1
|
Zhao K, Yang T, Pang B, Wang H, Yang Z, Liang W, Rui C, Gao W. Response of different cotton genotypes to salt stress and re-watering. BMC PLANT BIOLOGY 2025; 25:587. [PMID: 40320527 PMCID: PMC12051324 DOI: 10.1186/s12870-025-06534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Cotton is a vital economic crop and reserve material and a pioneer crop planted on saline-alkaline soil. Improving the tolerance of cotton to saline alkaline environments is particularly important. RESULTS Salt-tolerant and salt-sensitive cotton plants at the three-leaf stage were subjected to 200 mM NaCl stress treatment, thereafter, microstructural observations beside physiological and biochemical analyses were performed on cotton leaves at 0 h (CK), 48 h (NaCl) and re-watering (RW) for 48 h. Salt stress altered microstructural observations and physiological and biochemical in ST and SS (p < 0.05). After re-watering, ST recovered fully, while SS sustained permanent oxidative and structural damage, indicating distinct salt tolerance. Transcriptome analysis was performed on cotton leaves under salt stress and re-watering conditions. KEGG analysis revealed that the response of cotton to salt stress and its adaptation to re-watering may be related to major protein families such as photosynthesis (ko 00195), photosynthesis-antenna protein (ko 00196), plant hormone signal transduction (ko 04075), starch and sucrose metabolism (ko 00500), and porphyrin and chlorophyll metabolism (ko 00860). A gray coexpression module associated with cotton restoration under salt stress was enriched according to WGCNA. CONCLUSIONS Salt stress did not only affect the physiological and biochemical levels of cotton but also induced structural changes in cells and tissues. Re-watering was relatively effective in stabilizing the physiological and biochemical parameters, as well as the leaf microstructure, of cotton plants under salt stress. WGCNA revealed enriched gray coexpression modules related to the recovery of cotton plants under salt stress, and screening of the pivotal genes in the gray module revealed five critical hubs, namely, GH_A01G1528, GH_A08G2688, GH_D08G2683, GH_D01G1620 and GH_A10G0617. Overall, our findings can provide new insights into enhancing cotton salt tolerance and exploring salt tolerance genes in cotton,including screening cotton genetic resources using those potential responsive genes. This study provides a theoretical basis for further exploration of the molecular mechanism of cotton salt tolerance and genetic resources for breeding salt-tolerant cotton.
Collapse
Affiliation(s)
- Kang Zhao
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China
| | - Tao Yang
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China
| | - Bo Pang
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China
| | - Honggang Wang
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China
| | - Zhining Yang
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China
| | - Weiwei Liang
- Grass Industry Research Institute of Xinjiang Animal Science Academy, Urumqi, 830000, China
| | - Cun Rui
- Anyang Institute of Technology, Anyang, 455000, China.
| | - Wengwei Gao
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China.
| |
Collapse
|
2
|
Safiullina AK, Ernazarova DK, Turaev OS, Rafieva FU, Ernazarova ZA, Arslanova SK, Toshpulatov AK, Oripova BB, Kudratova MK, Khalikov KK, Iskandarov AA, Khidirov MT, Yu JZ, Kushanov FN. Genetic Diversity and Subspecific Races of Upland Cotton ( Gossypium hirsutum L.). Genes (Basel) 2024; 15:1533. [PMID: 39766800 PMCID: PMC11675639 DOI: 10.3390/genes15121533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The classification and phylogenetic relationships of Gossypium hirsutum L. landraces, despite their proximity to southern Mexico, remain unresolved. This study aimed to clarify these relationships using SSR markers and hybridization methods, focusing on subspecies and race differentiation within G. hirsutum L. Methods: Seventy polymorphic SSR markers (out of 177 tested) were used to analyze 141 alleles and calculate genetic distances among accessions. Phylogenetic relationships were determined using MEGA software (version 11.0.13) and visualized in a phylogenetic tree. ANOVA in NCSS 12 was used for statistical analysis. Over 1000 inter-race crosses were conducted to assess boll-setting rates. Results: Distinct phylogenetic patterns were identified between G. hirsutum subspecies and races, correlating with boll-setting rates. Latifolium, richmondii, and morilli showed no significant increase in boll-setting rates in reciprocal crosses. Cultivars Omad and Bakht, as paternal parents, yielded higher boll-setting rates. Religiosum and yucatanense displayed high boll- and seed-setting rates as maternal parents but low rates as paternal parents. Additionally, phylogenetic analysis revealed a close relationship between cultivars 'Omad' and 'Bakht' with G. hirsutum race richmondii, indicating their close evolutionary relationship. Conclusions: Reciprocal differentiation characteristics of G. hirsutum subspecies and races, particularly religiosum and yucatanense, should be considered during hybridization for genetic and breeding studies. Understanding the phylogenetic relationships among G. hirsutum taxa is crucial for exploring the genetic diversity of this economically important species.
Collapse
Affiliation(s)
- Asiya K. Safiullina
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Dilrabo K. Ernazarova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Ozod S. Turaev
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Research Institute of Plant Genetic Resources, National Center for Knowledge and Innovation in Agriculture, Tashkent 100180, Uzbekistan
| | - Feruza U. Rafieva
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Ziraatkhan A. Ernazarova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Sevara K. Arslanova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Abdulqahhor Kh. Toshpulatov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Barno B. Oripova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Mukhlisa K. Kudratova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Kuvandik K. Khalikov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Abdulloh A. Iskandarov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Mukhammad T. Khidirov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - John Z. Yu
- United States Department of Agriculture (USDA)—Agricultural Research Service (ARS), Southern Plains Agricultural Research Center, College Station, TX 77845, USA;
| | - Fakhriddin N. Kushanov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| |
Collapse
|
3
|
Khidirov MT, Ernazarova DK, Rafieva FU, Ernazarova ZA, Toshpulatov AK, Umarov RF, Kholova MD, Oripova BB, Kudratova MK, Gapparov BM, Khidirova MM, Komilov DJ, Turaev OS, Udall JA, Yu JZ, Kushanov FN. Genomic and Cytogenetic Analysis of Synthetic Polyploids between Diploid and Tetraploid Cotton ( Gossypium) Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:4184. [PMID: 38140511 PMCID: PMC10748080 DOI: 10.3390/plants12244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Cotton (Gossypium spp.) is the most important natural fiber source in the world. The genetic potential of cotton can be successfully and efficiently exploited by identifying and solving the complex fundamental problems of systematics, evolution, and phylogeny, based on interspecific hybridization of cotton. This study describes the results of interspecific hybridization of G. herbaceum L. (A1-genome) and G. mustelinum Miers ex Watt (AD4-genome) species, obtaining fertile hybrids through synthetic polyploidization of otherwise sterile triploid forms with colchicine (C22H25NO6) treatment. The fertile F1C hybrids were produced from five different cross combinations: (1) G. herbaceum subsp. frutescens × G. mustelinum; (2) G. herbaceum subsp. pseudoarboreum × G. mustelinum; (3) G. herbaceum subsp. pseudoarboreum f. harga × G. mustelinum; (4) G. herbaceum subsp. africanum × G. mustelinum; (5) G. herbaceum subsp. euherbaceum (variety A-833) × G. mustelinum. Cytogenetic analysis discovered normal conjugation of bivalent chromosomes in addition to univalent, open, and closed ring-shaped quadrivalent chromosomes at the stage of metaphase I in the F1C and F2C hybrids. The setting of hybrid bolls obtained as a result of these crosses ranged from 13.8-92.2%, the fertility of seeds in hybrid bolls from 9.7-16.3%, and the pollen viability rates from 36.6-63.8%. Two transgressive plants with long fiber of 35.1-37.0 mm and one plant with extra-long fiber of 39.1-41.0 mm were identified in the F2C progeny of G. herbaceum subsp. frutescens × G. mustelinum cross. Phylogenetic analysis with 72 SSR markers that detect genomic changes showed that tetraploid hybrids derived from the G. herbaceum × G. mustelinum were closer to the species G. mustelinum. The G. herbaceum subsp. frutescens was closer to the cultivated form, and its subsp. africanum was closer to the wild form. New knowledge of the interspecific hybridization and synthetic polyploidization was developed for understanding the genetic mechanisms of the evolution of tetraploid cotton during speciation. The synthetic polyploids of cotton obtained in this study would provide beneficial genes for developing new cotton varieties of the G. hirsutum species, with high-quality cotton fiber and strong tolerance to biotic or abiotic stress. In particular, the introduction of these polyploids to conventional and molecular breeding can serve as a bridge of transferring valuable genes related to high-quality fiber and stress tolerance from different cotton species to the new cultivars.
Collapse
Affiliation(s)
- Mukhammad T. Khidirov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Dilrabo K. Ernazarova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan;
| | - Feruza U. Rafieva
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Ziraatkhan A. Ernazarova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Abdulqahhor Kh. Toshpulatov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Ramziddin F. Umarov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Madina D. Kholova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Barno B. Oripova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Mukhlisa K. Kudratova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Bunyod M. Gapparov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | | | - Doniyor J. Komilov
- Department of Biology, Namangan State University, Uychi Street-316, Namangan 160100, Uzbekistan;
| | - Ozod S. Turaev
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan;
| | - Joshua A. Udall
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA;
| | - John Z. Yu
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA;
| | - Fakhriddin N. Kushanov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan;
- Department of Biology, Namangan State University, Uychi Street-316, Namangan 160100, Uzbekistan;
| |
Collapse
|
4
|
Shi X, Song J, Wang H, Lv X, Tian T, Wang J, Li W, Zhong M, Jiang M. Improving the monitoring of root zone soil salinity under vegetation cover conditions by combining canopy spectral information and crop growth parameters. FRONTIERS IN PLANT SCIENCE 2023; 14:1171594. [PMID: 37469774 PMCID: PMC10352918 DOI: 10.3389/fpls.2023.1171594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Soil salinization is one of the main causes of land degradation in arid and semi-arid areas. Timely and accurate monitoring of soil salinity in different areas is a prerequisite for amelioration. Hyperspectral technology has been widely used in soil salinity monitoring due to its high efficiency and rapidity. However, vegetation cover is an inevitable interference in the direct acquisition of soil spectra during crop growth period, which greatly limits the monitoring of soil salinity by remote sensing. Due to high soil salinity could lead to difficulty in plants' water absorption, and inhibit plant dry matter accumulation, a method for monitoring root zone soil salinity by combining vegetation canopy spectral information and crop aboveground growth parameters was proposed in this study. The canopy spectral information was acquired by a spectroradiometer, and then variable importance in projection (VIP), competitive adaptive reweighted sampling (CARS), and random frog algorithm (RFA) were used to extract the salinity spectral features in cotton canopy spectrum. The extracted features were then used to estimate root zone soil salinity in cotton field by combining with cotton plant height, aboveground biomass, and shoot water content. The results showed that there was a negative correlation between plant height/aboveground biomass/shoot water content and soil salinity in 0-20, 0-40, and 0-60 cm soil layers at different growth stages of cotton. Spectral feature selection by the three methods all improved the prediction accuracy of soil salinity, especially CARS. The prediction accuracy based on the combination of spectral features and cotton growth parameters was significantly higher than that based on only spectral features, with R2 increasing by 10.01%, 18.35%, and 29.90% for the 0-20, 0-40, and 0-60 cm soil layer, respectively. The model constructed based on the first derivative spectral preprocessing, spectral feature selection by CARS, cotton plant height, and shoot water content had the highest accuracy for each soil layer, with R2 of 0.715,0.769, and 0.742 for the 0-20, 0-40, 0-60 cm soil layer, respectively. Therefore, the method by combining cotton canopy hyperspectral data and plant growth parameters could significantly improve the prediction accuracy of root zone soil salinity under vegetation cover conditions. This is of great significance for the amelioration of saline soil in salinized farmlands arid areas.
Collapse
Affiliation(s)
- Xiaoyan Shi
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Jianghui Song
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Haijiang Wang
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Xin Lv
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Tian Tian
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Jingang Wang
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Weidi Li
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Mingtao Zhong
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Menghao Jiang
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
5
|
Anwar Z, Ijaz A, Ditta A, Wang B, Liu F, Khan SMUD, Haidar S, Hassan HM, Khan MKR. Genomic Dynamics and Functional Insights under Salt Stress in Gossypium hirsutum L. Genes (Basel) 2023; 14:1103. [PMID: 37239463 PMCID: PMC10218025 DOI: 10.3390/genes14051103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The changing climate is intensifying salt stress globally. Salt stress is a menace to cotton crop quality and yield. The seedling, germination, and emergence phases are more prone to the effects of salt stress than other stages. Higher levels of salt can lead to delayed flowering, a reduced number of fruiting positions, shedding of fruits, decreased boll weight, and yellowing of fiber, all of which have an adverse effect on the yield and quality of the seed cotton. However, sensitivity toward salt stress is dependent on the salt type, cotton growth phase, and genotype. As the threat of salt stress continues to grow, it is crucial to gain a comprehensive understanding of the mechanisms underlying salt tolerance in plants and to identify potential avenues for enhancing the salt tolerance of cotton. The emergence of marker-assisted selection, in conjunction with next-generation sequencing technologies, has streamlined cotton breeding efforts. This review begins by providing an overview of the causes of salt stress in cotton, as well as the underlying theory of salt tolerance. Subsequently, it summarizes the breeding methods that utilize marker-assisted selection, genomic selection, and techniques for identifying elite salt-tolerant markers in wild species or mutated materials. Finally, novel cotton breeding possibilities based on the approaches stated above are presented and debated.
Collapse
Affiliation(s)
- Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong 226000, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China;
| | - Sana Muhy-Ud-Din Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Hafiz Mumtaz Hassan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| |
Collapse
|
6
|
Ju F, Sun L, Xiong C, Wang Z, Yu H, Pang J, Bai H, Zhao W, Zhou Z, Chen B. Weighted gene co-expression network analysis revealed the key pathways and hub genes of potassium regulating cotton root adaptation to salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1132877. [PMID: 36938049 PMCID: PMC10014550 DOI: 10.3389/fpls.2023.1132877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Soil salinization is one of the main abiotic stresses affecting cotton yield and planting area. Potassium application has been proven to be an important strategy to reduce salt damage in agricultural production. However, the mechanism of potassium regulating the salt adaptability of cotton has not been fully elucidated. In the present research, the appropriate potassium application rate for alleviating salt damage of cotton based on different K+/Na+ ratios we screened, and a gene co-expression network based on weighted gene co-expression network analysis (WGCNA) using the transcriptome data sets treated with CK (0 mM NaCl), S (150 mM NaCl), and SK8 (150 mM NaCl + 9.38 mM K2SO4) was constructed. In this study, four key modules that are highly related to potassium regulation of cotton salt tolerance were identified, and the mitogen-activated protein kinase (MAPK) signaling pathway, tricarboxylic acid (TCA) cycle and glutathione metabolism pathway were identified as the key biological processes and metabolic pathways for potassium to improve cotton root salt adaptability. In addition, 21 hub genes and 120 key candidate genes were identified in this study, suggesting that they may play an important role in the enhancement of salt adaptability of cotton by potassium. The key modules, key biological pathways and hub genes discovered in this study will provide a new understanding of the molecular mechanism of potassium enhancing salinity adaptability in cotton, and lay a theoretical foundation for the improvement and innovation of high-quality cotton germplasm.
Collapse
Affiliation(s)
- Feiyan Ju
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Liyuan Sun
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Cai Xiong
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Zhuo Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Huilian Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Jiali Pang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Hua Bai
- School of Agricultural Sciences, Northwest Missouri State University, Maryville, MO, United States
| | - Wengqing Zhao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Binglin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| |
Collapse
|
7
|
Schiebelhut LM, Giakoumis M, Castilho R, Duffin PJ, Puritz JB, Wares JP, Wessel GM, Dawson MN. Minor Genetic Consequences of a Major Mass Mortality: Short-Term Effects in Pisaster ochraceus. THE BIOLOGICAL BULLETIN 2022; 243:328-338. [PMID: 36716481 PMCID: PMC10668074 DOI: 10.1086/722284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AbstractMass mortality events are increasing globally in frequency and magnitude, largely as a result of human-induced change. The effects of these mass mortality events, in both the long and short term, are of imminent concern because of their ecosystem impacts. Genomic data can be used to reveal some of the population-level changes associated with mass mortality events. Here, we use reduced-representation sequencing to identify potential short-term genetic impacts of a mass mortality event associated with a sea star wasting outbreak. We tested for changes in the population for genetic differentiation, diversity, and effective population size between pre-sea star wasting and post-sea star wasting populations of Pisaster ochraceus-a species that suffered high sea star wasting-associated mortality (75%-100% at 80% of sites). We detected no significant population-based genetic differentiation over the spatial scale sampled; however, the post-sea star wasting population tended toward more differentiation across sites than the pre-sea star wasting population. Genetic estimates of effective population size did not detectably change, consistent with theoretical expectations; however, rare alleles were lost. While we were unable to detect significant population-based genetic differentiation or changes in effective population size over this short time period, the genetic burden of this mass mortality event may be borne by future generations, unless widespread recruitment mitigates the population decline. Prior results from P. ochraceus indicated that natural selection played a role in altering allele frequencies following this mass mortality event. In addition to the role of selection found in a previous study on the genomic impacts of sea star wasting on P. ochraceus, our current study highlights the potential role the stochastic loss of many individuals plays in altering how genetic variation is structured across the landscape. Future genetic monitoring is needed to determine long-term genetic impacts in this long-lived species. Given the increased frequency of mass mortality events, it is important to implement demographic and genetic monitoring strategies that capture baselines and background dynamics to better contextualize species' responses to large perturbations.
Collapse
Affiliation(s)
- Lauren M. Schiebelhut
- Life and Environmental Sciences, University of California, Merced, 5200 N. Lake Road, Merced, California 95343
| | - Melina Giakoumis
- Graduate Center, City University of New York, 365 5th Avenue, New York, New York 10016
- Department of Biology, City College of New York, 160 Convent Avenue, New York, New York 10031
| | - Rita Castilho
- University of Algarve, Campus de Gambelas, Faro, Portugal
- Center of Marine Sciences (CCMAR), Campus de Gambelas, Faro, Portugal
| | - Paige J. Duffin
- Odum School of Ecology and Department of Genetics, University of Georgia, 120 Green Street, Athens, Georgia 30602
| | - Jonathan B. Puritz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881
| | - John P. Wares
- Odum School of Ecology and Department of Genetics, University of Georgia, 120 Green Street, Athens, Georgia 30602
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Michael N Dawson
- Life and Environmental Sciences, University of California, Merced, 5200 N. Lake Road, Merced, California 95343
| |
Collapse
|
8
|
Ren W, Chen L, Xie ZM, Peng X. Combined transcriptome and metabolome analysis revealed pathways involved in improved salt tolerance of Gossypium hirsutum L. seedlings in response to exogenous melatonin application. BMC PLANT BIOLOGY 2022; 22:552. [PMID: 36451095 PMCID: PMC9710056 DOI: 10.1186/s12870-022-03930-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salinization is major abiotic stress limiting cotton production. Melatonin (MT) has been implicated in salt stress tolerance in multiple crops including upland cotton. Here, we explored the transcriptomic and metabolomic response of a salt-tolerant self-bred high-yielding cotton line SDS-01, which was exogenously sprayed with four MT concentrations (50, 100, 200, and 500 μM). RESULTS Here we found that MT improves plant biomass and growth under salt stress. The combined transcriptome sequencing and metabolome profiling approach revealed that photosynthetic efficiency is improved by increasing the expressions of chlorophyll metabolism and antenna proteins in MT-treated seedlings. Additionally, linoleic acid and flavonoid biosynthesis were improved after MT treatment. The Na+/K+ homeostasis-related genes were increasingly expressed in salt-stressed seedlings treated with MT as compared to the ones experiencing only salt stress. Melatonin treatment activated a cascade of plant-hormone signal transduction and reactive oxygen scavenging genes to alleviate the detrimental effects of salt stress. The global metabolome profile revealed an increased accumulation of flavonoids, organic acids, amino acids and derivatives, saccharides, and phenolic acids in MT-treated seedlings. Interestingly, N, N'-Diferuloylputrescine a known antioxidative compound was highly accumulated after MT treatment. CONCLUSION Collectively, our study concludes that MT is a salt stress regulator in upland cotton and alleviates salt-stress effects by modulating the expressions of photosynthesis (and related pathways), flavonoid, ROS scavenging, hormone signaling, linoleic acid metabolism, and ion homeostasis-related genes.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- China Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, 831505 Xinjiang China
| | - Li Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- China Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, 831505 Xinjiang China
| | - Zong ming Xie
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang China
| | - Xiaofeng Peng
- Agricultural Science Research Institute of the third division of Xinjiang production and Construction Corps, Tumushuke, 843800 Xinjiang China
| |
Collapse
|
9
|
Maryum Z, Luqman T, Nadeem S, Khan SMUD, Wang B, Ditta A, Khan MKR. An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:907937. [PMID: 36275563 PMCID: PMC9583260 DOI: 10.3389/fpls.2022.907937] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/20/2022] [Indexed: 05/14/2023]
Abstract
Salinity stress is one of the primary threats to agricultural crops resulting in impaired crop growth and development. Although cotton is considered as reasonably salt tolerant, it is sensitive to salt stress at some critical stages like germination, flowering, boll formation, resulting in reduced biomass and fiber production. The mechanism of partial ion exclusion (exclusion of Na+ and/or Cl-) in cotton appears to be responsible for the pattern of uptake and accumulation of harmful ions (Na+ and Cl) in tissues of plants exposed to saline conditions. Maintaining high tissue K+/Na+ and Ca2+/Na+ ratios has been proposed as a key selection factor for salt tolerance in cotton. The key adaptation mechanism in cotton under salt stress is excessive sodium exclusion or compartmentation. Among the cultivated species of cotton, Egyptian cotton (Gossypium barbadense L.) exhibit better salt tolerance with good fiber quality traits as compared to most cultivated cotton and it can be used to improve five quality traits and transfer salt tolerance into Upland or American cotton (Gossypium hirsutum L.) by interspecific introgression. Cotton genetic studies on salt tolerance revealed that the majority of growth, yield, and fiber traits are genetically determined, and controlled by quantitative trait loci (QTLs). Molecular markers linked to genes or QTLs affecting key traits have been identified, and they could be utilized as an indirect selection criterion to enhance breeding efficiency through marker-assisted selection (MAS). Transfer of genes for compatible solute, which are an important aspect of ion compartmentation, into salt-sensitive species is, theoretically, a simple strategy to improve tolerance. The expression of particular stress-related genes is involved in plant adaptation to environmental stressors. As a result, enhancing tolerance to salt stress can be achieved by marker assisted selection added with modern gene editing tools can boost the breeding strategies that defend and uphold the structure and function of cellular components. The intent of this review was to recapitulate the advancements in salt screening methods, tolerant germplasm sources and their inheritance, biochemical, morpho-physiological, and molecular characteristics, transgenic approaches, and QTLs for salt tolerance in cotton.
Collapse
Affiliation(s)
- Zahra Maryum
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Tahira Luqman
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Sahar Nadeem
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Sana Muhy Ud Din Khan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| |
Collapse
|
10
|
Guo X, Wang Y, Hou Y, Zhou Z, Sun R, Qin T, Wang K, Liu F, Wang Y, Huang Z, Xu Y, Cai X. Genome-Wide Dissection of the Genetic Basis for Drought Tolerance in Gossypium hirsutum L. Races. FRONTIERS IN PLANT SCIENCE 2022; 13:876095. [PMID: 35837453 PMCID: PMC9274165 DOI: 10.3389/fpls.2022.876095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Drought seriously threats the growth and development of Gossypium hirsutum L. To dissect the genetic basis for drought tolerance in the G. hirsutum L. germplasm, a population, consisting of 188 accessions of G. hirsutum races and a cultivar (TM-1), was genotyped using the Cotton80KSNP biochip, and 51,268 high-quality single-nucleotide polymorphisms (SNPs) were obtained. Based on the phenotypic data of eight drought relative traits from four environments, we carried out association mapping with five models using GAPIT software. In total, thirty-six SNPs were detected significantly associated at least in two environments or two models. Among these SNPs, 8 and 28 (including 24 SNPs in 5 peak regions) were distributed in the A and D subgenome, respectively; eight SNPs were found to be distributed within separate genes. An SNP, TM73079, located on chromosome D10, was simultaneously associated with leaf fresh weight, leaf wilted weight, and leaf dry weight. Another nine SNPs, TM47696, TM33865, TM40383, TM10267, TM59672, TM59675, TM59677, TM72359, and TM72361, on chromosomes A13, A10, A12, A5, D6, and D9, were localized within or near previously reported quantitative trait loci for drought tolerance. Moreover, 520 genes located 200 kb up- and down-stream of 36 SNPs were obtained and analyzed based on gene annotation and transcriptome sequencing. The results showed that three candidate genes, Gh_D08G2462, Gh_A03G0043, and Gh_A12G0369, may play important roles in drought tolerance. The current GWAS represents the first investigation into mapping QTL for drought tolerance in G. hirsutum races and provides important information for improving cotton cultivars.
Collapse
Affiliation(s)
- Xinlei Guo
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Wang
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Runrun Sun
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Tengfei Qin
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongwen Huang
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
11
|
Guo A, Su Y, Nie H, Li B, Ma X, Hua J. Identification of candidate genes involved in salt stress response at germination and seedling stages by QTL mapping in upland cotton. G3 GENES|GENOMES|GENETICS 2022; 12:6574358. [PMID: 35471243 PMCID: PMC9157077 DOI: 10.1093/g3journal/jkac099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Salinity is a major abiotic stress at critical stages of seed germination and seedling establishment. Germination rate (GR) and field emergence rate (FER) are the key traits that determine the basic number of plants stand under field conditions. To explore molecular mechanisms in upland cotton under salt stress, a population of 177 recombinant inbred lines, and their parents were evaluated for seed germination traits (GP, germination potential; GR; FW, fresh weight; DW, dry weight; GL, germinal length) and seedling traits (FER; SH, seedling height; NL, number of main stem leaves) in 2016–2018. Based on the linkage map contained 2,859 single nucleotide polymorphism and simple sequence repeat markers, traits under salt stress (E1) and normal conditions (E2), and in the converted relative index (R-value) dataset of 3 years’ trials were used to map quantitative trait loci (QTL). A total of 3 QTL and 2 clusters were detected as salt-tolerant QTL. Three QTL (qGR-Chr4-3, qFER-Chr12-3, and qFER-Chr15-1) were detected under salt stress conditions and R-value dataset, which explained variance of phenotype 9.62–13.67%, and 4.2–4.72%, 4.75–8.96%, respectively. Two clusters (Loci-Chr4-2 and Loci-Chr5-4) harboring the QTL for 4 germination traits (GR, FER, GL, and NL) and 6 seedling traits (GR, FER, DW, FW, SH, and NL) were detected related under salt stress. A total of 691 genes were found in the candidate QTL or clusters. Among them, 4 genes (Gh_A04G1106, Gh_A05G3246, Gh_A05G3177, and Gh_A05G3266) showed expression differences between salt-sensitive and -tolerant lines under salt stress conditions, and were assigned as candidate genes in response to salt stress. The consistent salt-tolerance QTL identified in both germination and seedling stages will facilitate novel insights into effective utilization of cotton genetic resources.
Collapse
Affiliation(s)
- Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ying Su
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xingkun Ma
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Abstract
On the world stage, the increase in temperatures due to global warming is already a reality that has become one of the main challenges faced by the scientific community. Since agriculture is highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been the subject of research by numerous groups worldwide. Initially, these studies were concentrated on model plants, and, later, they expanded their studies in several economically important crops such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of cultivars and the classical genetic improvement process focus, above all, on productivity, historically leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently being sought and adopted in breeding programs to understand the physiological, biochemical, and molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the world food security. Moreover, integration of these approaches is bringing new insights on breeding. We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
Collapse
|
13
|
Zheng J, Zhang Z, Gong Z, Liang Y, Sang Z, Xu Y, Li X, Wang J. Genome-Wide Association Analysis of Salt-Tolerant Traits in Terrestrial Cotton at Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2021; 11:97. [PMID: 35009100 PMCID: PMC8747425 DOI: 10.3390/plants11010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/01/2023]
Abstract
Soil salinization is the main abiotic stress factor affecting agricultural production worldwide, and salt stress has a significant impact on plant growth and development. Cotton is one of the most salt-tolerant crops. Therefore, the selection and utilization of salt-tolerant germplasm resources and the excavation of salt resistance genes play important roles in improving cotton production in saline-alkali soils. In this study, we analysed the population structure and genetic diversity of a total 149 cotton plant materials including 137 elite Gossypium hirsutum cultivar accessions collected from China and 12 elite Gossypium hirsutum cultivar accessions collected from around the world. Illumina Cotton SNP 70 K was used to obtain genome-wide single-nucleotide polymorphism (SNP) data for 149 elite Gossypium hirsutum cultivar accessions, and 18,430 highly consistent SNP loci were obtained by filtering. It was assessed by using PCA principal component analysis so that the 149 elite Gossypium hirsutum cultivar accessions could be divided into two subgroups, including subgroup 1 with 78 materials and subgroup 2 with 71 materials. Using the obtained SNP and other marker genotype test results, under salt stress, the salt tolerance traits 3d Germination potential, 3d Radicle length drop rate, 7d Germination rate, 7d Radicle length drop rate, 7d Germination weight, 3d Radicle length, 7d Radicle length, Relative Germination potential, Relative Germination rate, 7d Radicle weight drop rate, Salt tolerance index 3d Germination potential index, 3d Radicle length index, 7d Radicle length index, 7d Radicle weight index and 7d Germination rate index were evaluated by GWAS (genome-wide association analysis). A total of 27 SNP markers closely related to the salt tolerance traits and 15 SNP markers closely related to the salt tolerance index were detected. At the SNP locus associated with phenotyping, Gh_D01G0943, Gh_D01G0945, Gh_A01G0906, Gh_A01G0908, Gh_D08G1308 and Gh_D08G1309 related to plant salt tolerance were detected, and they were found to be involved in intracellular transport, sucrose synthesis, osmotic pressure balance, transmembrane transport, N-glycosylation, auxin response and cell amplification. This study provides a theoretical basis for the selection and breeding of salt-tolerant upland cotton varieties.
Collapse
Affiliation(s)
- Juyun Zheng
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Zeliang Zhang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Zhaolong Gong
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Yajun Liang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Zhiwei Sang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology (China), Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang 455000, China;
| | - Xueyuan Li
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Junduo Wang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| |
Collapse
|
14
|
Xu P, Guo Q, Meng S, Zhang X, Xu Z, Guo W, Shen X. Genome-wide association analysis reveals genetic variations and candidate genes associated with salt tolerance related traits in Gossypium hirsutum. BMC Genomics 2021; 22:26. [PMID: 33407102 PMCID: PMC7789578 DOI: 10.1186/s12864-020-07321-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cotton is more resistant to salt and drought stresses as compared to other field crops, which makes itself as a pioneer industrial crop in saline-alkali lands. However, abiotic stresses still negatively affect its growth and development significantly. It is therefore important to breed salt tolerance varieties which can help accelerate the improvement of cotton production. The development of molecular markers linked to causal genes has provided an effective and efficient approach for improving salt tolerance. Results In this study, a genome-wide association study (GWAS) of salt tolerance related traits at seedling stage was performed based on 2 years of phenotype identification for 217 representative upland cotton cultivars by genotyping-by-sequencing (GBS) platform. A total of 51,060 single nucleotide polymorphisms (SNPs) unevenly distributed among 26 chromosomes were screened across the cotton cultivars, and 25 associations with 27 SNPs scattered over 12 chromosomes were detected significantly (−log10p > 4) associated with three salt tolerance related traits in 2016 and 2017. Among these, the associations on chromosome A13 and D08 for relative plant height (RPH), A07 for relative shoot fresh matter weight (RSFW), A08 and A13 for relative shoot dry matter weight (RSDW) were expressed in both environments, indicating that they were likely to be stable quantitative trait loci (QTLs). A total of 12 salt-induced candidate genes were identified differentially expressed by the combination of GWAS and transcriptome analysis. Three promising genes were selected for preliminary function verification of salt tolerance. The increase of GH_A13G0171-silenced plants in salt related traits under salt stress indicated its negative function in regulating the salt stress response. Conclusions These results provided important genetic variations and candidate genes for accelerating the improvement of salt tolerance in cotton.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.,Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Qi Guo
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Shan Meng
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Xianggui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Zhenzhen Xu
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xinlian Shen
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China.
| |
Collapse
|
15
|
Xu P, Guo Q, Meng S, Zhang X, Xu Z, Guo W, Shen X. Genome-wide association analysis reveals genetic variations and candidate genes associated with salt tolerance related traits in Gossypium hirsutum. BMC Genomics 2021; 22:26. [PMID: 33407102 DOI: 10.21203/rs.3.rs-66236/v4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Cotton is more resistant to salt and drought stresses as compared to other field crops, which makes itself as a pioneer industrial crop in saline-alkali lands. However, abiotic stresses still negatively affect its growth and development significantly. It is therefore important to breed salt tolerance varieties which can help accelerate the improvement of cotton production. The development of molecular markers linked to causal genes has provided an effective and efficient approach for improving salt tolerance. RESULTS In this study, a genome-wide association study (GWAS) of salt tolerance related traits at seedling stage was performed based on 2 years of phenotype identification for 217 representative upland cotton cultivars by genotyping-by-sequencing (GBS) platform. A total of 51,060 single nucleotide polymorphisms (SNPs) unevenly distributed among 26 chromosomes were screened across the cotton cultivars, and 25 associations with 27 SNPs scattered over 12 chromosomes were detected significantly (-log10p > 4) associated with three salt tolerance related traits in 2016 and 2017. Among these, the associations on chromosome A13 and D08 for relative plant height (RPH), A07 for relative shoot fresh matter weight (RSFW), A08 and A13 for relative shoot dry matter weight (RSDW) were expressed in both environments, indicating that they were likely to be stable quantitative trait loci (QTLs). A total of 12 salt-induced candidate genes were identified differentially expressed by the combination of GWAS and transcriptome analysis. Three promising genes were selected for preliminary function verification of salt tolerance. The increase of GH_A13G0171-silenced plants in salt related traits under salt stress indicated its negative function in regulating the salt stress response. CONCLUSIONS These results provided important genetic variations and candidate genes for accelerating the improvement of salt tolerance in cotton.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Qi Guo
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Shan Meng
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Xianggui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Zhenzhen Xu
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xinlian Shen
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China.
| |
Collapse
|
16
|
Abdelraheem A, Thyssen GN, Fang DD, Jenkins JN, McCarty JC, Wedegaertner T, Zhang J. GWAS reveals consistent QTL for drought and salt tolerance in a MAGIC population of 550 lines derived from intermating of 11 Upland cotton (Gossypium hirsutum) parents. Mol Genet Genomics 2020; 296:119-129. [PMID: 33051724 DOI: 10.1007/s00438-020-01733-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
Cotton is grown in arid and semi-arid regions where abiotic stresses such as drought and salt are prevalent. There is a lack of studies that simultaneously address the genetic and genomic basis of tolerance to drought and salt stress. In this study, a multi-parent advanced generation inter-cross (MAGIC) population of 550 recombinant inbred lines (RILs) together with their 11 Upland cotton parents with a total of 473,516 polymorphic SNP markers was used to identify quantitative trait loci (QTL) for drought tolerance (DT) and salt tolerance (ST) at the seedling stage based on two replicated greenhouse tests. Transgressive segregation occurred in the MAGIC-RILs, indicating that tolerant and sensitive alleles recombined for tolerance to the abiotic stress during the intermating process for the population development. A total of 20 QTL were detected for DT including 13 and 7 QTL based on plant height (PH) and dry shoot weight (DSW), respectively; and 23 QTL were detected for ST including 12 and 11 QTL for PH and DSW, respectively. There were several chromosomes with QTL clusters for abiotic stress tolerance including four QTL on chromosome A13 and three QTL on A01 for DT, and four QTL on D08 and three QTL on A11 for ST. Nine QTL (21% of the 43 QTL) detected were in common between DT and ST, indicating a common genetic basis for DT and ST. The narrow chromosomal regions for most of the QTL detected in this study allowed identification of 53 candidate genes associated with responses to salt and drought stress and abiotic stimulus. The QTL identified for both DT and ST have significantly augmented the repertoire of QTL for abiotic stress tolerance that can be used for marker-assisted selection to develop cultivars with resilience to drought and/or salt and further genomic studies towards the identification of drought and salt tolerance genes in cotton.
Collapse
Affiliation(s)
- Abdelraheem Abdelraheem
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Gregory N Thyssen
- Cotton Fiber Bioscience and Cotton Chemistry and Utilization Research Units, USDA-ARS-SRRC, New Orleans, LA, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, USA
| | - Johnie N Jenkins
- Crop Science Research Laboratory, USDA-ARS, Mississippi State, MS, USA
| | - Jack C McCarty
- Crop Science Research Laboratory, USDA-ARS, Mississippi State, MS, USA
| | | | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
17
|
Zhu G, Gao W, Song X, Sun F, Hou S, Liu N, Huang Y, Zhang D, Ni Z, Chen Q, Guo W. Genome-wide association reveals genetic variation of lint yield components under salty field conditions in cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2020; 20:23. [PMID: 31937242 PMCID: PMC6961271 DOI: 10.1186/s12870-019-2187-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/05/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Salinity is one of the most significant environmental factors limiting the productivity of cotton. However, the key genetic components responsible for the reduction in cotton yield in saline-alkali soils are still unclear. RESULTS Here, we evaluated three main components of lint yield, single boll weight (SBW), lint percentage (LP) and boll number per plant (BNPP), across 316 G. hirsutum accessions under four salt conditions over two years. Phenotypic analysis indicated that LP was unchanged under different salt conditions, however BNPP decreased significantly and SBW increased slightly under high salt conditions. Based on 57,413 high-quality single nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) analysis, a total of 42, 91 and 25 stable quantitative trait loci (QTLs) were identified for SBW, LP and BNPP, respectively. Phenotypic and QTL analysis suggested that there was little correlation among the three traits. For LP, 8 stable QTLs were detected simultaneously in four different salt conditions, while fewer repeated QTLs for SBW or BNPP were identified. Gene Ontology (GO) analysis indicated that their regulatory mechanisms were also quite different. Via transcriptome profile data, we detected that 10 genes from the 8 stable LP QTLs were predominantly expressed during fiber development. Further, haplotype analyses found that a MYB gene (GhMYB103), with the two SNP variations in cis-regulatory and coding regions, was significantly correlated with lint percentage, implying a crucial role in lint yield. We also identified that 40 candidate genes from BNPP QTLs were salt-inducible. Genes related to carbohydrate metabolism and cell structure maintenance were rich in plants grown in high salt conditions, while genes related to ion transport were active in plants grown in low salt conditions, implying different regulatory mechanisms for BNPP at high and low salt conditions. CONCLUSIONS This study provides a foundation for elucidating cotton salt tolerance mechanisms and contributes gene resources for developing upland cotton varieties with high yields and salt stress tolerance.
Collapse
Affiliation(s)
- Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenwei Gao
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Fenglei Sun
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Sen Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Na Liu
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Yajie Huang
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhiyong Ni
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Quanjia Chen
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
18
|
Yuan Y, Xing H, Zeng W, Xu J, Mao L, Wang L, Feng W, Tao J, Wang H, Zhang H, Wang Q, Zhang G, Song X, Sun XZ. Genome-wide association and differential expression analysis of salt tolerance in Gossypium hirsutum L at the germination stage. BMC PLANT BIOLOGY 2019; 19:394. [PMID: 31510912 PMCID: PMC6737726 DOI: 10.1186/s12870-019-1989-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Salinity is a major abiotic stress seriously hindering crop yield. Development and utilization of tolerant varieties is the most economical way to address soil salinity. Upland cotton is a major fiber crop and pioneer plant on saline soil and thus its genetic architecture underlying salt tolerance should be extensively explored. RESULTS In this study, genome-wide association analysis and RNA sequencing were employed to detect salt-tolerant qualitative-trait loci (QTLs) and candidate genes in 196 upland cotton genotypes at the germination stage. Using comprehensive evaluation values of salt tolerance in four environments, we identified 33 significant single-nucleotide polymorphisms (SNPs), including 17 and 7 SNPs under at least two and four environments, respectively. The 17 stable SNPs were located within or near 98 candidate genes in 13 QTLs, including 35 genes that were functionally annotated to be involved in salt stress responses. RNA-seq analysis indicated that among the 98 candidate genes, 13 were stably differentially expressed. Furthermore, 12 of the 13 candidate genes were verified by qRT-PCR. RNA-seq analysis detected 6640, 3878, and 6462 differentially expressed genes at three sampling time points, of which 869 were shared. CONCLUSIONS These results, including the elite cotton accessions with accurate salt tolerance evaluation, the significant SNP markers, the candidate genes, and the salt-tolerant pathways, could improve our understanding of the molecular regulatory mechanisms under salt stress tolerance and genetic manipulation for cotton improvement.
Collapse
Affiliation(s)
- Yanchao Yuan
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Huixian Xing
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Wenguan Zeng
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Jialing Xu
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Lili Mao
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Liyuan Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Wei Feng
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Jincai Tao
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Haoran Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Haijun Zhang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Qingkang Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Guihua Zhang
- Heze Academy of Agricultural Sciences, Heze, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| | - Xue-Zhen Sun
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
19
|
Feng GL, Zhai FY, Liu HL, Ai NJ. Identification of genomewide single-nucleotide polymorphisms associated with presummer, summer and autumn bolls in upland cotton. J Genet 2019; 98:72. [PMID: 31544781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Presummer, summer, and autumn bolls (PSB, SB and AB, respectively) in cotton are related to both maturity and yield. Therefore, studying their genetic basis is important for breeding purposes. In this study, we developed an association analysis panel consisting of 169 upland cotton accessions. The panel was phenotyped for PSB, SB and AB across four environments and genotyped using a Cotton SNP80K array. Single-nucleotide polymorphisms (SNPs) associated with these three traits were identified by a genomewide association study. A total of 53,848 high-quality SNPs were screened, and 91 significant trait-associated SNPs were detected. Of the 91 SNPs 33 were associated with PSB, 21 with SB and 37 with AB. Three SNPs for PSB (TM10410, TM13158 and TM21762) and five for AB (TM13730, TM13733, TM13834, TM29666 and TM43214) were repeatedly detected in two environments or by two methods. These eight SNPs exhibited high phenotypic variation of more than 10%, thus allowing their use formarker-assisted selection. The candidate genes for target traits were also identified. These findings provide a theoretical basis for the improvement of early maturity and yield in cotton breeding programmes.
Collapse
Affiliation(s)
- Guo-Li Feng
- Shihezi Agricultural Science Research Institute, Shihezi 832000, Xinjiang Province, People's Republic of China.
| | | | | | | |
Collapse
|
20
|
Identification of genomewide single-nucleotide polymorphisms associated with presummer, summer and autumn bolls in upland cotton. J Genet 2019. [DOI: 10.1007/s12041-019-1118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Sharif I, Aleem S, Farooq J, Rizwan M, Younas A, Sarwar G, Chohan SM. Salinity stress in cotton: effects, mechanism of tolerance and its management strategies. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:807-820. [PMID: 31402811 PMCID: PMC6656830 DOI: 10.1007/s12298-019-00676-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 05/21/2023]
Abstract
Cotton is classified as moderately salt tolerant crop with salinity threshold level of 7.7 dS m-1. Salinity is a serious threat for cotton growth, yield and fiber quality. The sensitivity to salt stress depends upon growth stage and type of salt. Understanding of cotton response to salinity, its resistance mechanism and looking into management techniques may assist in formulating strategies to improve cotton performance under saline condition. The studies have showed that germination, emergence and seedling stages are more sensitive to salinity stress as compared to later stages. Salt stress results in delayed flowering, less fruiting positions, fruit shedding and reduced boll weight which ultimately affect seed cotton yield. Depressed activities of metabolic enzymes viz: acidic invertase, alkaline invertase and sucrose phophate synthase lead to fiber quality deterioration in salinity. Excessive sodium exclusion or its compartmentation is the main adaptive mechanism in cotton under salt stress. Up regulation of enzymatic and non-enzymatic antioxidants genes offer important adaptive potential to develop salt tolerant cotton varieties. Seed priming is also an effective approach for improving cotton germination in saline soils. Intra and inter variation in cotton germplasm could be used to develop salt tolerant varieties with the aid of marker assisted selection. Furthermore, transgenic approach could be the promising option for enhancing cotton production under saline condition. It is suggested that future research may be carried out with the combination of conventional and advance molecular technology to develop salt tolerant cultivars.
Collapse
Affiliation(s)
- Iram Sharif
- Cotton Research Station, AARI, Faisalabad, Pakistan
| | - Saba Aleem
- Vegetable Research Institute, AARI, Faisalabad, Pakistan
| | | | | | - Abia Younas
- Cotton Research Station, AARI, Faisalabad, Pakistan
| | | | | |
Collapse
|
22
|
Dilnur T, Peng Z, Pan Z, Palanga KK, Jia Y, Gong W, Du X. Association Analysis of Salt Tolerance in Asiatic cotton ( Gossypium arboretum) with SNP Markers. Int J Mol Sci 2019; 20:ijms20092168. [PMID: 31052464 PMCID: PMC6540053 DOI: 10.3390/ijms20092168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Salinity is not only a major environmental factor which limits plant growth and productivity, but it has also become a worldwide problem. However, little is known about the genetic basis underlying salt tolerance in cotton. This study was carried out to identify marker-trait association signals of seven salt-tolerance-related traits and one salt tolerance index using association analysis for 215 accessions of Asiatic cotton. According to a comprehensive index of salt tolerance (CIST), 215 accessions were mainly categorized into four groups, and 11 accessions with high salinity tolerance were selected for breeding. Genome-wide association studies (GWAS) revealed nine SNP rich regions significantly associated with relative fresh weight (RFW), relative stem length (RSL), relative water content (RWC) and CIST. The nine SNP rich regions analysis revealed 143 polymorphisms that distributed 40 candidate genes and significantly associated with salt tolerance. Notably, two SNP rich regions on chromosome 7 were found to be significantly associated with two salinity related traits, RFW and RSL, by the threshold of −log10P ≥ 6.0, and two candidate genes (Cotton_A_37775 and Cotton_A_35901) related to two key SNPs (Ca7_33607751 and Ca7_77004962) were possibly associated with salt tolerance in G. arboreum. These can provide fundamental information which will be useful for future molecular breeding of cotton, in order to release novel salt tolerant cultivars.
Collapse
Affiliation(s)
- Tussipkan Dilnur
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Koffi Kibalou Palanga
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Wenfang Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
23
|
Statistical approach for selection of biologically informative genes. Gene 2018; 655:71-83. [PMID: 29458166 DOI: 10.1016/j.gene.2018.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/26/2017] [Accepted: 02/14/2018] [Indexed: 11/23/2022]
Abstract
Selection of informative genes from high dimensional gene expression data has emerged as an important research area in genomics. Many gene selection techniques have been proposed so far are either based on relevancy or redundancy measure. Further, the performance of these techniques has been adjudged through post selection classification accuracy computed through a classifier using the selected genes. This performance metric may be statistically sound but may not be biologically relevant. A statistical approach, i.e. Boot-MRMR, was proposed based on a composite measure of maximum relevance and minimum redundancy, which is both statistically sound and biologically relevant for informative gene selection. For comparative evaluation of the proposed approach, we developed two biological sufficient criteria, i.e. Gene Set Enrichment with QTL (GSEQ) and biological similarity score based on Gene Ontology (GO). Further, a systematic and rigorous evaluation of the proposed technique with 12 existing gene selection techniques was carried out using five gene expression datasets. This evaluation was based on a broad spectrum of statistically sound (e.g. subject classification) and biological relevant (based on QTL and GO) criteria under a multiple criteria decision-making framework. The performance analysis showed that the proposed technique selects informative genes which are more biologically relevant. The proposed technique is also found to be quite competitive with the existing techniques with respect to subject classification and computational time. Our results also showed that under the multiple criteria decision-making setup, the proposed technique is best for informative gene selection over the available alternatives. Based on the proposed approach, an R Package, i.e. BootMRMR has been developed and available at https://cran.r-project.org/web/packages/BootMRMR. This study will provide a practical guide to select statistical techniques for selecting informative genes from high dimensional expression data for breeding and system biology studies.
Collapse
|
24
|
Sun Z, Li H, Zhang Y, Li Z, Ke H, Wu L, Zhang G, Wang X, Ma Z. Identification of SNPs and Candidate Genes Associated With Salt Tolerance at the Seedling Stage in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1011. [PMID: 30050555 PMCID: PMC6050395 DOI: 10.3389/fpls.2018.01011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 06/21/2018] [Indexed: 05/02/2023]
Abstract
Salt tolerance in cotton is highly imperative for improvement in the response to decreasing farmland and soil salinization. However, little is known about the genetic basis underlying salt tolerance in cotton, especially the seedling stage. In this study, we evaluated two salt-tolerance-related traits of a natural population comprising 713 upland cotton (Gossypium hirsutum L.) accessions worldwide at the seedling stage and performed a genome-wide association study (GWAS) to identify marker-trait associations under salt stress using the Illumina Infinium CottonSNP63K array. A total of 23 single nucleotide polymorphisms (SNPs) that represented seven genomic regions on chromosomes A01, A10, D02, D08, D09, D10, and D11 were significantly associated with the two salt-tolerance-related traits, relative survival rate (RSR) and salt tolerance level (STL). Of these, the two SNPs i46598Gh and i47388Gh on D09 were simultaneously associated with the two traits. Based on all loci, we screened 280 possible candidate genes showing different expression levels under salt stress. Most of these genes were involved in transcription factors, transporters and enzymes and were previously reported as being involved in plant salt tolerance, such as NAC, MYB, NXH, WD40, CDPK, LEA, and CIPK. We further validated six putative candidate genes by qRT-PCR and found a differential expression level between salt-tolerant and salt-sensitive varieties. Our findings provide valuable information for enhancing the understanding of complicated mechanisms of salt tolerance in G. hirsutum seedlings and cotton salt tolerance breeding by molecular marker-assisted selection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiying Ma
- *Correspondence: Xingfen Wang, Zhiying Ma,
| |
Collapse
|
25
|
Hou S, Zhu G, Li Y, Li W, Fu J, Niu E, Li L, Zhang D, Guo W. Genome-Wide Association Studies Reveal Genetic Variation and Candidate Genes of Drought Stress Related Traits in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1276. [PMID: 30233620 PMCID: PMC6129771 DOI: 10.3389/fpls.2018.01276] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/14/2018] [Indexed: 05/18/2023]
Abstract
Cotton is an important industrial crop worldwide and upland cotton (Gossypium hirsutum L.) is most widely cultivated in the world. Due to ever-increasing water deficit, drought stress brings a major threat to cotton production. Thus, it is important to reveal the genetic basis under drought stress and develop drought tolerant cotton cultivars. To address this issue, in present study, 319 upland cotton accessions were genotyped by 55,060 single nucleotide polymorphisms (SNPs) from high-density CottonSNP80K array and phenotyped nine drought tolerance related traits. The two datasets were used to identify quantitative trait nucleotides (QTNs) for the above nine traits using multi-locus random-SNP-effect mixed linear model method. As a result, a total of 20 QTNs distributed on 16 chromosomes were found to be significantly associated with six drought tolerance related traits. Of the 1,326 genes around the 20 QTNs, 205 were induced after drought stress treatment, and 46 were further mapped to Gene ontology (GO) term "response to stress." Taken genome-wide association study (GWAS) analysis, RNA-seq data and qRT-PCR verification, four genes, RD2 encoding a response to desiccation 2 protein, HAT22 encoding a homeobox-leucine zipper protein, PIP2 encoding a plasma membrane intrinsic protein 2, and PP2C encoding a protein phosphatase 2C, were proposed to be potentially important for drought tolerance in cotton. These results will deepen our understanding of the genetic basis of drought stress tolerance in cotton and provide candidate markers to accelerate the development of drought-tolerant cotton cultivars.
Collapse
|
26
|
Li C, Fu Y, Sun R, Wang Y, Wang Q. Single-Locus and Multi-Locus Genome-Wide Association Studies in the Genetic Dissection of Fiber Quality Traits in Upland Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1083. [PMID: 30177935 PMCID: PMC6109694 DOI: 10.3389/fpls.2018.01083] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/04/2018] [Indexed: 05/04/2023]
Abstract
A major breeding target in Upland cotton (Gossypium hirsutum L.) is to improve the fiber quality. To address this issue, 169 diverse accessions, genotyped by 53,848 high-quality single-nucleotide polymorphisms (SNPs) and phenotyped in four environments, were used to conduct genome-wide association studies (GWASs) for fiber quality traits using three single-locus and three multi-locus models. As a result, 342 quantitative trait nucleotides (QTNs) controlling fiber quality traits were detected. Of the 342 QTNs, 84 were simultaneously detected in at least two environments or by at least two models, which include 29 for fiber length, 22 for fiber strength, 11 for fiber micronaire, 12 for fiber uniformity, and 10 for fiber elongation. Meanwhile, nine QTNs with 10% greater sizes (R2) were simultaneously detected in at least two environments and between single- and multi-locus models, which include TM80185 (D13) for fiber length, TM1386 (A1) and TM14462 (A6) for fiber strength, TM18616 (A7), TM54735 (D3), and TM79518 (D12) for fiber micronaire, TM77489 (D12) and TM81448 (D13) for fiber uniformity, and TM47772 (D1) for fiber elongation. This indicates the possibility of marker-assisted selection in future breeding programs. Among 455 genes within the linkage disequilibrium regions of the nine QTNs, 113 are potential candidate genes and four are promising candidate genes. These findings reveal the genetic control underlying fiber quality traits and provide insights into possible genetic improvements in Upland cotton fiber quality.
Collapse
Affiliation(s)
- Chengqi Li
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuanzhi Fu
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Runrun Sun
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
27
|
Cai C, Zhu G, Zhang T, Guo W. High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics 2017; 18:654. [PMID: 28835210 PMCID: PMC5569476 DOI: 10.1186/s12864-017-4062-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-throughput genotyping platforms play important roles in plant genomic studies. Cotton (Gossypium spp.) is the world's important natural textile fiber and oil crop. Upland cotton accounts for more than 90% of the world's cotton production, however, modern upland cotton cultivars have narrow genetic diversity. The amounts of genomic sequencing and re-sequencing data released make it possible to develop a high-quality single nucleotide polymorphism (SNP) array for intraspecific genotyping detection in cotton. RESULTS Here we report a high-throughput CottonSNP80K array and its utilization in genotyping detection in different cotton accessions. 82,259 SNP markers were selected from the re-sequencing data of 100 cotton cultivars and used to produce the array on the Illumina Infinium platform. 77,774 SNP loci (94.55%) were successfully synthesized on the array. Of them, 77,252 (99.33%) had call rates of >95% in 352 cotton accessions and 59,502 (76.51%) were polymorphic loci. Application tests using 22 cotton accessions with parent/F1 combinations or with similar genetic backgrounds showed that CottonSNP80K array had high genotyping accuracy, good repeatability, and wide applicability. Phylogenetic analysis of 312 cotton cultivars and landraces with wide geographical distribution showed that they could be classified into ten groups, irrelevant of their origins. We found that the different landraces were clustered in different subgroups, indicating that these landraces were major contributors to the development of different breeding populations of modern G. hirsutum cultivars in China. We integrated a total of 54,588 SNPs (MAFs >0.05) associated with 10 salt stress traits into 288 G. hirsutum accessions for genome-wide association studies (GWAS), and eight significant SNPs associated with three salt stress traits were detected. CONCLUSIONS We developed CottonSNP80K array with high polymorphism to distinguish upland cotton accessions. Diverse application tests indicated that the CottonSNP80K play important roles in germplasm genotyping, variety verification, functional genomics studies, and molecular breeding in cotton.
Collapse
Affiliation(s)
- Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China. .,State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
28
|
Abdelraheem A, Liu F, Song M, Zhang JF. A meta-analysis of quantitative trait loci for abiotic and biotic stress resistance in tetraploid cotton. Mol Genet Genomics 2017. [PMID: 28647758 DOI: 10.1007/s00438-017-1342-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The number and location of mapped quantitative trait loci (QTL) depend on genetic populations and testing environments. The identification of consistent QTL across genetic backgrounds and environments is a pre-requisite to marker-assisted selection. This study analyzed a total of 661 abiotic and biotic stress resistance QTL based on our previous work and other publications using the meta-analysis software Biomercator. It identified chromosomal regions containing QTL clusters for different resistance traits and hotspots for a particular resistance trait in cotton from 98 QTL for drought tolerance under greenhouse (DT) and 150 QTL in field conditions (FDT), 80 QTL for salt tolerance in the greenhouse conditions (ST), 201 QTL for resistance to Verticillium wilt (VW, Verticillium dahliae), 47 QTL for resistance to Fusarium wilt (FW, Fusarium oxysporum f. sp. vasinfectum), and 85 QTL for resistance to root-knot nematodes (RKN, Meloiodogyne incognita) and reniform nematodes (RN, Rotylenchulus reniformis). The traits used in QTL mapping for abiotic stress tolerance included morphological traits-plant height and fresh and dry shoot and root weights, physiological traits-chlorophyll content, osmotic potential, carbon isotope ratio, stomatal conductance, photosynthetic rate, transpiration, canopy temperature, and leaf area index, agronomic traits-seedcotton yield, lint yield, boll weight, and lint percent, and fiber quality traits-fiber length, uniformity, strength, elongation, and micronaire. The results showed that resistance QTL are not uniformly distributed across the cotton genome; some chromosomes carried disproportionally more QTL, QTL clusters, or hotspots. Twenty-three QTL clusters were found on 15 chromosomes (c3, c4, c5, c6, c7, c11, c14, c15, c16, c19, c20, c23, c24, c25, and c26). Moreover, 28 QTL hotshots were associated with different resistance traits including one hotspot on c4 for Verticillium wilt resistance, two QTL hotspots on c24 for chlorophyll content measured under both drought and salt stress conditions, and three other hotspots on c19 for the resistance to Verticillium wilt and Fusarium wilt, and micronaire under drought stress conditions. This meta-analysis of stress tolerance QTL provides an important foundation for cotton breeding and further studies on the genetic mechanisms of abiotic and biotic stress resistance in cotton.
Collapse
Affiliation(s)
- Abdelraheem Abdelraheem
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Feng Liu
- Department of Computer Science, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jinfa F Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
29
|
Cai C, Wu S, Niu E, Cheng C, Guo W. Identification of genes related to salt stress tolerance using intron-length polymorphic markers, association mapping and virus-induced gene silencing in cotton. Sci Rep 2017; 7:528. [PMID: 28373664 PMCID: PMC5428780 DOI: 10.1038/s41598-017-00617-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022] Open
Abstract
Intron length polymorphisms (ILPs), a type of gene-based functional marker, could themselves be related to the particular traits. Here, we developed a genome-wide cotton ILPs based on orthologs annotation from two sequenced diploid species, A-genome Gossypium arboreum and D-genome G. raimondii. We identified 10,180 putative ILP markers from 5,021 orthologous genes. Among these, 535 ILP markers from 9 gene families related to stress were selected for experimental verification. Polymorphic rates were 72.71% between G. arboreum and G. raimondii and 36.45% between G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124. Furthermore, 14 polymorphic ILP markers were detected in 264 G. hirsutum accessions. Coupled with previous simple sequence repeats (SSRs) evaluations and salt tolerance assays from the same individuals, we found a total of 25 marker-trait associations involved in nine ILPs. The nine genes, temporally named as C1 to C9, showed the various expressions in different organs and tissues, and five genes (C3, C4, C5, C7 and C9) were significantly upregulated after salt treatment. We verified that the five genes play important roles in salt tolerance. Particularly, silencing of C4 (encodes WRKY DNA-binding protein) and C9 (encodes Mitogen-activated protein kinase) can significantly enhance cotton susceptibility to salt stress.
Collapse
Affiliation(s)
- Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Erli Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaoze Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
30
|
Dassanayake M, Larkin JC. Making Plants Break a Sweat: the Structure, Function, and Evolution of Plant Salt Glands. FRONTIERS IN PLANT SCIENCE 2017; 8:406. [PMID: 28400779 PMCID: PMC5368257 DOI: 10.3389/fpls.2017.00406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/09/2017] [Indexed: 05/25/2023]
Abstract
Salt stress is a complex trait that poses a grand challenge in developing new crops better adapted to saline environments. Some plants, called recretohalophytes, that have naturally evolved to secrete excess salts through salt glands, offer an underexplored genetic resource for examining how plant development, anatomy, and physiology integrate to prevent excess salt from building up to toxic levels in plant tissue. In this review we examine the structure and evolution of salt glands, salt gland-specific gene expression, and the possibility that all salt glands have originated via evolutionary modifications of trichomes. Salt secretion via salt glands is found in more than 50 species in 14 angiosperm families distributed in caryophyllales, asterids, rosids, and grasses. The salt glands of these distantly related clades can be grouped into four structural classes. Although salt glands appear to have originated independently at least 12 times, they share convergently evolved features that facilitate salt compartmentalization and excretion. We review the structural diversity and evolution of salt glands, major transporters and proteins associated with salt transport and secretion in halophytes, salt gland relevant gene expression regulation, and the prospect for using new genomic and transcriptomic tools in combination with information from model organisms to better understand how salt glands contribute to salt tolerance. Finally, we consider the prospects for using this knowledge to engineer salt glands to increase salt tolerance in model species, and ultimately in crops.
Collapse
Affiliation(s)
- Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton RougeLA, USA
| | - John C. Larkin
- Department of Biological Sciences, Louisiana State University, Baton RougeLA, USA
| |
Collapse
|