1
|
Vijayakumar S, Kumar LL, Borkotoky S, Murali A. The Application of MD Simulation to Lead Identification, Vaccine Design, and Structural Studies in Combat against Leishmaniasis - A Review. Mini Rev Med Chem 2024; 24:1089-1111. [PMID: 37680156 DOI: 10.2174/1389557523666230901105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023]
Abstract
Drug discovery, vaccine design, and protein interaction studies are rapidly moving toward the routine use of molecular dynamics simulations (MDS) and related methods. As a result of MDS, it is possible to gain insights into the dynamics and function of identified drug targets, antibody-antigen interactions, potential vaccine candidates, intrinsically disordered proteins, and essential proteins. The MDS appears to be used in all possible ways in combating diseases such as cancer, however, it has not been well documented as to how effectively it is applied to infectious diseases such as Leishmaniasis. As a result, this review aims to survey the application of MDS in combating leishmaniasis. We have systematically collected articles that illustrate the implementation of MDS in drug discovery, vaccine development, and structural studies related to Leishmaniasis. Of all the articles reviewed, we identified that only a limited number of studies focused on the development of vaccines against Leishmaniasis through MDS. Also, the PCA and FEL studies were not carried out in most of the studies. These two were globally accepted utilities to understand the conformational changes and hence it is recommended that this analysis should be taken up in similar approaches in the future.
Collapse
Affiliation(s)
| | | | - Subhomoi Borkotoky
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Ayaluru Murali
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
2
|
Paul A, Roy PK, Babu NK, Dhumal TT, Singh S. Leishmania donovani 6-phosphogluconolactonase: Crucial for growth and host infection? Microb Pathog 2023; 178:106082. [PMID: 36958644 DOI: 10.1016/j.micpath.2023.106082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
The hexose monophosphate shunt is a crucial pathway in a variety of microorganisms owing to its vital metabolic products and intermediates such as NADPH, ribose 5-phosphate etc. The enzyme 6-phosphogluconolactonase catalyses the second step of this pathway, converting 6-phosphogluconolactone to 6-phosphogluconic acid. This enzyme has been known to have a significant involvement in growth, pathogenesis and sensitivity to oxidative stress in bacterial and protozoal pathogens. However, the functional role of kinetoplastid Leishmania donovani 6-phospohogluconolactonase (Ld6PGL) remains unexplored. L. donovani is the second largest parasitic killer and causative organism of life threatening visceral leishmaniasis. To understand its possible functional role in the parasite, the alleles of Ld6PGL were sequentially knocked-out followed by gene complementation. The Ld6PGL mutant cell lines showed decrease in transcriptional and translational expression as well as in the enzyme activity. In case of Ld6PGL null mutants, approximately 2-fold reduction was observed in growth. The null mutants also showed ∼38% decrease in infectivity, which recovered to ∼15% on complementation. Scanning electron microscopy showed a marked decrease in flagellar length in the knockout parasites. When treated with the standard drug miltefosine, the mutant strains had no significant change in the drug sensitivity. However, the Ld6PGL mutants were more susceptible to oxidative stress. Our findings suggest that 6PGL is required for parasite growth and infection but it is not essential.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Tushar Tukaram Dhumal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
3
|
Lu Y, Zhou C, Yan R, Lian J, Cai H, Yu J, Chen D, Su X, Qian J, Yang Y, Li L. Dynamic metabolic profiles for HBeAg seroconversion in chronic hepatitis B (CHB) patients by gas chromatography-mass spectrometry (GC-MS). J Pharm Biomed Anal 2021; 206:114349. [PMID: 34597840 DOI: 10.1016/j.jpba.2021.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022]
Abstract
Chronic hepatitis B (CHB) remains a major public health problem globally. HBeAg seroconversion is a vital hallmark for the improvement of CHB. The plasma metabolic profile has not been clear in CHB patients and searching metabolic candidates to represent HBeAg seroconversion is also difficult currently. In this study, CHB patients were recruited, followed and divided into the HBeAg-positive (HBeAg-pos.) group (n = 29) and the HBeAg-negative (HBeAg-neg.) group (n = 29) based on HBeAg seroconversion or not. The plasma metabolic profiles were measured by gas chromatography-mass spectrometry (GC-MS) at 0 week (0w), 24 weeks (24w) and 48 weeks (48w) after administration. The acquired data was analyzed using orthogonal partial least squares discriminate analysis (OPLS-DA) and the differential metabolites were further assessed by self and group comparison. No differences of age, gender and serological characteristics were observed between two groups at 0w and 48w separately. The OPLS-DA score plots depending on administration time displayed robust metabolic differences no matter HBeAg turned to be negative or not. According to VIP> 1.0, a total of 15 differential metabolites were same in the two groups, 7 differential metabolites (glycolic acid, D-talose, L-proline, L-(-)-arabitol, ethyl-alpha-D-glucopyranoside, L-leucine and dihydroxybutanoic acid) were derived from one group alone and considered as metabolic candidates. At 0w versus (vs.) 24w, only 3 of 7 candidates (L-proline, L-(-)-arabitol, dihydroxybutanoic acid) showed nonuniform in the two groups, while at 0w vs. 48w, all of them varied inconsistently. Conclusively the dynamic metabolic profiles assayed by GC-MS were different between CHB patients with and without HBeAg seroconversion. The 7 metabolic candidates probably had the ability to reflect the CHB progression for HBeAg seroconversion and 3 of them showed strong relationship with HbeAg seroconversion early.
Collapse
Affiliation(s)
- Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chiyan Zhou
- Department of Prenatal Diagnosis, The Affiliated Women and Children Hospital, Jiaxing University School of Medicine, Jiaxing, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangshan Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Deyin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Toward Chemical Validation of Leishmania infantum Ribose 5-Phosphate Isomerase as a Drug Target. Antimicrob Agents Chemother 2021; 65:e0189220. [PMID: 33875438 DOI: 10.1128/aac.01892-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neglected tropical diseases caused by kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp.) place a significant health and economic burden on developing nations worldwide. Current therapies are largely outdated, inadequate, and face mounting drug resistance from the causative parasites. Thus, there is an urgent need for drug discovery and development. Target-led drug discovery approaches have focused on the identification of parasite enzymes catalyzing essential biochemical processes, which significantly differ from equivalent proteins found in humans, thereby providing potentially exploitable therapeutic windows. One such target is ribose 5-phosphate isomerase B (RpiB), an enzyme involved in the nonoxidative branch of the pentose phosphate pathway, which catalyzes the interconversion of d-ribose 5-phosphate and d-ribulose 5-phosphate. Although protozoan RpiB has been the focus of numerous targeted studies, compounds capable of selectively inhibiting this parasite enzyme have not been identified. Here, we present the results of a fragment library screening against Leishmania infantum RpiB (LiRpiB), performed using thermal shift analysis. Hit fragments were shown to be effective inhibitors of LiRpiB in activity assays, and several fragments were capable of selectively inhibiting parasite growth in vitro. These results support the identification of LiRpiB as a validated therapeutic target. The X-ray crystal structure of apo LiRpiB was also solved, permitting docking studies to assess how hit fragments might interact with LiRpiB to inhibit its activity. Overall, this work will guide structure-based development of LiRpiB inhibitors as antileishmanial agents.
Collapse
|
5
|
Alves KMA, Cardoso FJB, Honorio KM, de Molfetta FA. Design of Inhibitors for Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Enzyme of <i>Leishmania mexicana</i>. Med Chem 2021; 16:784-795. [PMID: 31309897 DOI: 10.2174/1573406415666190712111139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Leishmaniosis is a neglected tropical disease and glyceraldehyde 3- phosphate dehydrogenase (GAPDH) is a key enzyme in the design of new drugs to fight this disease. OBJECTIVE The present study aimed to evaluate potential inhibitors of GAPDH enzyme found in Leishmania mexicana (L. mexicana). METHODS A search for novel antileishmanial molecules was carried out based on similarities from the pharmacophoric point of view related to the binding site of the crystallographic enzyme using the ZINCPharmer server. The molecules selected in this screening were subjected to molecular docking and molecular dynamics simulations. RESULTS Consensual analysis of the docking energy values was performed, resulting in the selection of ten compounds. These ligand-receptor complexes were visually inspected in order to analyze the main interactions and subjected to toxicophoric evaluation, culminating in the selection of three compounds, which were subsequently submitted to molecular dynamics simulations. The docking results showed that the selected compounds interacted with GAPDH from L. mexicana, especially by hydrogen bonds with Cys166, Arg249, His194, Thr167, and Thr226. From the results obtained from molecular dynamics, it was observed that one of the loop regions, corresponding to the residues 195-222, can be related to the fitting of the substrate at the binding site, assisting in the positioning and the molecular recognition via residues responsible for the catalytic activity. CONCLUSION The use of molecular modeling techniques enabled the identification of promising compounds as inhibitors of the GAPDH enzyme from L. mexicana, and the results obtained here can serve as a starting point to design new and more effective compounds than those currently available.
Collapse
Affiliation(s)
- Krisnna M A Alves
- Laboratorio de Modelagem Molecular, Instituto de Ciencias Exatas e Naturais, Universidade Federal do Para, CP 11101, 60075-110, Belem, PA, Brazil
| | - Fábio José Bonfim Cardoso
- Laboratorio de Modelagem Molecular, Instituto de Ciencias Exatas e Naturais, Universidade Federal do Para, CP 11101, 60075-110, Belem, PA, Brazil
| | - Kathia M Honorio
- Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo (USP), 03828-000, Sao Paulo, SP, Brazil.,Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Fábio A de Molfetta
- Laboratorio de Modelagem Molecular, Instituto de Ciencias Exatas e Naturais, Universidade Federal do Para, CP 11101, 60075-110, Belem, PA, Brazil
| |
Collapse
|
6
|
Wang R, Xu X, Yao X, Tang H, Ju X, Li L. Enhanced isomerization of rare sugars by ribose-5-phosphate isomerase A from Ochrobactrum sp. CSL1. Enzyme Microb Technol 2021; 148:109789. [PMID: 34116752 DOI: 10.1016/j.enzmictec.2021.109789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Ribose-5-phosphate isomerase A (RpiA) is of great importance in biochemistry research, however its application in biotechnology has not been fully explored. In this study the activity of RpiA from Ochrobactrum sp. CSL1 (OsRpiA) towards D-allose was engineered based on sequential and structural analyses. Strategies of alanine scanning, rational design and saturated mutagenesis were employed to create three mutant libraries. A single mutant of K124A showed a 45 % activity improvement towards D-allose. The reaction properties of the mutant were analyzed, and a shift of optimal pH and higher thermal stability at low reaction temperatures were identified. The conversion of D-allose was also improved by 40 % using K124A, and higher activities on major substrates were found in the mutant's substrate scope, implying its application potential in rare sugar preparation. Kinetics analysis revealed that Km of K124A mutant decreased by 12 % and the catalytic efficiency increased by 65 % towards D-allose. Moreover, molecular dynamics simulation illustrated the binding of substrate and K124A was more stable than that of the wild-type. The shorter distance and more relax bond angle between the catalytic residue of K124A and D-allose explained the activity improvement in detail. This study highlights the potential of OsRpiA as a biocatalyst for rare sugar preparation, and provides distinct evidences for its catalytic mechanism.
Collapse
Affiliation(s)
- Rong Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Xinqi Xu
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biosciences and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Xuemei Yao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Hengtao Tang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
7
|
Tang H, Ju X, Zhao J, Li L. Engineering ribose-5-phosphate isomerase B from a central carbon metabolic enzyme to a promising sugar biocatalyst. Appl Microbiol Biotechnol 2021; 105:509-523. [PMID: 33394147 DOI: 10.1007/s00253-020-11075-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Ribose-5-phosphate isomerase B (RpiB) was first identified in the pentose phosphate pathway responsible for the inter-conversion of ribose-5-phosphate and ribulose-5-phosphate. Though there are seldom key enzymes in central carbon metabolic system developed as useful biocatalysts, RpiB with the advantages of wide substrate scope and high stereoselectivity has become a potential biotechnological tool to fulfill the demand of rare sugars currently. In this review, the pivotal roles of RpiB in carbon metabolism are summarized, and their sequence identity and structural similarity are discussed. Substrate binding and catalytic mechanisms are illustrated to provide solid foundations for enzyme engineering. Interesting differences in origin, physiological function, structure, and catalytic mechanism between RpiB and ribose-5-phosphate isomerase A are introduced. Moreover, enzyme engineering efforts for rare sugar production are stressed, and prospects of future development are concluded briefly in the viewpoint of biocatalysis. Aided by the progresses of structural and computational biology, the application of RpiB will be promoted greatly in the preparation of valuable molecules. KEY POINTS: • Detailed illustration of RpiB's vital function in central carbon metabolism. • Potential of RpiB in sequence, substrate scope, and mechanism for application. • Enzyme engineering efforts to promote RpiB in the preparation of rare sugars.
Collapse
Affiliation(s)
- Hengtao Tang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
8
|
Zhang X, Xu X, Yao X, Wang R, Tang H, Ju X, Li L. Exploring Multifunctional Residues of Ribose-5-phosphate Isomerase B from Ochrobactrum sp. CSL1 Enhancing Isomerization of d-Allose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3539-3547. [PMID: 32100533 DOI: 10.1021/acs.jafc.9b07855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ribose-5-phosphate isomerase B is of great importance for biocatalysis and biosynthesis, but the multifunctional residues in active sites hinder the research efforts. This study employed rational design strategies to locate the key residues of RpiB from Ochrobactrum sp. CSL1 (OsRpiB). A single-mutant S9T of a noncontact residue showed 80% activity improvement toward d-allose. A double-mutant S98H/S134H further increased the activity to 3.6-fold. The mutations were analyzed by kinetics and molecular dynamics analyses, indicating that S9T might enhance the substrate binding and catalysis by inducing a steric effect, and S98H/S134H could strengthen both ring opening and binding of d-allose. Though S98H/S134H showed low temperature stability, its potential was explored by isomerizing d-allose to d-psicose with higher conversion and in less reaction time. The findings of this study were beneficial for illustrating the complex functions of key residues in RpiBs and applying OsRpiB in preparing rare sugars.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Xinqi Xu
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, P.R. China
| | - Xuemei Yao
- School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Rong Wang
- School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Hengtao Tang
- School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Xin Ju
- School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Liangzhi Li
- School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| |
Collapse
|
9
|
Soares RF, Antunes D, Santos LHS, Rocha GV, Bastos LS, Guimarães ACR, Caffarena ER. Studying effects of different protonation states of His11 and His102 in ribose-5-phosphate isomerase of Trypanosoma cruzi: an example of cooperative behavior. J Biomol Struct Dyn 2019; 38:2047-2056. [PMID: 31184542 DOI: 10.1080/07391102.2019.1626769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Trypanosoma cruzi ribose-5-phosphate isomerase B (TcRpiB) is a crucial piece in the pentose phosphate pathway and thus is a potential drug target for treatment of Chagas' disease. TcRpiB residues, such as Cys69, Asp45, Glu149 and Pro47, have confirmed their roles in substrate recognition, catalytic reaction and binding site conformation. However, the joint performance of His11 and His102, in the D-ribose-5-phosphate (R5P) in the catalysis is not well understood. In this work, we probed the influence of different protonation states of His11 and His102 on the behavior of the ligand R5P using molecular dynamics simulations, network analysis and thermodynamic integration. Simulations revealed that a protonated His11 combined with a neutral His102 (His11+‒His102) was able to stabilize the ligand R5P in the binding site. Moreover, calculated relative free energy differences showed that when protonated His11 was coupled to a neutral His102 an exergonic process takes place. On the other hand, neutral His11 combined with a protonated His102 (His11‒His102+), sampled conformations that resembled the catalyzed product D-ribulose-5-phosphate (Ru5P). Network analysis also demonstrated some peculiarities for these systems with some negatively correlated nodes in the binding site for His11‒His102+, and exclusive suboptimal paths for His11+‒His102. Therefore, the combined approach presented in this paper proposes two suitable protonation states for the TcRpiB catalytic mechanism, where an extra proton in either histidines might favor R5P binding or influence isomerization reaction to Ru5P. Our results may guide further in silico drug discovery studies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rafael F Soares
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro, Brasil
| | - Deborah Antunes
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro, Brasil
| | - Lucianna H S Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Gisele Vieira Rocha
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro, Brasil
| | - Leonardo Soares Bastos
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro, Brasil
| | - Ana Carolina R Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Ernesto R Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro, Brasil
| |
Collapse
|
10
|
da Silva RA, Pereira LDM, Silveira MC, Jardim R, de Miranda AB. Mining of potential drug targets through the identification of essential and analogous enzymes in the genomes of pathogens of Glycine max, Zea mays and Solanum lycopersicum. PLoS One 2018; 13:e0197511. [PMID: 29799863 PMCID: PMC5969768 DOI: 10.1371/journal.pone.0197511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/03/2018] [Indexed: 01/19/2023] Open
Abstract
Pesticides are one of the most widely used pest and disease control measures in plant crops and their indiscriminate use poses a direct risk to the health of populations and environment around the world. As a result, there is a great need for the development of new, less toxic molecules to be employed against plant pathogens. In this work, we employed an in silico approach to study the genes coding for enzymes of the genomes of three commercially important plants, soybean (Glycine max), tomato (Solanum lycopersicum) and corn (Zea mays), as well as 15 plant pathogens (4 bacteria and 11 fungi), focusing on revealing a set of essential and non-homologous isofunctional enzymes (NISEs) that could be prioritized as drug targets. By combining sequence and structural data, we obtained an initial set of 568 cases of analogy, of which 97 were validated and further refined, revealing a subset of 29 essential enzymatic activities with a total of 119 different structural forms, most belonging to central metabolic routes, including the carbohydrate metabolism, the metabolism of amino acids, among others. Further, another subset of 26 enzymatic activities possess a tertiary structure specific for the pathogen, not present in plants, men and Apis mellifera, which may be of importance for the development of specific enzymatic inhibitors against plant diseases that are less harmful to humans and the environment.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Jardim
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
11
|
de V C Sinatti V, R Baptista LP, Alves-Ferreira M, Dardenne L, Hermínio Martins da Silva J, Guimarães AC. In silico identification of inhibitors of ribose 5-phosphate isomerase from Trypanosoma cruzi using ligand and structure based approaches. J Mol Graph Model 2017; 77:168-180. [PMID: 28865321 DOI: 10.1016/j.jmgm.2017.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, affects approximately seven million people, mainly in Latin America, and causes about 7000 deaths annually. The available treatments are unsatisfactory and search for more effective drugs against this pathogen is critical. In this context, the ribose 5-phosphate isomerase (Rpi) enzyme is a potential drug target mainly due to its function in the pentose phosphate pathway and its essentiality (previously shown in other trypanosomatids). In this study, we propose novel potential inhibitors for the Rpi of T. cruzi (TcRpi) based on a computer-aided approach, including structure-based and ligand-based pharmacophore modeling. Along with a substructural and similarity search, the selected pharmacophore hypotheses were used to screen the purchasable subset of the ZINC Database, yielding 20,183 candidate compounds. These compounds were submitted to molecular docking studies in the TcRpi and Human Rpi (HsRpi) active sites in order to identify potential selective inhibitors for the T. cruzi enzyme. After the molecular docking and ADME-T (absorption, distribution, metabolism, excretion and toxicity)/PAINS (pan-assay interference compounds) screenings, 211 molecules were selected as potential TcRpi inhibitors. Out of these, three compounds - ZINC36975961, ZINC63480117, and ZINC43763931 - were submitted to molecular dynamics simulations and two of them - ZINC36975961 and ZINC43763931- had good performance and made interactions with important active site residues over all the simulation time. These compounds could be considered potential TcRpi inhibitors candidates and also may be used as leads for developing new TcRpi inhibitors.
Collapse
Affiliation(s)
- Vanessa de V C Sinatti
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Luiz Phillippe R Baptista
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Marcelo Alves-Ferreira
- Fiocruz, Laboratório de Modelagem de Sistemas Biológicos, Centro de Desenvolvimento Tecnológico em Saúde, Av. Brasil 4036, Manguinhos, 21040-361, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Inovação em Doenças de Populações Negligenciadas, INCT-IDPN, CNPq, Brazil
| | - Laurent Dardenne
- Laboratório Nacional de Computação Científica, Grupo de Modelagem Molecular de Sistemas Biológicos, Av. Getúlio Vargas, 333, Quitandinha, 25651-075, Petrópolis, RJ, Brazil
| | | | - Ana Carolina Guimarães
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Wachsmuth LM, Johnson MG, Gavenonis J. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions. PLoS Negl Trop Dis 2017; 11:e0005720. [PMID: 28662026 PMCID: PMC5507555 DOI: 10.1371/journal.pntd.0005720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/12/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022] Open
Abstract
Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania are an urgent public health crisis in the developing world. These closely related species possess a number of multimeric enzymes in highly conserved pathways involved in vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine scanning of these protein-protein interfaces has revealed a host of potentially ligandable sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces with multiple clustered hotspots has suggested several potentially inhibitable protein-protein interactions that may have been overlooked by previous large-scale analyses focusing solely on secondary structure. These protein-protein interactions provide a promising lead for the development of new peptide and macrocycle inhibitors of these enzymes.
Collapse
Affiliation(s)
- Leah M. Wachsmuth
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Meredith G. Johnson
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Jason Gavenonis
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gonzalez SN, Valsecchi WM, Maugeri D, Delfino JM, Cazzulo JJ. Structure, kinetic characterization and subcellular localization of the two ribulose 5-phosphate epimerase isoenzymes from Trypanosoma cruzi. PLoS One 2017; 12:e0172405. [PMID: 28207833 PMCID: PMC5312968 DOI: 10.1371/journal.pone.0172405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/03/2017] [Indexed: 02/01/2023] Open
Abstract
The enzyme of the pentose phosphate pathway (PPP) ribulose-5-phosphate-epimerase (RPE) is encoded by two genes present in the genome of Trypanosoma cruzi CL Brener clone: TcRPE1 and TcRPE2. Despite high sequence similarity at the amino acid residue level, the recombinant isoenzymes show a strikingly different kinetics. Whereas TcRPE2 follows a typical michaelian behavior, TcRPE1 shows a complex kinetic pattern, displaying a biphasic curve, suggesting the coexistence of -at least- two kinetically different molecular forms. Regarding the subcellular localization in epimastigotes, whereas TcRPE1 is a cytosolic enzyme, TcRPE2 is localized in glycosomes. To our knowledge, TcRPE2 is the first PPP isoenzyme that is exclusively localized in glycosomes. Over-expression of TcRPE1, but not of TcRPE2, significantly reduces the parasite doubling time in vitro, as compared with wild type epimastigotes. Both TcRPEs represent single domain proteins exhibiting the classical α/β TIM-barrel fold, as expected for enzymes with this activity. With regard to the architecture of the active site, all the important amino acid residues for catalysis -with the exception of M58- are also present in both TcRPEs models. The superimposition of the binding pocket of both isoenzyme models shows that they adopt essentially identical positions in the active site with a residue specific RMSD < 2Å, with the sole exception of S12, which displays a large deviation (residue specific RMSD: 11.07 Å). Studies on the quaternary arrangement of these isoenzymes reveal that both are present in a mixture of various oligomeric species made up of an even number of molecules, probably pointing to the dimer as their minimal functional unit. This multiplicity of oligomeric species has not been reported for any of the other RPEs studied so far and it might bear implications for the regulation of TcRPEs activity, although further investigation will be necessary to unravel the physiological significance of these structural findings.
Collapse
Affiliation(s)
- Soledad Natalia Gonzalez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús Dr. Raúl Alfonsín (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Buenos Aires, Argentina
| | - Wanda Mariela Valsecchi
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Junín, Buenos Aires, Argentina
| | - Dante Maugeri
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús Dr. Raúl Alfonsín (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Buenos Aires, Argentina
| | - José María Delfino
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Junín, Buenos Aires, Argentina
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús Dr. Raúl Alfonsín (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Buenos Aires, Argentina
| |
Collapse
|