane protein that catalyzes the post-translational hydroxylation of definite aspartyl and asparaginyl residues in epidermal growth factor-like domains of substrates. In the last few decades, accumulating evidence has indicated that AspH expression is upregulated in numerous types of human malignant cancer and is associated with poor survival and prognosis. The AspH protein aggregates on the surface of tumor cells, which contributes to inducing tumor cell migration, infiltration and metastasis. However, small-molecule inhibitors targeting hydroxylase activity can markedly block these processes, both in vitro and in vivo. Immunization of tumor-bearing mice with a phage vaccine fused with the AspH protein can substantially delay tumor growth and progression. Additionally, AspH antigen-specific CD4+ and CD8+ T cells were identified in the spleen of tumor-bearing mice. Therefore, these agents may be used as novel strategies for cancer treatment. The present review summarizes the current progress on the underlying mechanisms of AspH expression in cancer development.
Collapse
Affiliation(s)
- Wenqian Zheng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiaowei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jinhui Hu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hongbo Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
15
|
Barboro P, Benelli R, Tosetti F, Costa D, Capaia M, Astigiano S, Venè R, Poggi A, Ferrari N. Aspartate β-hydroxylase targeting in castration-resistant prostate cancer modulates the NOTCH/HIF1α/GSK3β crosstalk. Carcinogenesis 2020; 41:1246-1252. [PMID: 32525968 DOI: 10.1093/carcin/bgaa053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/17/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an incurable stage of the disease. A multivariate principal component analysis on CRPC in vitro models identified aspartyl (asparaginyl) β hydrolase (ASPH) as the most relevant molecule associated with the CRPC phenotype. ASPH is overexpressed in various malignant neoplasms and catalyzes the hydroxylation of aspartyl and asparaginyl residues in the epidermal growth factor (EGF)-like domains of proteins like NOTCH receptors and ligands, enhancing cell motility, invasion and metastatic spread. Bioinformatics analyses of ASPH in prostate cancer (PCa) and CRPC datasets indicate that ASPH gene alterations have prognostic value both in PCa and CRPC patients. In CRPC cells, inhibition of ASPH expression obtained through specific small interfering RNA or culturing cells in hypoxic conditions, reduced cell proliferation, invasion and cyclin D1 expression through modulation of the NOTCH signaling. ASPH and HIF1α crosstalk, within a hydroxylation-regulated signaling pathway, might be transiently driven by the oxidative stress evidenced inside CRPC cells. In addition, increased phosphorylation of GSK3β by ASPH silencing demonstrates that ASPH regulates GSK3β activity inhibiting its interactions with upstream kinases. These findings demonstrate the critical involvement of ASPH in CRPC development and may represent an attractive molecular target for therapy.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Calcium-Binding Proteins/antagonists & inhibitors
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Glycogen Synthase Kinase 3 beta/genetics
- Glycogen Synthase Kinase 3 beta/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mixed Function Oxygenases/antagonists & inhibitors
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Muscle Proteins/antagonists & inhibitors
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Prognosis
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- RNA, Small Interfering/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Paola Barboro
- Department of Oncology and Hematology, Academic Unit of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Benelli
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Tosetti
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Delfina Costa
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Capaia
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genova, Italy
| | - Simonetta Astigiano
- Department of Scientific Direction, Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberta Venè
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Alessandro Poggi
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nicoletta Ferrari
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
16
|
Rauff B, Malik A, Bhatti YA, Chudhary SA, Qadri I, Rafiq S. Notch signalling pathway in development of cholangiocarcinoma. World J Gastrointest Oncol 2020; 12:957-974. [PMID: 33005291 PMCID: PMC7509998 DOI: 10.4251/wjgo.v12.i9.957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) comprises of extra-hepatic cholangiocarcinoma and intrahepatic cholangiocarcinoma cancers as a result of inflammation of epithelium cell lining of the bile duct. The incidence rate is increasing dramatically worldwide with highest rates in Eastern and South Asian regions. Major risk factors involve chronic damage and inflammation of bile duct epithelium from primary sclerosing cholangitis, chronic hepatitis virus infection, gallstones and liver fluke infection. Various genetic variants have also been identified and as CCA develops on the background of biliary inflammation, diverse range of molecular mechanisms are involved in its progression. Among these, the Notch signalling pathway acts as a major driver of cholangiocarcinogenesis and its components (receptors, ligands and downstream signalling molecules) represent a promising therapeutic targets. Gamma-Secretase Inhibitors have been recognized in inhibiting the Notch pathway efficiently. A comprehensive knowledge of the molecular pathways activated by the Notch signalling cascade as well as its functional crosstalk with other signalling pathways provide better approach in developing innovative therapies against CCA.
Collapse
Affiliation(s)
- Bisma Rauff
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Yasir Ali Bhatti
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Shafiq Ahmad Chudhary
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore 54000, Pakistan
| | - Ishtiaq Qadri
- Department of Biology, Faculty of Science, King Abdulaziz University Jeddah Kingdom of Saudi Arabia
| | - Shafquat Rafiq
- Department of Gastrointestinal medicine, Croydon University Hospital, Croydon CR7 7YE, United Kingdom
| |
Collapse
|
17
|
Kanwal M, Smahel M, Olsen M, Smahelova J, Tachezy R. Aspartate β-hydroxylase as a target for cancer therapy. J Exp Clin Cancer Res 2020; 39:163. [PMID: 32811566 PMCID: PMC7433162 DOI: 10.1186/s13046-020-01669-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022] Open
Abstract
As metastasis is a major cause of death in cancer patients, new anti-metastatic strategies are needed to improve cancer therapy outcomes. Numerous pathways have been shown to contribute to migration and invasion of malignant tumors. Aspartate β-hydroxylase (ASPH) is a key player in the malignant transformation of solid tumors by enhancing cell proliferation, migration, and invasion. ASPH also promotes tumor growth by stimulation of angiogenesis and immunosuppression. These effects are mainly achieved via the activation of Notch and SRC signaling pathways. ASPH expression is upregulated by growth factors and hypoxia in different human tumors and its inactivation may have broad clinical impact. Therefore, small molecule inhibitors of ASPH enzymatic activity have been developed and their anti-metastatic effect confirmed in preclinical mouse models. ASPH can also be targeted by monoclonal antibodies and has also been used as a tumor-associated antigen to induce both cluster of differentiation (CD) 8+ and CD4+ T cells in mice. The PAN-301-1 vaccine against ASPH has already been tested in a phase 1 clinical trial in patients with prostate cancer. In summary, ASPH is a promising target for anti-tumor and anti-metastatic therapy based on inactivation of catalytic activity and/or immunotherapy.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy - Glendale, Midwestern University, Glendale, AZ, USA
- Crenae Therapeutics, Phoenix, AZ, USA
| | - Jana Smahelova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
18
|
Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, Kong R, Wang Y, Zhu H, He F, Xu Q, Liu L, Li M, Zhang S, Nagaoka K, Carlson R, Safran H, Charpentier K, Sun B, Wands J, Dong X. Prometastatic secretome trafficking via exosomes initiates pancreatic cancer pulmonary metastasis. Cancer Lett 2020; 481:63-75. [PMID: 32145343 PMCID: PMC7309190 DOI: 10.1016/j.canlet.2020.02.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
To demonstrate multifaceted contribution of aspartate β-hydroxylase (ASPH) to pancreatic ductal adenocarcinoma (PDAC) pathogenesis, in vitro metastasis assay and patient derived xenograft (PDX) murine models were established. ASPH propagates aggressive phenotypes characterized by enhanced epithelial-mesenchymal transition (EMT), 2-D/3-D invasion, extracellular matrix (ECM) degradation/remodeling, angiogenesis, stemness, transendothelial migration and metastatic colonization/outgrowth at distant sites. Mechanistically, ASPH activates Notch cascade through direct physical interactions with Notch1/JAGs and ADAMs. The ASPH-Notch axis enables prometastatic secretome trafficking via exosomes, subsequently initiates MMPs mediated ECM degradation/remodeling as an effector for invasiveness. Consequently, ASPH fosters primary tumor development and pulmonary metastasis in PDX models, which was blocked by a newly developed small molecule inhibitor (SMI) specifically against ASPH's β-hydroxylase activity. Clinically, ASPH is silenced in normal pancreas, progressively upregulated from pre-malignant lesions to invasive/advanced stage PDAC. Relatively high levels of ASPH-Notch network components independently/jointly predict curtailed overall survival (OS) in PDAC patients (log-rank test, Ps < 0.001; Cox proportional hazards regression, P < 0.001). Therefore, ASPH-Notch axis is essential for propagating multiple-steps of metastasis and predicts prognosis of PDAC patients. A specific SMI targeting ASPH offers a novel therapeutic approach to substantially retard PDAC development/progression.
Collapse
Affiliation(s)
- Kosuke Ogawa
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Qiushi Lin
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Le Li
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Xuewei Bai
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA; Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Xuesong Chen
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, Heilongjiang Province, PR China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Hong Zhu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Fuliang He
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, The 9th Affiliated Hospital of Peking University, Beijing, PR China
| | - Qinggang Xu
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China; Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, The University of Sciences and Technology of China, No. 17 Lujiang Road, Hefei City 230001, An Hui Province, PR China
| | - Min Li
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Songhua Zhang
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Katsuya Nagaoka
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Rolf Carlson
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Howard Safran
- Division of Hematology/Oncology, Rhode Island Hospital/The Miriam Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin Charpentier
- Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, USA
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China.
| | - Jack Wands
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| | - Xiaoqun Dong
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA; Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
19
|
Brewitz L, Tumber A, Schofield CJ. Kinetic parameters of human aspartate/asparagine-β-hydroxylase suggest that it has a possible function in oxygen sensing. J Biol Chem 2020; 295:7826-7838. [PMID: 32107312 PMCID: PMC7278358 DOI: 10.1074/jbc.ra119.012202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
Human aspartate/asparagine-β-hydroxylase (AspH) is a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the post-translational hydroxylation of Asp and Asn residues in epidermal growth factor-like domains (EGFDs). Despite its biomedical significance, studies on AspH have long been limited by a lack of assays for its isolated form. Recent structural work has revealed that AspH accepts substrates with a noncanonical EGFD disulfide connectivity (i.e. the Cys 1-2, 3-4, 5-6 disulfide pattern). We developed stable cyclic thioether analogues of the noncanonical EGFD AspH substrates to avoid disulfide shuffling. We monitored their hydroxylation by solid-phase extraction coupled to MS. The extent of recombinant AspH-catalyzed cyclic peptide hydroxylation appears to reflect levels of EGFD hydroxylation observed in vivo, which vary considerably. We applied the assay to determine the kinetic parameters of human AspH with respect to 2OG, Fe(II), l-ascorbic acid, and substrate and found that these parameters are in the typical ranges for 2OG oxygenases. Of note, a relatively high Km for O2 suggested that O2 availability may regulate AspH activity in a biologically relevant manner. We anticipate that the assay will enable the development of selective small-molecule inhibitors for AspH and other human 2OG oxygenases.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, University of Oxford, OX1 3TA Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, OX1 3TA Oxford, United Kingdom
| | | |
Collapse
|
20
|
Brewitz L, Tumber A, Pfeffer I, McDonough MA, Schofield CJ. Aspartate/asparagine-β-hydroxylase: a high-throughput mass spectrometric assay for discovery of small molecule inhibitors. Sci Rep 2020; 10:8650. [PMID: 32457455 PMCID: PMC7251097 DOI: 10.1038/s41598-020-65123-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
The human 2-oxoglutarate dependent oxygenase aspartate/asparagine-β-hydroxylase (AspH) catalyses the hydroxylation of Asp/Asn-residues in epidermal growth factor-like domains (EGFDs). AspH is upregulated on the surface of malign cancer cells; increased AspH levels correlate with tumour invasiveness. Due to a lack of efficient assays to monitor the activity of isolated AspH, there are few reports of studies aimed at identifying small-molecule AspH inhibitors. Recently, it was reported that AspH substrates have a non-canonical EGFD disulfide pattern. Here we report that a stable synthetic thioether mimic of AspH substrates can be employed in solid phase extraction mass spectrometry based high-throughput AspH inhibition assays which are of excellent robustness, as indicated by high Z'-factors and good signal-to-noise/background ratios. The AspH inhibition assay was applied to screen approximately 1500 bioactive small-molecules, including natural products and active pharmaceutical ingredients of approved human therapeutics. Potent AspH inhibitors were identified from both compound classes. Our AspH inhibition assay should enable the development of potent and selective small-molecule AspH inhibitors and contribute towards the development of safer inhibitors for other 2OG oxygenases, e.g. screens of the hypoxia-inducible factor prolyl-hydroxylase inhibitors revealed that vadadustat inhibits AspH with moderate potency.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| | - Inga Pfeffer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| | - Michael A McDonough
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom.
| |
Collapse
|
21
|
Brewitz L, Tumber A, Thalhammer A, Salah E, Christensen KE, Schofield CJ. Synthesis of Novel Pyridine-Carboxylates as Small-Molecule Inhibitors of Human Aspartate/Asparagine-β-Hydroxylase. ChemMedChem 2020; 15:1139-1149. [PMID: 32330361 PMCID: PMC7383925 DOI: 10.1002/cmdc.202000147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Indexed: 12/19/2022]
Abstract
The human 2‐oxoglutarate (2OG)‐dependent oxygenase aspartate/asparagine‐β‐hydroxylase (AspH) is a potential medicinal chemistry target for anticancer therapy. AspH is present on the cell surface of invasive cancer cells and accepts epidermal growth factor‐like domain (EGFD) substrates with a noncanonical (i. e., Cys 1–2, 3–4, 5–6) disulfide pattern. We report a concise synthesis of C‐3‐substituted derivatives of pyridine‐2,4‐dicarboxylic acid (2,4‐PDCA) as 2OG competitors for use in SAR studies on AspH inhibition. AspH inhibition was assayed by using a mass spectrometry‐based assay with a stable thioether analogue of a natural EGFD AspH substrate. Certain C‐3‐substituted 2,4‐PDCA derivatives were potent AspH inhibitors, manifesting selectivity over some, but not all, other tested human 2OG oxygenases. The results raise questions about the use of pyridine‐carboxylate‐related 2OG analogues as selective functional probes for specific 2OG oxygenases, and should aid in the development of AspH inhibitors suitable for in vivo use.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Armin Thalhammer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Eidarus Salah
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Kirsten E Christensen
- Chemical Crystallography Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | |
Collapse
|
22
|
Benelli R, Costa D, Mastracci L, Grillo F, Olsen MJ, Barboro P, Poggi A, Ferrari N. Aspartate-β-Hydroxylase: A Promising Target to Limit the Local Invasiveness of Colorectal Cancer. Cancers (Basel) 2020; 12:971. [PMID: 32295249 PMCID: PMC7226058 DOI: 10.3390/cancers12040971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer's (CRC) ability to invade local tissues and lymph nodes and generate distant metastases is the key for TNM classification. Aspartate-β-hydroxylase (ASPH), a transmembrane protein that catalyzes Notch receptors and ligand activation, is involved in tumor invasion. Because Notch is involved in gut homeostasis, it could be a target for CRC therapy. ASPH mRNA and protein expression, promoter methylation and gene copy numbers were evaluated using the TCGA and CPTAC human CRC datasets. Using digital pathology, ASPH was scored in the luminal area (LM), center tumor (CT) and invasive margin (IM) of 100 human CRCs. The effect of ASPH targeting on invasiveness and viability was tested by siRNA knockdown and small molecule inhibitors (SMI). Bioinformatics analysis showed increased expression of ASPH mRNA and protein in CRC, paired with a decreased methylation profile. ASPH genetic gain or amplification was frequent (56%), while deletion was rare (0.03%). Digital pathology analysis showed that ASPH exerted its pathological activity in the invasive margin of the tumor, affecting invasive front morphology, tumor budding and patients' overall survival. In vitro, ASPH targeting by siRNA or SMI reduced cell invasion and growth and caused Notch-1 downregulation. This study demonstrates that ASPH targeting by specific inhibitors could improve CRC treatment strategies.
Collapse
Affiliation(s)
- Roberto Benelli
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi 10, 16132 Genova, Italy; (D.C.); (A.P.); (N.F.)
| | - Delfina Costa
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi 10, 16132 Genova, Italy; (D.C.); (A.P.); (N.F.)
| | - Luca Mastracci
- Anatomia Patologica, IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi 10, 16132 Genova, Italy; (L.M.); (F.G.)
- Anatomia patologica, Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Università di Genova, 16132 Genova, Italy
| | - Federica Grillo
- Anatomia Patologica, IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi 10, 16132 Genova, Italy; (L.M.); (F.G.)
- Anatomia patologica, Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Università di Genova, 16132 Genova, Italy
| | - Mark Jon Olsen
- Department of Pharmaceutical Sciences, Midwestern University, Campus Glendale, Glendale, AZ 85308, USA;
| | - Paola Barboro
- Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Alessandro Poggi
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi 10, 16132 Genova, Italy; (D.C.); (A.P.); (N.F.)
| | - Nicoletta Ferrari
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi 10, 16132 Genova, Italy; (D.C.); (A.P.); (N.F.)
| |
Collapse
|
23
|
Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, Kong R, Wang Y, Zhu H, He F, Xu Q, Liu L, Li M, Zhang S, Nagaoka K, Carlson R, Safran H, Charpentier K, Sun B, Wands J, Dong X. Aspartate β-hydroxylase promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC signaling pathway. J Hematol Oncol 2019; 12:144. [PMID: 31888763 PMCID: PMC6937817 DOI: 10.1186/s13045-019-0837-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Signaling pathways critical for embryonic development re-emerge in adult pancreas during tumorigenesis. Aspartate β-hydroxylase (ASPH) drives embryonic cell motility/invasion in pancreatic development/differentiation. We explored if dysregulated ASPH is critically involved in pancreatic cancer pathogenesis. METHODS To demonstrate if/how ASPH mediates malignant phenotypes, proliferation, migration, 2-D/3-D invasion, pancreatosphere formation, immunofluorescence, Western blot, co-immunoprecipitation, invadopodia formation/maturation/function, qRT-PCR, immunohistochemistry (IHC), and self-developed in vitro metastasis assays were performed. Patient-derived xenograft (PDX) models of human pancreatic ductal adenocarcinoma (PDAC) were established to illustrate in vivo antitumor effects of the third-generation small molecule inhibitor specifically against ASPH's β-hydroxylase activity. Prognostic values of ASPH network components were evaluated with Kaplan-Meier plots, log-rank tests, and Cox proportional hazards regression models. RESULTS ASPH renders pancreatic cancer cells more aggressive phenotypes characterized by epithelial-mesenchymal transition (EMT), 2-D/3-D invasion, invadopodia formation/function as demonstrated by extracellular matrix (ECM) degradation, stemness (cancer stem cell marker upregulation and pancreatosphere formation), transendothelial migration (mimicking intravasation/extravasation), and sphere formation (mimicking metastatic colonization/outgrowth at distant sites). Mechanistically, ASPH activates SRC cascade through direct physical interaction with ADAM12/ADAM15 independent of FAK. The ASPH-SRC axis enables invadopodia construction and initiates MMP-mediated ECM degradation/remodeling as executors for invasiveness. Pharmacologic inhibition of invadopodia attenuates in vitro metastasis. ASPH fosters primary tumor development and pulmonary metastasis in PDX models of PDAC, which is blocked by a leading compound specifically against ASPH enzymatic activity. ASPH is silenced in normal pancreas, progressively upregulated from pre-malignant lesions to invasive/advanced stages of PDAC. Expression profiling of ASPH-SRC network components independently/jointly predicts clinical outcome of PDAC patients. Compared to a negative-low level, a moderate-very high level of ASPH, ADAM12, activated SRC, and MMPs correlated with curtailed overall survival (OS) of pancreatic cancer patients (log-rank test, ps < 0.001). The more unfavorable molecules patients carry, the more deleterious prognosis is destinated. Patients with 0-2 (n = 4), 3-5 (n = 8), 6-8 (n = 24), and 9-12 (n = 73) unfavorable expression scores of the 5 molecules had median survival time of 55.4, 15.9, 9.7, and 5.0 months, respectively (p < 0.001). CONCLUSION Targeting the ASPH-SRC axis, which is essential for propagating multi-step PDAC metastasis, may specifically/substantially retard development/progression and thus improve prognosis of PDAC.
Collapse
Affiliation(s)
- Kosuke Ogawa
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA
| | - Qiushi Lin
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA
| | - Le Li
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xuewei Bai
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA.,Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xuesong Chen
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Hong Zhu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Fuliang He
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA.,Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, The 9th Affiliated Hospital of Peking University, Beijing, People's Republic of China
| | - Qinggang Xu
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Lianxin Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, The University of Sciences and Technology of China, No. 17 Lujiang Road, Hefei City, 230001, An Hui Province, People's Republic of China
| | - Min Li
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Songhua Zhang
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA
| | - Katsuya Nagaoka
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA
| | - Rolf Carlson
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA
| | - Howard Safran
- Division of Hematology/Oncology, Rhode Island Hospital/The Miriam Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin Charpentier
- Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jack Wands
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA.
| | - Xiaoqun Dong
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA. .,Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA. .,Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
24
|
Nagaoka K, Bai X, Ogawa K, Dong X, Zhang S, Zhou Y, Carlson RI, Jiang ZG, Fuller S, Lebowitz MS, Ghanbari H, Wands JR. Anti-tumor activity of antibody drug conjugate targeting aspartate-β-hydroxylase in pancreatic ductal adenocarcinoma. Cancer Lett 2019; 449:87-98. [PMID: 30768955 DOI: 10.1016/j.canlet.2019.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy with very limited treatment options. Antibody drug conjugates (ADCs) are promising cytotoxic agents capable of highly selective delivery. Aspartate-β-hydroxylase (ASPH) is a type II transmembrane protein highly expressed in PDACs (97.1%) but not normal pancreas. We investigated anti-tumor effects of an ADC guided by a human monoclonal antibody (SNS-622) against ASPH in human PDAC cell lines and derived subcutaneous (s.c.) xenograft as well as a patient-derived xenograft (PDX) murine model with spontaneous pulmonary metastasis. The cytotoxic effects exhibited by several candidate payloads linked to SNS-622 antibody targeting ASPH+ PDACs were analyzed. After i.v. administration of SNS-622-emtansine (DM1) ADC, the primary PDAC tumor growth and progression (number and size of pulmonary metastases) were determined. The PDAC cell lines, s.c. and PDX tumors treated with ADC were tested for cell proliferation, cytotoxicity and apoptosis by MTS and immunohistochemistry (IHC) assays. SNS-622-DM1 construct has demonstrated optimal anti-tumor effects in vitro. In the PDX model of human PDAC, SNS-622-DM1 ADC exerted substantially inhibitory effects on tumor growth and pulmonary metastasis through attenuating proliferation and promoting apoptosis.
Collapse
Affiliation(s)
- Katsuya Nagaoka
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Xuewei Bai
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Kosuke Ogawa
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Xiaoqun Dong
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Songhua Zhang
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Yanmei Zhou
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Rolf I Carlson
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | | | | | | | - Jack R Wands
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
25
|
Zou Q, Hou Y, Wang H, Wang K, Xing X, Xia Y, Wan X, Li J, Jiao B, Liu J, Huang A, Wu D, Xiang H, Pawlik TM, Wang H, Lau WY, Wang Y, Shen F. Hydroxylase Activity of ASPH Promotes Hepatocellular Carcinoma Metastasis Through Epithelial-to-Mesenchymal Transition Pathway. EBioMedicine 2018; 31:287-298. [PMID: 29764768 PMCID: PMC6013968 DOI: 10.1016/j.ebiom.2018.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/18/2023] Open
Abstract
Over-expression of aspartyl (asparagynal)-β-hydroxylase (ASPH) contributes to hepatocellular carcinoma (HCC) invasiveness, but the role of ASPH hydroxylase activity in this process remains to be defined. As such, the current study investigated the role of ASPH hydroxylase activity in downstream signalling of HCC tumorgenesis and, specifically, metastasis development. Over-expression of wild-type ASPH, but not a hydroxylase mutant, promoted HCC cell migration in vitro, as well as intrahepatic and distant metastases in vivo. The enhanced migration and epithelial to mesenchymal transition (EMT) activation was notably absent in response to hydroxylase activity blockade. Vimentin, a regulator of EMT, interacted with ASPH and likely mediated the effect of ASPH hydroxylase activity with cell migration. The enhanced hydroxylase activity in tumor tissues predicted worse prognoses of HCC patients. Collectively, the hydroxylase activity of ASPH affected HCC metastasis through interacting with vimentin and regulating EMT. As such, ASPH might be a promising therapeutic target of HCC. Over-expression of ASPH promoted HCC intrahepatic and distant metastases in vivo. ASPH interacts with vimentin to promote HCC cell migration. Enhanced hydroxylase activity in tumor predicted worse prognoses of HCC patients.
Hepatocellular carcinoma has aggressive invasiveness and high metastatic rate. The reason for metastasis is largely unknown and the effective treatment is still lacking. Although over-expression of ASPH has been demonstrated to enhance hepatocellular carcinoma invasiveness, whether its hydroxylase activity is necessary remains uncharacterized. Here, we found the hydroxylase activity was critical to promote hepatocellular carcinoma invasiveness in vitro and metastasis in vivo, and associated with post-surgery survival. ASPH hydroxylase activity play an important role in epithelial-to-mesenchymal transition through interacting with vimentin. Our findings imply that ASPH antagonists might be promising in developing novel therapy.
Collapse
Affiliation(s)
- Qifei Zou
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ying Hou
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Science, Shanghai, China
| | - Haibo Wang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Kui Wang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xianglei Xing
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xuying Wan
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun Li
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Jingfeng Liu
- Department of Hepatobiliary Surgery, The Mengchao Hepatobiliary Surgery Hospital, Fujian Medical University, Fuzhou, China
| | - Aimin Huang
- Department of Hepatobiliary Surgery, The Mengchao Hepatobiliary Surgery Hospital, Fujian Medical University, Fuzhou, China
| | - Dong Wu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hongjun Xiang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Hongyang Wang
- National Scientific Center for Liver Cancer, Shanghai, China
| | - Wan Yee Lau
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Science, Shanghai, China.
| | - Feng Shen
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
26
|
Huang CK, Iwagami Y, Zou J, Casulli S, Lu S, Nagaoka K, Ji C, Ogawa K, Cao KY, Gao JS, Carlson RI, Wands JR. Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer Lett 2018; 429:1-10. [PMID: 29733964 DOI: 10.1016/j.canlet.2018.04.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/19/2023]
Abstract
Cholangiocarcinoma (CCA) is a highly lethal and aggressive disease. Recently, IDH1/2 mutations have been identified in approximately 20% of CCAs which suggests an involvement of 2-oxoglutarate (2-OG) -dependent dioxygenases in oncogenesis. We investigated if the 2-OG dependent dioxygenase, aspartate beta-hydroxylase (ASPH) was important in tumor development and growth. Immunoassays were used to clarify how ASPH modulates CCA progression by promoting phosphorylation of the retinoblastoma protein (RB1). A xenograft model was employed to determine the role of ASPH on CCA growth. Knockdown of ASPH expression inhibited CCA development and growth by reducing RB1 phosphorylation. Expression of ASPH promoted direct protein interaction between RB1, cyclin-dependent kinases, and cyclins. Treatment with 2-OG-dependent dioxygenase and ASPH inhibitors suppressed the interaction between RB1 and CDK4 as well as RB1 phosphorylation. Knockdown of ASPH expression inhibited CCA progression and RB1 phosphorylation in vivo and they were found to be highly expressed in human CCAs. Knockdown of ASPH expression altered CCA development by modulating RB1 phosphorylation, as one of the major factors regulating the growth of these tumors.
Collapse
Affiliation(s)
- Chiung-Kuei Huang
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Yoshifumi Iwagami
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Jing Zou
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Sarah Casulli
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI, 02903, USA
| | - Katsuya Nagaoka
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Chengcheng Ji
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Kousuke Ogawa
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Kevin Y Cao
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Jin-Song Gao
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Rolf I Carlson
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Jack R Wands
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA.
| |
Collapse
|
27
|
Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Molecular Mechanisms Driving Cholangiocarcinoma Invasiveness: An Overview. Gene Expr 2018; 18:31-50. [PMID: 29070148 PMCID: PMC5860940 DOI: 10.3727/105221617x15088670121925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of invasive functions by tumor cells is a first and crucial step toward the development of metastasis, which nowadays represents the main cause of cancer-related death. Cholangiocarcinoma (CCA), a primary liver cancer originating from the biliary epithelium, typically develops intrahepatic or lymph node metastases at early stages, thus preventing the majority of patients from undergoing curative treatments, consistent with their very poor prognosis. As in most carcinomas, CCA cells gradually adopt a motile, mesenchymal-like phenotype, enabling them to cross the basement membrane, detach from the primary tumor, and invade the surrounding stroma. Unfortunately, little is known about the molecular mechanisms that synergistically orchestrate this proinvasive phenotypic switch. Autocrine and paracrine signals (cyto/chemokines, growth factors, and morphogens) permeating the tumor microenvironment undoubtedly play a prominent role in this context. Moreover, a number of recently identified signaling systems are currently drawing attention as putative mechanistic determinants of CCA cell invasion. They encompass transcription factors, protein kinases and phosphatases, ubiquitin ligases, adaptor proteins, and miRNAs, whose aberrant expression may result from either stochastic mutations or the abnormal activation of upstream pro-oncogenic pathways. Herein we sought to summarize the most relevant molecules in this field and to discuss their mechanism of action and potential prognostic relevance in CCA. Hopefully, a deeper knowledge of the molecular determinants of CCA invasiveness will help to identify clinically useful biomarkers and novel druggable targets, with the ultimate goal to develop innovative approaches to the management of this devastating malignancy.
Collapse
Affiliation(s)
- Simone Brivio
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Massimiliano Cadamuro
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
| | - Luca Fabris
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- ‡Department of Molecular Medicine, University of Padua, Padua, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Mario Strazzabosco
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| |
Collapse
|
28
|
Iwagami Y, Casulli S, Nagaoka K, Kim M, Carlson RI, Ogawa K, Lebowitz MS, Fuller S, Biswas B, Stewart S, Dong X, Ghanbari H, Wands JR. Lambda phage-based vaccine induces antitumor immunity in hepatocellular carcinoma. Heliyon 2017; 3:e00407. [PMID: 28971150 PMCID: PMC5619992 DOI: 10.1016/j.heliyon.2017.e00407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/26/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a difficult to treat tumor with a poor prognosis. Aspartate β-hydroxylase (ASPH) is a highly conserved enzyme overexpressed on the cell surface of both murine and human HCC cells. METHODS We evaluated therapeutic effects of nanoparticle lambda (λ) phage vaccine constructs against ASPH expressing murine liver tumors. Mice were immunized before and after subcutaneous implantation of a syngeneic BNL HCC cell line. Antitumor actively was assessed by generation of antigen specific cellular immune responses and the identification of tumor infiltrating lymphocytes. RESULTS Prophylactic and therapeutic immunization significantly delayed HCC growth and progression. ASPH-antigen specific CD4+ and CD8+ lymphocytes were identified in the spleen of tumor bearing mice and cytotoxicity was directed against ASPH expressing BNL HCC cells. Furthermore, vaccination generated antigen specific Th1 and Th2 cytokine secretion by immune cells. There was widespread necrosis with infiltration of CD3+ and CD8+ T cells in HCC tumors of λ phage vaccinated mice compared to controls. Moreover, further confirmation of anti-tumor effects on ASPH expressing tumor cell growth were obtained in another murine syngeneic vaccine model with pulmonary metastases. CONCLUSIONS These observations suggest that ASPH may serve as a highly antigenic target for immunotherapy.
Collapse
Affiliation(s)
- Yoshifumi Iwagami
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Sarah Casulli
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Katsuya Nagaoka
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Miran Kim
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Rolf I Carlson
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Kosuke Ogawa
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | | | - Steve Fuller
- Panacea Pharmaceuticals, Gaithersburg, MD, 20877, USA
| | | | | | - Xiaoqun Dong
- Department of Internal Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | | | - Jack R Wands
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| |
Collapse
|
29
|
Tong M, Gonzalez-Navarrete H, Kirchberg T, Gotama B, Yalcin EB, Kay J, de la Monte SM. Ethanol-Induced White Matter Atrophy Is Associated with Impaired Expression of Aspartyl-Asparaginyl- β-Hydroxylase (ASPH) and Notch Signaling in an Experimental Rat Model. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2017; 6:236033. [PMID: 29204305 PMCID: PMC5711436 DOI: 10.4303/jdar/236033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alcohol-induced white matter (WM) degeneration is linked to cognitive-motor deficits and impairs insulin/insulin-like growth factor (IGF) and Notch networks regulating oligodendrocyte function. Ethanol downregulates Aspartyl-Asparaginyl-β-Hydroxylase (ASPH) which drives Notch. These experiments determined if alcohol-related WM degeneration was linked to inhibition of ASPH and Notch. Adult Long Evans rats were fed for 3, 6 or 8 weeks with liquid diets containing 26% ethanol (caloric) and in the last two weeks prior to each endpoint they were binged with 2 g/kg ethanol, 3×/week. Controls were studied in parallel. Histological sections of the frontal lobe and cerebellar vermis were used for image analysis. Frontal WM proteins were used for Western blotting and duplex ELISAs. The ethanol exposures caused progressive reductions in frontal and cerebellar WM. Ethanol-mediated frontal WM atrophy was associated with reduced expression of ASPH, Jagged 1, HES-1, and HIF-1α. These findings link ethanol-induced WM atrophy to inhibition of ASPH expression and signaling through Notch networks, including HIF-1α.
Collapse
Affiliation(s)
- Ming Tong
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | - Billy Gotama
- Molecular Pharmacology and Biotechnology Graduate Program, Brown University, Providence, RI 02912, USA
- Brown University, Providence, RI 02912, USA
| | - Emine B. Yalcin
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jared Kay
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Departments of Neurology, Neurosurgery, and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
30
|
Cigliano A, Wang J, Chen X, Calvisi DF. Role of the Notch signaling in cholangiocarcinoma. Expert Opin Ther Targets 2017; 21:471-483. [PMID: 28326864 DOI: 10.1080/14728222.2017.1310842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an emerging cancer entity of the liver, associated with poor outcome and characterized by resistance to conventional chemotherapeutic treatments. In the last decade, many signaling pathways associated with CCA development and progression have been identified and are currently under intense investigation. Cumulating evidence indicates that the Notch cascade, a highly-conserved pathway in most multicellular organisms, is a critical player both in liver malignant transformation and tumor aggressiveness, thus representing a potential therapeutic target in this pernicious disease. Areas covered: In the present review article, we comprehensively summarize and critically discuss the current knowledge on the Notch pathway, its specific and key roles in cholangiocarcinogenesis, the treatment strategies aimed at suppressing this signaling cascade in cancer, and the encouraging results coming from preclinical trials. Expert opinion: The Notch pathway represents a major driver of carcinogenesis and a promising therapeutic target in human CCA. A better understanding of the molecular mechanisms triggered by the Notch pathway as well as its functional crosstalk with other signaling cascade will be highly helpful for the design of innovative therapies against human CCA.
Collapse
Affiliation(s)
- Antonio Cigliano
- a Institut für Pathologie , Universitätsmedizin Greifswald , Greifswald , Germany
| | - Jingxiao Wang
- b Second Clinical Medical School , Beijing University of Chinese Medicine , Beijing , China.,c Department of Bioengineering and Therapeutic Sciences and Liver Center , University of California , San Francisco , CA , USA
| | - Xin Chen
- c Department of Bioengineering and Therapeutic Sciences and Liver Center , University of California , San Francisco , CA , USA
| | - Diego F Calvisi
- a Institut für Pathologie , Universitätsmedizin Greifswald , Greifswald , Germany
| |
Collapse
|
31
|
Gao J, Long B, Wang Z. Role of Notch signaling pathway in pancreatic cancer. Am J Cancer Res 2017; 7:173-186. [PMID: 28337369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 09/28/2022] Open
Abstract
Pancreatic cancer (PC) is one of the highly aggressive malignancies in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of PC, such as JNK, PI3K/AKT, Rho GTPase, Hedgehog (Hh) and Skp2. In recent years, accumulated evidence has demonstrated that Notch signaling pathway plays critical roles in the development and progression of PC. Therefore, in this review we discuss the recent literature regarding the function and regulation of Notch in the pathogenesis of PC. Moreover, we describe that Notch signaling pathway could be down-regulated by its inhibitors or natural compounds, which could be a novel approach for the treatment of PC patients.
Collapse
Affiliation(s)
- Jiankun Gao
- Sichuan College of Tranditional Chinese Medicine Mianyang, Sichuan, China
| | - Bo Long
- Department of Infectious Diseases, Mianyang 404 Hospital Mianyang, Sichuan, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow UniversitySuzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolMA 02215, USA
| |
Collapse
|
32
|
Sturla LM, Tong M, Hebda N, Gao J, Thomas JM, Olsen M, de la Monte SM. Aspartate-β-hydroxylase (ASPH): A potential therapeutic target in human malignant gliomas. Heliyon 2016; 2:e00203. [PMID: 27981247 PMCID: PMC5144823 DOI: 10.1016/j.heliyon.2016.e00203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/01/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Despite therapeutic advances, survival with glioblastoma multiforme (GBM) remains below 15 months from diagnosis due to GBM's highly infiltrative nature which precludes complete surgical resection. Patient outcomes could potentially be improved by targeting genes and pathways that drive neoplastic cell motility and invasiveness, including hypoxia-inducible factor-1 (HIF-1α), NOTCH, and aspartate-β-hydroxylase (ASPH). METHODS Human astrocytoma biopsy specimens (n = 37), WHO Grades II-IV, were analyzed for levels and distributions of ASPH and HIF-1α immunoreactivity by immunohistochemical staining, and ASPH, Notch, JAG, HES1, HEY1 and HIF1α mRNA expression by quantigene multiplex analysis. The effects of small molecule inhibitors on ASPH's catalytic activity, cell viability and directional motility were examined in vitro in established GBM cell lines and primary tumor cells from an invasive mouse model of GBM. RESULTS The highest grade astrocytoma, i.e. GBM was associated with the highest levels of ASPH and HIF1α, and both proteins were more abundantly distributed in hypoxic compared with normoxic regions of tumor. Furthermore, mining of the TCGA database revealed higher levels of ASPH expression in the mesenchymal subtype of GBM, which is associated with more aggressive and invasive behavior. In contrast, lower grade astrocytomas had low expression levels of ASPH and HIF1α. In vitro experiments demonstrated that small molecule inhibitors targeting ASPH's catalytic activity significantly reduced GBM viability and directional motility. Similar effects occurred in GBM cells that were transduced with a lentiviral sh-ASPH construct. CONCLUSION This study demonstrates that increased ASPH expression could serve as a prognostic biomarker of gliomas and may assist in assigning tumor grade when biopsy specimens are scant. In addition, the findings suggest that GBM treatment strategies could be made more effective by including small molecule inhibitors of ASPH.
Collapse
Affiliation(s)
- Lisa-Marie Sturla
- Liver Research Center, Providence, RI, United States; Department of Pathology, Providence, RI, United States; Department of Neurology, Providence, RI, United States; Department of Neurosurgery, Providence, RI, United States; Department of Medicine, Providence, RI, United States
| | - Ming Tong
- Liver Research Center, Providence, RI, United States; Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Nick Hebda
- Department of Neurology, Providence, RI, United States
| | - Jinsong Gao
- Department of Medicine, Providence, RI, United States; Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - John-Michael Thomas
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, United States
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, United States
| | - Suzanne M de la Monte
- Liver Research Center, Providence, RI, United States; Division of Gastroenterology, Providence, RI, United States; Division of Neuropathology, Providence, RI, United States; Department of Pathology, Providence, RI, United States; Department of Neurology, Providence, RI, United States; Department of Neurosurgery, Providence, RI, United States; Department of Medicine, Providence, RI, United States; Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|