1
|
Therapeutic Effects of Hypoxic and Pro-Inflammatory Priming of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Inflammatory Arthritis. Int J Mol Sci 2021; 23:ijms23010126. [PMID: 35008555 PMCID: PMC8745583 DOI: 10.3390/ijms23010126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) immunomodulate inflammatory responses through paracrine signalling, including via secretion of extracellular vesicles (EVs) in the cell secretome. We evaluated the therapeutic potential of MSCs-derived small EVs in an antigen-induced model of arthritis (AIA). EVs isolated from MSCs cultured normoxically (21% O2, 5% CO2), hypoxically (2% O2, 5% CO2) or with a pro-inflammatory cytokine cocktail were applied into the AIA model. Disease pathology was assessed post-arthritis induction through swelling and histopathological analysis of synovial joint structure. Activated CD4+ T cells from healthy mice were cultured with EVs or MSCs to assess deactivation capabilities prior to application of standard EVs in vivo to assess T cell polarisation within the immune response to AIA. All EVs treatments reduced knee-joint swelling whilst only normoxic and pro-inflammatory primed EVs improved histopathological outcomes. In vitro culture with EVs did not achieve T cell deactivation. Polarisation towards CD4+ helper cells expressing IL17a (Th17) was reduced when normoxic and hypoxic EV treatments were applied in vitro. Normoxic EVs applied into the AIA model reduced Th17 polarisation and improved Regulatory T cell (Treg):Th17 homeostatic balance. Normoxic EVs present the optimal strategy for broad therapeutic benefit. EVs present an effective novel technology with the potential for cell-free therapeutic translation.
Collapse
|
2
|
Gui ZP, Hu Y, Zhou YN, Lin KL, Xu YJ. Effect of quercetin on chondrocyte phenotype and extracellular matrix expression. Chin J Nat Med 2021; 18:922-933. [PMID: 33357723 DOI: 10.1016/s1875-5364(20)60036-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/15/2022]
Abstract
Due to the poor repair ability of cartilage tissue, regenerative medicine still faces great challenges in the repair of large articular cartilage defects. Quercetin is widely applied as a traditional Chinese medicine in tissue regeneration including liver, bone and skin tissues. However, the evidence for its effects and internal mechanisms for cartilage regeneration are limited. In the present study, the effects of quercetin on chondrocyte function were systematically evaluated by CCK8 assay, PCR assay, cartilaginous matrix staining assays, immunofluorescence assay, and western blotting. The results showed that quercetin significantly up-regulated the expression of chondrogenesis genes and stimulated the secretion of GAG (glycosaminoglycan) through activating the ERK, P38 and AKT signalling pathways in a dose-dependent manner. Furthermore, in vivo experiments revealed that quercetin-loaded silk protein scaffolds dramatically stimulated the formation of new cartilage-like tissue with higher histological scores in rat femoral cartilage defects. These data suggest that quercetin can effectively stimulate chondrogenesis in vitro and in vivo, demonstrating the potential application of quercetin in the regeneration of cartilage defects.
Collapse
Affiliation(s)
- Zhi-Peng Gui
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200000, China
| | - Yue Hu
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200000, China; Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Yu-Ning Zhou
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200000, China; Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Kai-Li Lin
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200000, China.
| | - Yuan-Jin Xu
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200000, China; Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.
| |
Collapse
|
3
|
Carmona-Rivera C, Carlucci PM, Goel RR, James E, Brooks SR, Rims C, Hoffmann V, Fox DA, Buckner JH, Kaplan MJ. Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis. JCI Insight 2020; 5:139388. [PMID: 32484790 DOI: 10.1172/jci.insight.139388] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/20/2020] [Indexed: 01/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial joint inflammation, cartilage damage, and dysregulation of the adaptive immune system. While neutrophil extracellular traps (NETs) have been proposed to play a role in the generation of modified autoantigens and in the activation of synovial fibroblasts, it remains unknown whether NETs are directly involved in cartilage damage. Here, we report a new mechanism by which NET-derived elastase disrupts cartilage matrix and induces release of membrane-bound peptidylarginine deiminase-2 by fibroblast-like synoviocytes (FLSs). Cartilage fragments are subsequently citrullinated, internalized by FLSs, and then presented to antigen-specific CD4+ T cells. Furthermore, immune complexes containing citrullinated cartilage components can activate macrophages to release proinflammatory cytokines. HLA-DRB1*04:01 transgenic mice immunized with NETs develop autoantibodies against citrullinated cartilage proteins and display enhanced cartilage damage. Inhibition of NET-derived elastase rescues NET-mediated cartilage damage. These results show that NETs and neutrophil elastase externalized in these structures play fundamental pathogenic roles in promoting cartilage damage and synovial inflammation. Strategies targeting neutrophil elastase and NETs could have a therapeutic role in RA and in other inflammatory diseases associated with inflammatory joint damage.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Philip M Carlucci
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Rishi R Goel
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Eddie James
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Stephen R Brooks
- Office of the Clinical Director, Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Cliff Rims
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Victoria Hoffmann
- Division of Veterinary Resources, Office of the Director, NIH, Bethesda, Maryland, USA
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Markovics A, Toth DM, Glant TT, Mikecz K. Regulation of autoimmune arthritis by the SHP-1 tyrosine phosphatase. Arthritis Res Ther 2020; 22:160. [PMID: 32586377 PMCID: PMC7318740 DOI: 10.1186/s13075-020-02250-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background The Src homology region 2 domain-containing phosphatase-1 (SHP-1) is known to exert negative regulatory effects on immune cell signaling. Mice with mutations in the Shp1 gene develop inflammatory skin disease and autoimmunity, but no arthritis. We sought to explore the role of SHP-1 in arthritis using an autoimmune mouse model of rheumatoid arthritis. We generated Shp1 transgenic (Shp1-Tg) mice to study the impact of SHP-1 overexpression on arthritis susceptibility and adaptive immune responses. Methods SHP-1 gene and protein expression as well as tyrosine phosphatase activity were evaluated in spleen cells of transgenic and wild type (WT) mice. WT and Shp1-Tg (homozygous or heterozygous for the transgene) mice were immunized with human cartilage proteoglycan (PG) in adjuvant, and arthritis symptoms were monitored. Protein tyrosine phosphorylation level, net cytokine secretion, and serum anti-human PG antibody titers were measured in immune cells from WT and Shp1-Tg mice. WT mice were treated with regorafenib orally to activate SHP-1 either before PG-induced arthritis (PGIA) symptoms developed (preventive treatment) or starting at an early stage of disease (therapeutic treatment). Data were statistically analyzed and graphs created using GraphPad Prism 8.0.2 software. Results SHP-1 expression and tyrosine phosphatase activity were elevated in both transgenic lines compared to WT mice. While all WT mice developed arthritis after immunization, none of the homozygous Shp1-Tg mice developed the disease. Heterozygous transgenic mice, which showed intermediate PGIA incidence, were selected for further investigation. We observed differences in interleukin-4 and interleukin-10 production in vitro, but serum anti-PG antibody levels were not different between the genotypes. We also found decreased tyrosine phosphorylation of several proteins of the JAK/STAT pathway in T cells from PG-immunized Shp1-Tg mice. Regorafenib administration to WT mice prevented the development of severe PGIA or reduced disease severity when started after disease onset. Conclusions Resistance to arthritis in the presence of SHP-1 overexpression likely results from the impairment of tyrosine phosphorylation (deactivation) of key immune cell signaling proteins in the JAK/STAT pathway, due to the overwhelming tyrosine phosphatase activity of the enzyme in Shp1-Tg mice. Our study is the first to investigate the role of SHP-1 in autoimmune arthritis using animals overexpressing this phosphatase. Pharmacological activation of SHP-1 might be considered as a new approach to the treatment of autoimmune arthritis.
Collapse
Affiliation(s)
- Adrienn Markovics
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building, Room 741, Chicago, IL, 60612, USA.
| | - Daniel M Toth
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building, Room 741, Chicago, IL, 60612, USA
| | - Tibor T Glant
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building, Room 741, Chicago, IL, 60612, USA
| | - Katalin Mikecz
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building, Room 741, Chicago, IL, 60612, USA
| |
Collapse
|
5
|
Ma Z, Mao C, Jia Y, Fu Y, Kong W. Extracellular matrix dynamics in vascular remodeling. Am J Physiol Cell Physiol 2020; 319:C481-C499. [PMID: 32579472 DOI: 10.1152/ajpcell.00147.2020] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular remodeling is the adaptive response to various physiological and pathophysiological alterations that are closely related to aging and vascular diseases. Understanding the mechanistic regulation of vascular remodeling may be favorable for discovering potential therapeutic targets and strategies. The extracellular matrix (ECM), including matrix proteins and their degradative metalloproteases, serves as the main component of the microenvironment and exhibits dynamic changes during vascular remodeling. This process involves mainly the altered composition of matrix proteins, metalloprotease-mediated degradation, posttranslational modification of ECM proteins, and altered topographical features of the ECM. To date, adequate studies have demonstrated that ECM dynamics also play a critical role in vascular remodeling in various diseases. Here, we review these related studies, summarize how ECM dynamics control vascular remodeling, and further indicate potential diagnostic biomarkers and therapeutic targets in the ECM for corresponding vascular diseases.
Collapse
Affiliation(s)
- Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
6
|
Liu Q, Yang H, Duan J, Zhang H, Xie M, Ren H, Zhang M, Zhang J, Lu L, Liu X, Yu S, Wang M. Bilateral anterior elevation prosthesis boosts chondrocytes proliferation in mice mandibular condyle. Oral Dis 2019; 25:1589-1599. [DOI: 10.1111/odi.13128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Liu
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Hong‐xu Yang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Jing Duan
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Hong‐yun Zhang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Mian‐jiao Xie
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Hao‐tian Ren
- Department of Stomatology, Changhai Hospital The Second Military Medical University Shanghai China
| | - Mian Zhang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Jing Zhang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Lei Lu
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Xiao‐dong Liu
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Shi‐bin Yu
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Mei‐qing Wang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| |
Collapse
|
7
|
Rims C, Uchtenhagen H, Kaplan MJ, Carmona-Rivera C, Carlucci P, Mikecz K, Markovics A, Carlin J, Buckner JH, James EA. Citrullinated Aggrecan Epitopes as Targets of Autoreactive CD4+ T Cells in Patients With Rheumatoid Arthritis. Arthritis Rheumatol 2019; 71:518-528. [PMID: 30390384 DOI: 10.1002/art.40768] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 10/30/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Recognition of citrullinated antigens such as vimentin, fibrinogen, and α-enolase is associated with rheumatoid arthritis (RA). Emerging data suggest that the matrix protein aggrecan is also recognized as a citrullinated antigen. This study was undertaken to directly visualize Cit-aggrecan-specific T cells and characterize them in patients with RA. METHODS Citrullinated aggrecan peptides with likely DRB1*04:01 binding motifs were predicted using a previously published scanning algorithm. Peptides with detectable binding were assessed for immunogenicity by HLA tetramer staining, followed by single cell cloning. Selectivity for citrullinated peptide was assessed by tetramer staining and proliferation assays. Ex vivo tetramer staining was then performed to assess frequencies of aggrecan-specific T cells in peripheral blood. Finally, disease association was assessed by comparing T cell frequencies in RA patients and controls and correlating aggrecan-specific T cells with levels of aggrecan-specific antibodies. RESULTS We identified 6 immunogenic peptides, 2 of which were the predominant T cell targets in peripheral blood. These 2 epitopes were citrullinated at HLA binding residues and shared homologous sequences. RA patients had significantly higher frequencies of Cit-aggrecan-specific T cells than healthy subjects. Furthermore, T cell frequencies were significantly correlated with antibodies against citrullinated aggrecan. CONCLUSION Our findings indicate that T cells that recognize citrullinated aggrecan are present in patients with RA and correlate with antibodies that target this same antigen. Consequently, aggrecan-specific T cells and antibodies are potentially relevant markers that could be used to monitor patients with RA or at-risk subjects.
Collapse
Affiliation(s)
- Cliff Rims
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Hannes Uchtenhagen
- Benaroya Research Institute at Virginia Mason, Seattle, Washington.,Benaroya Research Institute at Virginia Mason, Seattle, Washington, and Karolinksa Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Carmelo Carmona-Rivera
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Philip Carlucci
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | | | | | | | - Jane H Buckner
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| |
Collapse
|
8
|
Kay AG, Long G, Tyler G, Stefan A, Broadfoot SJ, Piccinini AM, Middleton J, Kehoe O. Mesenchymal Stem Cell-Conditioned Medium Reduces Disease Severity and Immune Responses in Inflammatory Arthritis. Sci Rep 2017; 7:18019. [PMID: 29269885 PMCID: PMC5740178 DOI: 10.1038/s41598-017-18144-w] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
We evaluated the therapeutic potential of mesenchymal stem cell-conditioned medium (CM-MSC) as an alternative to cell therapy in an antigen-induced model of arthritis (AIA). Disease severity and cartilage loss were evaluated by histopathological analysis of arthritic knee joints and immunostaining of aggrecan neoepitopes. Cell proliferation was assessed for activated and naïve CD4+ T cells from healthy mice following culture with CM-MSC or co-culture with MSCs. T cell polarization was analysed in CD4+ T cells isolated from spleens and lymph nodes of arthritic mice treated with CM-MSC or MSCs. CM-MSC treatment significantly reduced knee-joint swelling, histopathological signs of AIA, cartilage loss and suppressed TNFα induction. Proliferation of CD4+ cells from spleens of healthy mice was not affected by CM-MSC but reduced when cells were co-cultured with MSCs. In the presence of CM-MSC or MSCs, increases in IL-10 concentration were observed in culture medium. Finally, CD4+ T cells from arthritic mice treated with CM-MSC showed increases in FOXP3 and IL-4 expression and positively affected the Treg:Th17 balance in the tissue. CM-MSC treatment reduces cartilage damage and suppresses immune responses by reducing aggrecan cleavage, enhancing Treg function and adjusting the Treg:Th17 ratio. CM-MSC may provide an effective cell-free therapy for inflammatory arthritis.
Collapse
Affiliation(s)
- Alasdair G Kay
- Biology Department, University of York, Wentworth Way, York, UK.,ISTM at RJAH Orthopaedic Hospital, Keele University, Oswestry, UK
| | - Grace Long
- School of Medicine, Keele University, Staffordshire, UK
| | - George Tyler
- School of Medicine, Keele University, Staffordshire, UK
| | - Andrei Stefan
- ISTM at RJAH Orthopaedic Hospital, Keele University, Oswestry, UK
| | | | | | - Jim Middleton
- Faculty of Health Sciences, School of Oral and Dental Science, University of Bristol, Bristol, UK
| | - Oksana Kehoe
- ISTM at RJAH Orthopaedic Hospital, Keele University, Oswestry, UK.
| |
Collapse
|
9
|
Corsiero E, Pratesi F, Prediletto E, Bombardieri M, Migliorini P. NETosis as Source of Autoantigens in Rheumatoid Arthritis. Front Immunol 2016; 7:485. [PMID: 27895639 PMCID: PMC5108063 DOI: 10.3389/fimmu.2016.00485] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/21/2016] [Indexed: 12/29/2022] Open
Abstract
In neutrophils (but also in eosinophils and in mast cells), different inflammatory stimuli induce histone deimination, chromatin decondensation, and NET formation. These web-like structures that trap and kill microbes contain DNA, cationic granule proteins, and antimicrobial peptides, but the most abundant proteins are core histones. Histones contained in NETs have been deiminated, and arginines are converted in citrullines. While deimination is a physiological process amplified in inflammatory conditions, only individuals carrying genetic predisposition to develop rheumatoid arthritis (RA) make antibodies to deiminated proteins. These antibodies, collectively identified as anti-citrullinated proteins/peptides antibodies (ACPA), react with different deiminated proteins and display partially overlapping specificities. In this paper, we will summarize current evidence supporting the role of NETosis as critical mechanism in the breach of tolerance to self-antigens and in supporting expansion and differentiation of autoreactive cells. In fact, several lines of evidence connect NETosis with RA: RA unstimulated synovial fluid neutrophils display enhanced NETosis; sera from RA patients with Felty's syndrome bind deiminated H3 and NETs; a high number of RA sera bind deiminated H4 contained in NETs; human monoclonal antibodies generated from RA synovial B cells decorate NETs and bind deiminated histones. In RA, NETs represent on one side an important source of autoantigens bearing posttranslational modifications and fueling the production of ACPA. On the other side, NETs deliver signals that maintain an inflammatory milieu and contribute to the expansion and differentiation of ACPA-producing B cells.
Collapse
Affiliation(s)
- Elisa Corsiero
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Federico Pratesi
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| | - Edoardo Prediletto
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| |
Collapse
|
10
|
Markovics A, Ocskó T, Katz RS, Buzás EI, Glant TT, Mikecz K. Immune Recognition of Citrullinated Proteoglycan Aggrecan Epitopes in Mice with Proteoglycan-Induced Arthritis and in Patients with Rheumatoid Arthritis. PLoS One 2016; 11:e0160284. [PMID: 27466816 PMCID: PMC4965111 DOI: 10.1371/journal.pone.0160284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/15/2016] [Indexed: 01/11/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune inflammatory disease affecting the joints. Anti-citrullinated protein antibodies (ACPA) are frequently found in RA. Previous studies identified a citrullinated epitope in cartilage proteoglycan (PG) aggrecan that elicited pro-inflammatory cytokine production by RA T cells. We recently reported the presence of ACPA-reactive (citrullinated) PG in RA cartilage. Herein, we sought to identify additional citrullinated epitopes in human PG that are recognized by T cells or antibodies from RA patients. Methods We used mice with PG-induced arthritis (PGIA) as a screening tool to select citrulline (Cit)-containing PG peptides that were more immunogenic than the arginine (R)-containing counterparts. The selected peptide pairs were tested for induction of pro-inflammatory T-cell cytokine production in RA and healthy control peripheral blood mononuclear cell (PBMC) cultures using ELISA and flow cytometry. Anti-Cit and anti-R peptide antibodies were detected by ELISA. Results Splenocytes from mice with PGIA exhibited greater T-cell cytokine secretion in response to the Cit than the R version of PG peptide 49 (P49) and anti-P49 antibodies were found in PGIA serum. PBMC from ACPA+ and ACPA- RA patients, but not from healthy controls, responded to Cit49 with robust cytokine production. High levels of anti-Cit49 antibodies were found in the plasma of a subset of ACPA+ RA patients. Another PG peptide (Cit13) similar to the previously described T-cell epitope induced greater cytokine responses than R13 by control (but not RA) PBMC, however, anti-Cit13 antibodies were rarely detected in human plasma. Conclusions We identified a novel citrullinated PG epitope (Cit49) that is highly immunogenic in mice with PGIA and in RA patients. We also describe T-cell and antibody reactivity with Cit49 in ACPA+ RA. As citrullinated PG might be present in RA articular cartilage, Cit PG epitope-induced T-cell activation or antibody deposition may occur in the joints of RA patients.
Collapse
Affiliation(s)
- Adrienn Markovics
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Tímea Ocskó
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Robert S Katz
- Rheumatology Associates, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tibor T Glant
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Katalin Mikecz
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|