1
|
Shin S, Jiang D, Yu J, Yang C, Jeong W, Li J, Bae J, Shin J, An K, Kim W, Cho NJ. Interaction Dynamics of Liposomal Fatty Acids with Gram-Positive Bacterial Membranes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23666-23679. [PMID: 40223206 DOI: 10.1021/acsami.5c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The increasing prevalence of antibiotic-resistant bacteria has driven the need for alternative therapeutic strategies, with liposomal fatty acids (LipoFAs) emerging as promising candidates due to their potent antibacterial properties. Despite growing interest, the detailed biophysical interactions between LipoFAs and bacterial membranes remain underexplored. In this study, we systematically investigate the mechanistic interactions of liposomal linolenic acid (LipoLNA), linoleic acid (LipoLLA), and oleic acid (LipoOA) with model Gram-positive bacterial membranes using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. QCM-D analysis revealed that LipoOA displayed the highest rate of membrane fusion, followed by LipoLLA and LipoLNA. Fluorescence microscopy highlighted distinct morphological changes induced by each LipoFA: LipoLNA generated large membrane buds, LipoLLA formed smaller dense protrusions, and LipoOA caused rapid incorporation with uniform dense spots. Furthermore, fluorescence recovery after photobleaching (FRAP) demonstrated that LipoLNA significantly enhanced lipid mobility and membrane fluidity, as confirmed by Laurdan generalized polarization measurements. The extent of unsaturation in LipoFAs was found to play a critical role in their interaction mechanism, with higher degrees of unsaturation inducing greater local curvature stress, increased membrane permeability, and substantial ATP leakage, ultimately leading to improved bactericidal activity. Notably, liposomal formulations exhibited enhanced biocompatibility compared to free fatty acids. These findings provide valuable mechanistic insights into how LipoFAs perturb bacterial membranes, supporting their potential application as alternative antibacterial agents.
Collapse
Affiliation(s)
- Sungmin Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Dongping Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jingyeong Yu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chungmo Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Woncheol Jeong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jian Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jieun Bae
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Jihoon Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Kyongman An
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| |
Collapse
|
2
|
Yamamoto Y. Roles of flavoprotein oxidase and the exogenous heme- and quinone-dependent respiratory chain in lactic acid bacteria. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:183-191. [PMID: 38966056 PMCID: PMC11220326 DOI: 10.12938/bmfh.2024-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Lactic acid bacteria (LAB) are a type of bacteria that convert carbohydrates into lactate through fermentation metabolism. While LAB mainly acquire energy through this anaerobic process, they also have oxygen-consuming systems, one of which is flavoprotein oxidase and the other is exogenous heme- or heme- and quinone-dependent respiratory metabolism. Over the past two decades, research has contributed to the understanding of the roles of these oxidase machineries, confirming their suspected roles and uncovering novel functions. This review presents the roles of these oxidase machineries, which are anticipated to be critical for the future applications of LAB in industry and comprehending the virulence of pathogenic streptococci.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori 034-8628, Japan
| |
Collapse
|
3
|
Chen Y, Ying Y, Lalsiamthara J, Zhao Y, Imani S, Li X, Liu S, Wang Q. From bacteria to biomedicine: Developing therapies exploiting NAD + metabolism. Bioorg Chem 2024; 142:106974. [PMID: 37984103 DOI: 10.1016/j.bioorg.2023.106974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) serves as a critical cofactor in cellular metabolism and redox reactions. Bacterial pathways rely on NAD+ participation, where its stability and concentration govern essential homeostasis and functions. This review delves into the role and metabolic regulation of NAD+ in bacteria, highlighting its influence on physiology and virulence. Notably, we explore enzymes linked to NAD+ metabolism as antibacterial drug targets and vaccine candidates. Moreover, we scrutinize NAD+'s medical potential, offering insights for its application in biomedicine. This comprehensive assessment informs future research directions in the dynamic realm of NAD+ and its biomedical significance.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Yuanyuan Ying
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Jonathan Lalsiamthara
- Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Saber Imani
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Xin Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Sijing Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Qingjing Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
4
|
Zuber P, Kreth J. Aspects of oral streptococcal metabolic diversity: Imagining the landscape beneath the fog. Mol Microbiol 2023; 120:508-524. [PMID: 37329112 DOI: 10.1111/mmi.15106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
It is widely acknowledged that the human-associated microbial community influences host physiology, systemic health, disease progression, and even behavior. There is currently an increased interest in the oral microbiome, which occupies the entryway to much of what the human initially encounters from the environment. In addition to the dental pathology that results from a dysbiotic microbiome, microbial activity within the oral cavity exerts significant systemic effects. The composition and activity of the oral microbiome is influenced by (1) host-microbial interactions, (2) the emergence of niche-specific microbial "ecotypes," and (3) numerous microbe-microbe interactions, shaping the underlying microbial metabolic landscape. The oral streptococci are central players in the microbial activity ongoing in the oral cavity, due to their abundance and prevalence in the oral environment and the many interspecies interactions in which they participate. Streptococci are major determinants of a healthy homeostatic oral environment. The metabolic activities of oral Streptococci, particularly the metabolism involved in energy generation and regeneration of oxidative resources vary among the species and are important factors in niche-specific adaptations and intra-microbiome interactions. Here we summarize key differences among streptococcal central metabolic networks and species-specific differences in how the key glycolytic intermediates are utilized.
Collapse
Affiliation(s)
- Peter Zuber
- Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Jens Kreth
- School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Sukumar S, Wang F, Simpson CA, Willet CE, Chew T, Hughes TE, Bockmann MR, Sadsad R, Martin FE, Lydecker HW, Browne GV, Davis KM, Bui M, Martinez E, Adler CJ. Development of the oral resistome during the first decade of life. Nat Commun 2023; 14:1291. [PMID: 36894532 PMCID: PMC9998430 DOI: 10.1038/s41467-023-36781-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Antibiotic overuse has promoted the spread of antimicrobial resistance (AMR) with significant health and economic consequences. Genome sequencing reveals the widespread presence of antimicrobial resistance genes (ARGs) in diverse microbial environments. Hence, surveillance of resistance reservoirs, like the rarely explored oral microbiome, is necessary to combat AMR. Here, we characterise the development of the paediatric oral resistome and investigate its role in dental caries in 221 twin children (124 females and 97 males) sampled at three time points over the first decade of life. From 530 oral metagenomes, we identify 309 ARGs, which significantly cluster by age, with host genetic effects detected from infancy onwards. Our results suggest potential mobilisation of ARGs increases with age as the AMR associated mobile genetic element, Tn916 transposase was co-located with more species and ARGs in older children. We find a depletion of ARGs and species in dental caries compared to health. This trend reverses in restored teeth. Here we show the paediatric oral resistome is an inherent and dynamic component of the oral microbiome, with a potential role in transmission of AMR and dysbiosis.
Collapse
Affiliation(s)
- Smitha Sukumar
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Fang Wang
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Carra A Simpson
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, US
| | - Cali E Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Tracy Chew
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Toby E Hughes
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Adelaide Dental School, University of Adelaide, Adelaide, SA, Australia
| | | | - Rosemarie Sadsad
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - F Elizabeth Martin
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Henry W Lydecker
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Gina V Browne
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Institute of Dental Research, Westmead Centre for Oral Health, Westmead, NSW, Australia
| | - Kylie M Davis
- Adelaide Dental School, University of Adelaide, Adelaide, SA, Australia
| | - Minh Bui
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Elena Martinez
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Christina J Adler
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Hu Z, Li H, Zhao Y, Wang G, Shang Y, Chen Y, Wang S, Tian M, Qi J, Yu S. NADH oxidase of Mycoplasma synoviae is a potential diagnostic antigen, plasminogen/fibronectin binding protein and a putative adhesin. BMC Vet Res 2022; 18:455. [PMID: 36581820 PMCID: PMC9798693 DOI: 10.1186/s12917-022-03556-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mycoplasma synoviae (MS) is an important pathogen causing respiratory diseases and arthritis in chickens and turkeys, thus, resulting in serious economic losses to the poultry industry. Membrane-associated proteins are thought to play important roles in cytoadherence and pathogenesis. NADH oxidase (NOX) is an oxidoreductase involved in glycolysis, which is thought to be a multifunctional protein and potential virulence factor in some pathogens. However, little is known regarding the NOX of MS (MSNOX). We previously demonstrated that MSNOX was a metabolic enzyme distributed in not only the cytoplasm but also the MS membrane. This study was aimed at exploring NOX's potential as a diagnostic antigen and its role in MS cytoadherence. RESULTS Western blots and ELISAs indicated that recombinant MSNOX (rMSNOX) protein reacted with sera positive for various MS isolates, but not MG isolates or other avian pathogens, thus, suggesting that rMSNOX is a potential diagnostic antigen. In addition, rabbit anti-rMSNOX serum showed substantial complement-dependent mycoplasmacidal activity toward various MS isolates and MG Rlow. MSNOX protein was found not only in the cytoplasm but also on the membrane of MS through suspension immunofluorescence and immunogold electron microscopy assays. Indirect immunofluorescence assays indicated that rMSNOX adhered to DF-1 cells, and this adherence was inhibited by rabbit anti-rMSNOX, but not anti-MG serum. Furthermore, indirect immunofluorescence and colony counting assays confirmed that the rabbit anti-rMSNOX serum inhibited the adherence of various MS isolates but not MG Rlow to DF-1 cells. Moreover, plasminogen (Plg)- and fibronectin (Fn)-binding assays demonstrated that rMSNOX bound Plg and Fn in a dose-dependent manner, thereby further confirming that MSNOX may be a putative adhesin. CONCLUSION MSNOX was identified to be a surface immunogenic protein that has good immunoreactivity and specificity in Western blot and ELISA, and therefore, may be used as a potential diagnostic antigen in the future. In addition, rMSNOX adhered to DF-1 cells, an effect inhibited by rabbit anti-rMSNOX, but not anti-MG serum, and anti-rMSNOX serum inhibited the adherence of various MS isolates, but not MG Rlow, to DF-1 cells, thus indicating that the inhibition of adherence by anti-MSNOX serum was MS specific. Moreover, rMSNOX adhered to extracellular matrix proteins including Plg and Fn, thus suggesting that NOX may play important roles in MS cytoadherence and pathogenesis. Besides, rabbit anti-rMSNOX serum presented complement-dependent mycoplasmacidal activity toward both MS and MG, indicating the MSNOX may be further studied as a potential protective vaccine candidate.
Collapse
Affiliation(s)
- Zengjin Hu
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China ,grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei, Anhui 230061 People’s Republic of China
| | - Haoran Li
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China ,grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei, Anhui 230061 People’s Republic of China
| | - Yuxin Zhao
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China ,grid.268415.cCollege of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009 People’s Republic of China
| | - Guijun Wang
- grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei, Anhui 230061 People’s Republic of China
| | - Yuanbing Shang
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Yuetong Chen
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Shaohui Wang
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Mingxing Tian
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Jingjing Qi
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Shengqing Yu
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| |
Collapse
|
7
|
Alhandal H, Almesaileikh E, Bhardwaj RG, Al Khabbaz A, Karched M. The Effect of Benzyl Isothiocyanate on the Expression of Genes Encoding NADH Oxidase and Fibronectin-Binding Protein in Oral Streptococcal Biofilms. FRONTIERS IN ORAL HEALTH 2022; 3:863723. [PMID: 35478497 PMCID: PMC9035700 DOI: 10.3389/froh.2022.863723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies have shown that antimicrobial treatment results in up- or down regulation of several virulence-associated genes in bacterial biofilms. The genes encoding NADH oxidase (nox) and fibronectin-binding protein (fbp) are known to play important roles in biofilm growth of some oral bacterial species. The objective was to study the effect of benzyl isothiocyanate (BITC), an antimicrobial agent from Miswak plant, on the expression of nox and fbp genes in some oral streptococci. The biofilms were treated with BITC and mRNA expression of nox and fbp genes was measured by comparative ΔΔCt method. The highest amount of biofilm mass was produced by A. defectiva, followed by S. gordonii, S. mutans, G. elegans and G. adiacens. Upon treatment with BITC, S. gordonii biofilms showed highest folds change in mRNA expression for both fbp and nox genes followed by S. mutans, A. defectiva, and G. adiacens. G. elegans mRNA levels for nox were extremely low. In conclusion, BITC treatment of the biofilms caused an upregulation of biofilm-associated genes fbp and nox genes in most of the tested species suggesting the significance of these genes in biofilm lifestyle of these oral bacteria and needs further investigation to understand if it contributes to antimicrobial resistance.
Collapse
Affiliation(s)
- Hawraa Alhandal
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Esraa Almesaileikh
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Radhika G. Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Areej Al Khabbaz
- Department of Surgical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
- *Correspondence: Maribasappa Karched
| |
Collapse
|
8
|
Proteomic analysis of the periodontal pathogen Prevotella intermedia secretomes in biofilm and planktonic lifestyles. Sci Rep 2022; 12:5636. [PMID: 35379855 PMCID: PMC8980031 DOI: 10.1038/s41598-022-09085-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
Prevotella intermedia is an important species associated with periodontitis. Despite the remarkable clinical significance, little is known about the molecular basis for its virulence. The aim of this study was to characterize the secretome of P. intermedia in biofilm and planktonic life mode. The biofilm secretome showed 109 proteins while the planktonic secretome showed 136 proteins. The biofilm and the planktonic secretomes contained 17 and 33 signal-peptide bearing proteins, 13 and 18 lipoproteins, respectively. Superoxide reductase, sensor histidine kinase, C40 family peptidase, elongation factor Tu, threonine synthase etc. were unique to biofilm. Of the ~ 30 proteins with predicted virulence potential from biofilm and planktonic secretomes, only 6 were common between the two groups, implying large differences between biofilm and planktonic modes of P. intermedia. From Gene Ontology biofilm secretome displayed a markedly higher percent proteins compared to planktonic secretome in terms of cellular amino acid metabolic process, nitrogen compound metabolic process etc. Inflammatory cytokine profile analysis revealed that only the biofilm secretome, not the planktonic one, induced important cytokines such as MIP-1α/MIP-1β, IL-1β, and IL-8. In conclusion, the revealed differences in the protein profiles of P. intermedia biofilm and planktonic secretomes may trigger further questions about molecular mechanisms how this species exerts its virulence potential in the oral cavity.
Collapse
|
9
|
Redox Sensing Modulates the Activity of the ComE Response Regulator of Streptococcus mutans. J Bacteriol 2021; 203:e0033021. [PMID: 34516285 DOI: 10.1128/jb.00330-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, a dental pathogen, encodes the ComDE two-component system comprised of a histidine kinase (ComD) and a response regulator (ComE). This system is necessary for production of bacteriocins and development of genetic competence. ComE interacts with its cognate promoters to activate the transcription of bacteriocin and competence-related genes. Previous transcriptomic studies indicated that expressions of bacteriocin genes were upregulated in the presence of oxygen. To understand the relationship between the aerobic condition and bacteriocin expression, we analyzed the S. mutans ComE sequence and its close homologs. Surprisingly, we noticed the presence of cysteine (Cys) residues located at positions 200 and 229, which are highly conserved among the ComE homologs. Here, we investigated the role of Cys residues of S. mutans ComE in the activation of bacteriocin transcription using the PnlmA promoter that expresses bacteriocin NlmA. We constructed both single mutants and double mutants by replacing the Cys residues with serine and performed complementation assays. We observed that the presence of Cys residues is essential for PnlmA activation. With purified ComE mutant proteins, we found that ComE double mutants displayed a nearly 2-fold lower association rate than wild-type ComE. Furthermore, 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence studies indicated that the double mutants displayed wider conformation changes than wild-type ComE. Finally, we demonstrated that close streptococcal ComE homologs successfully activate the PnlmA expression in vivo. This is the first report suggesting that S. mutans ComE and its homologs can sense the oxidation status of the cell, a phenomenon similar to the AgrA system of Staphylococcus aureus but with different outcomes. IMPORTANCE Streptococci are an important species that prefer to grow under anaerobic or microaerophilic environments. Studies have shown that streptococci growth in an aerobic environment generates oxidative stress responses by activating various defense systems, including production of antimicrobial peptides called bacteriocins. This study highlights the importance of a two-component response regulator (ComE) that senses the aerobic environment and induces bacteriocin production in Streptococcus mutans, a dental pathogen. We believe increased bacteriocin secretion under aerobic conditions is necessary for survival and colonization of S. mutans in the oral cavity by inhibiting other competing organisms. Redox sensing by response regulator might be a widespread phenomenon since two other ComE homologs from pathogenic streptococci that inhabit diverse environmental niches also perform a similar function.
Collapse
|
10
|
Spontaneous Mutants of Streptococcus sanguinis with Defects in the Glucose-Phosphotransferase System Show Enhanced Post-Exponential-Phase Fitness. J Bacteriol 2021; 203:e0037521. [PMID: 34460310 DOI: 10.1128/jb.00375-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic truncations in a gene encoding a putative glucose-phosphotransferase system (PTS) protein (manL, EIIABMan) were identified in subpopulations of two separate laboratory stocks of Streptococcus sanguinis SK36; the mutants had reduced PTS activities on glucose and other monosaccharides. To understand the emergence of these mutants, we engineered deletion mutants of manL and showed that the ManL-deficient strain had improved bacterial viability in the stationary phase and was better able to inhibit the growth of the dental caries pathogen Streptococcus mutans. Transcriptional analysis and biochemical assays suggested that the manL mutant underwent reprograming of central carbon metabolism that directed pyruvate away from production of lactate, increasing production of hydrogen peroxide (H2O2) and excretion of pyruvate. Addition of pyruvate to the medium enhanced the survival of SK36 in overnight cultures. Meanwhile, elevated pyruvate levels were detected in the cultures of a small but significant percentage (∼10%) of clinical isolates of oral commensal bacteria. Furthermore, the manL mutant showed higher expression of the arginine deiminase system than the wild type, which enhanced the ability of the mutant to raise environmental pH when arginine was present. To our surprise, significant discrepancies in genome sequence were identified between strain SK36 obtained from ATCC and the sequence deposited in GenBank. As the conditions that are likely associated with the emergence of spontaneous manL mutations, i.e., excess carbohydrates and low pH, are those associated with caries development, we propose that glucose-PTS strongly influences commensal-pathogen interactions by altering the production of ammonia, pyruvate, and H2O2. IMPORTANCE A health-associated dental microbiome provides a potent defense against pathogens and diseases. Streptococcus sanguinis is an abundant member of a health-associated oral flora that antagonizes pathogens by producing hydrogen peroxide. There is a need for a better understanding of the mechanisms that allow bacteria to survive carbohydrate-rich and acidic environments associated with the development of dental caries. We report the isolation and characterization of spontaneous mutants of S. sanguinis with impairment in glucose transport. The resultant reprograming of the central metabolism in these mutants reduced the production of lactic acid and increased pyruvate accumulation; the latter enables these bacteria to better cope with hydrogen peroxide and low pH. The implications of these discoveries in the development of dental caries are discussed.
Collapse
|
11
|
Suzuki I, Shimizu T, Senpuku H. Short chain fatty acids induced the type 1 and type 2 fimbrillin-dependent and fimbrillin-independent initial attachment and colonization of Actinomyces oris monoculture but not coculture with streptococci. BMC Microbiol 2020; 20:329. [PMID: 33129273 PMCID: PMC7603776 DOI: 10.1186/s12866-020-01976-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Actinomyces oris is an early colonizer and has two types of fimbriae on its cell surface, type 1 fimbriae (FimP and FimQ) and type 2 fimbriae (FimA and FimB), which contribute to the attachment and coaggregation with other bacteria and the formation of biofilm on the tooth surface, respectively. Short-chain fatty acids (SCFAs) are metabolic products of oral bacteria including A. oris and regulate pH in dental plaques. To clarify the relationship between SCFAs and fimbrillins, effects of SCFAs on the initial attachment and colonization (INAC) assay using A. oris wild type and fimbriae mutants was investigated. INAC assays using A. oris MG1 strain cells were performed with SCFAs (acetic, butyric, propionic, valeric and lactic acids) or a mixture of them on human saliva-coated 6-well plates incubated in TSB with 0.25% sucrose for 1 h. The INAC was assessed by staining live and dead cells that were visualized with a confocal microscope. RESULTS Among the SCFAs, acetic, butyric and propionic acids and a mixture of acetic, butyric and propionic acids induced the type 1 and type 2 fimbriae-dependent and independent INAC by live A. oris, but these cells did not interact with streptococci. The main effects might be dependent on the levels of the non-ionized acid forms of the SCFAs in acidic stress conditions. GroEL was also found to be a contributor to the FimA-independent INAC by live A. oris cells stimulated with non-ionized acid. CONCLUSION SCFAs affect the INAC-associated activities of the A. oris fimbrillins and non-fimbrillins during ionized and non-ionized acid formations in the form of co-culturing with other bacteria in the dental plaque but not impact the interaction of A. oris with streptococci.
Collapse
Affiliation(s)
- Itaru Suzuki
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Pediatric Dentistry, Nihon University Graduate School of Dentistry at Matsudo, Chiba, Japan
| | - Takehiko Shimizu
- Department of Pediatric Dentistry, Nihon University Graduate School of Dentistry at Matsudo, Chiba, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
12
|
The interplay of the oral microbiome and alcohol consumption in oral squamous cell carcinomas. Oral Oncol 2020; 110:105011. [PMID: 32980528 DOI: 10.1016/j.oraloncology.2020.105011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/11/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Oral cancer (OC) is among the top twenty occurring cancers in the world, with a mortality rate of 50%. A shift to a functionally inflammatory or a 'disease state' oral microbiome composition has been observed amongst patients with premalignant disorders and OC, with evidence suggesting alcohol could be exacerbating the inflammatory influence of the oral microorganisms. Alcohol dehydrogenase (ADH, EC 1.1.1.1) converts alcohol into a known carcinogenic metabolite, acetaldehyde and while ADH levels in oral mucosa are low, several oral commensal species possess ADH and could produce genotoxic levels of acetaldehyde. With a direct association between oral microbiome status, alcohol and poor oral health status combining to induce chronic inflammation with increased acetaldehyde levels - this leads to a tumour promoting environment. This new disease state increases the production of reactive oxygen species (ROS), while impairing anti-oxidant systems thus activating the redox signalling required for the promotion and survival of tumours. This review aims to highlight the evidence linking these processes in the progression of oral cancer.
Collapse
|
13
|
Milojevic T, Weckwerth W. Molecular Mechanisms of Microbial Survivability in Outer Space: A Systems Biology Approach. Front Microbiol 2020; 11:923. [PMID: 32499769 PMCID: PMC7242639 DOI: 10.3389/fmicb.2020.00923] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
Since the dawn of space exploration, the survivability of terrestrial life in outer space conditions has attracted enormous attention. Space technology has enabled the development of advanced space exposure facilities to investigate in situ responses of microbial life to the stress conditions of space during interplanetary transfer. Significant progress has been made toward the understanding of the effects of space environmental factors, e.g., microgravity, vacuum and radiation, on microorganisms exposed to real and simulated space conditions. Of extreme importance is not only knowledge of survival potential of space-exposed microorganisms, but also the determination of mechanisms of survival and adaptation of predominant species to the extreme space environment, i.e., revealing the molecular machinery, which elicit microbial survivability and adaptation. Advanced technologies in -omics research have permitted genome-scale studies of molecular alterations of space-exposed microorganisms. A variety of reports show that microorganisms grown in the space environment exhibited global alterations in metabolic functions and gene expression at the transcriptional and translational levels. Proteomic, metabolomic and especially metabolic modeling approaches as essential instruments of space microbiology, synthetic biology and metabolic engineering are rather underrepresented. Here we summarized the molecular space-induced alterations of exposed microorganisms in terms of understanding the molecular mechanisms of microbial survival and adaptation to drastic outer space environment.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Extremophiles/Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Vamshi Krishna K, Venkata Mohan S. Purification and Characterization of NDH-2 Protein and Elucidating Its Role in Extracellular Electron Transport and Bioelectrogenic Activity. Front Microbiol 2019; 10:880. [PMID: 31133996 PMCID: PMC6513898 DOI: 10.3389/fmicb.2019.00880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Abstract
In microbial electrochemical systems, transport of electrons from bacteria to an electrode is the key to its functioning. However, the roles of several electron transport proteins, especially the membrane-bound dehydrogenases which link cellular metabolism to EET pathway are yet to be identified. NDH-2 is a non-proton pumping NADH dehydrogenase located in the inner membrane of several bacteria like Bacillus subtilis, Escherichia coli, etc. Unlike NADH dehydrogenase I, NDH-2 is not impeded by a high proton motive force thus helping in the increase of metabolic flux and carbon utilization. In the current study, NADH dehydrogenase II protein (NDH-2) was heterologously expressed from B. subtilis into E. coli BL21 (DE3) for enhancing electron flux through EET pathway and to understand its role in bioelectrogenesis. We found that E. coli expressing NDH-2 has increased the electron flux through EET and has shown a ninefold increase in current (4.7 μA) production when compared to wild strain with empty vector (0.52 μA). Furthermore, expression of NDH-2 also resulted in increased biofilm formation which can be corroborated with the decrease in charge transfer resistance of NDH-2 strain and increased NADH oxidation. It was also found that NDH-2 strain can reduce ferric citrate at a higher rate than wild type strain suggesting increased electron flux through electron transport chain due to NADH dehydrogenase II activity. Purified NDH-2 was found to be ∼42 kDa and has FAD as a cofactor. This work demonstrates that the primary dehydrogenases like NADH dehydrogenases can be overexpressed to increase the electron flux in EET pathway which can further enhance the microbial fuel cells performance.
Collapse
Affiliation(s)
- K Vamshi Krishna
- Bioengineering and Environmental Sciences Laboratory, EEFF Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Laboratory, EEFF Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
15
|
Sigurlásdóttir S, Wassing GM, Zuo F, Arts M, Jonsson AB. Deletion of D-Lactate Dehydrogenase A in Neisseria meningitidis Promotes Biofilm Formation Through Increased Autolysis and Extracellular DNA Release. Front Microbiol 2019; 10:422. [PMID: 30891026 PMCID: PMC6411758 DOI: 10.3389/fmicb.2019.00422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterium that asymptomatically colonizes the human nasopharyngeal mucosa. Pilus-mediated initial adherence of N. meningitidis to the epithelial mucosa is followed by the formation of three-dimensional aggregates, called microcolonies. Dispersal from microcolonies contributes to the transmission of N. meningitidis across the epithelial mucosa. We have recently discovered that environmental concentrations of host cell-derived lactate influences N. meningitidis microcolony dispersal. Here, we examined the ability of N. meningitidis mutants deficient in lactate metabolism to form biofilms. A lactate dehydrogenease A (ldhA) mutant had an increased level of biofilm formation. Deletion of ldhA increased the N. meningitidis cell surface hydrophobicity and aggregation. In this study, we used FAM20, which belongs to clonal complex ST-11 that forms biofilms independently of extracellular DNA (eDNA). However, treatment with DNase I abolished the increased biofilm formation and aggregation of the ldhA-deficient mutant, suggesting a critical role for eDNA. Compared to wild-type, the ldhA-deficient mutant exhibited an increased autolytic rate, with significant increases in the eDNA concentrations in the culture supernatants and in biofilms. Within the ldhA mutant biofilm, the transcription levels of the capsule, pilus, and bacterial lysis genes were downregulated, while norB, which is associated with anaerobic respiration, was upregulated. These findings suggest that the absence of ldhA in N. meningitidis promotes biofilm formation and aggregation through autolysis-mediated DNA release.
Collapse
Affiliation(s)
- Sara Sigurlásdóttir
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Gabriela M Wassing
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Fanglei Zuo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melanie Arts
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
16
|
Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol 2018; 13:915-932. [PMID: 29882414 PMCID: PMC6060398 DOI: 10.2217/fmb-2018-0043] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Caries and periodontitis are the two most common human dental diseases and are caused by dysbiosis of oral flora. Although commensal microorganisms have been demonstrated to protect against pathogens and promote oral health, most previous studies have addressed pathogenesis rather than commensalism. Streptococcus sanguinis is a commensal bacterium that is abundant in the oral biofilm and whose presence is correlated with health. Here, we focus on the mechanism of biofilm formation in S. sanguinis and the interaction of S. sanguinis with caries- and periodontitis-associated pathogens. In addition, since S. sanguinis is well known as a cause of infective endocarditis, we discuss the relationship between S. sanguinis biofilm formation and its pathogenicity in endocarditis.
Collapse
Affiliation(s)
- Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lorna C Macleod
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
17
|
Zhu B, Song L, Kong X, Macleod LC, Xu P. A Novel Regulator Modulates Glucan Production, Cell Aggregation and Biofilm Formation in Streptococcus sanguinis SK36. Front Microbiol 2018; 9:1154. [PMID: 29896189 PMCID: PMC5987052 DOI: 10.3389/fmicb.2018.01154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Streptococcus sanguinis is an early colonizer of tooth surfaces and a key player in plaque biofilm development. However, the mechanism of biofilm formation of S. sanguinis is still unclear. Here, we showed that deletion of a transcription factor, brpL, promotes cell aggregation and biofilm formation in S. sanguinis SK36. Glucan, a polysaccharide synthesized from sucrose, was over-produced and aggregated in the biofilm of ΔbrpL, which was necessary for better biofilm formation ability of ΔbrpL. Quantitative RT-PCR demonstrated that gtfP was significantly up-regulated in ΔbrpL, which increased the productions of water-insoluble and water-soluble glucans. The ΔbrpLΔgtfP double mutant decreased biofilm formation ability of ΔbrpL to a level similar like that of ΔgtfP. Interestingly, the biofilm of ΔbrpL had an increased tolerance to ampicillin treatment, which might be due to better biofilm formation ability through the mechanisms of cellular and glucan aggregation. RNA sequencing and quantitative RT-PCR revealed the modulation of a group of genes in ΔbrpL was mediated by activating the expression of ciaR, another gtfP-related biofilm formation regulator. Double deletion of brpL and ciaR decreased biofilm formation ability to the phenotype of a ΔciaR mutant. Additionally, RNA sequencing elucidated a broad range of genes, related to carbohydrate metabolism and uptake, were activated in ΔbrpL. SSA_0222, a gene involved in the phosphotransferase system, was dramatically up-regulated in ΔbrpL and essential for S. sanguinis survival under our experimental conditions. In summary, brpL modulates glucan production, cell aggregation and biofilm formation by regulating the expression of ciaR in S. sanguinis SK36.
Collapse
Affiliation(s)
- Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Lei Song
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiangzhen Kong
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Lorna C Macleod
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
18
|
Valdebenito B, Tullume-Vergara PO, González W, Kreth J, Giacaman RA. In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm. Mol Oral Microbiol 2018; 33:168-180. [PMID: 29237244 DOI: 10.1111/omi.12209] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2017] [Indexed: 01/03/2023]
Abstract
During dental caries, the dental biofilm modifies the composition of the hundreds of involved bacterial species. Changing environmental conditions influence competition. A pertinent model to exemplify the complex interplay of the microorganisms in the human dental biofilm is the competition between Streptococcus sanguinis and Streptococcus mutans. It has been reported that children and adults harbor greater numbers of S. sanguinis in the oral cavity, associated with caries-free teeth. Conversely, S. mutans is predominant in individuals with a high number of carious lesions. Competition between both microorganisms stems from the production of H2 O2 by S. sanguinis and mutacins, a type of bacteriocins, by S. mutans. There is limited evidence on how S. sanguinis survives its own H2 O2 levels, or if it has other mechanisms that might aid in the competition against S. mutans, nonetheless. We performed a genomic and metabolic pathway comparison, coupled with a comprehensive literature review, to better understand the competition between these two species. Results indicated that S. sanguinis can outcompete S. mutans by the production of an enzyme capable of metabolizing H2 O2 . S. mutans, however, lacks the enzyme and is susceptible to the peroxide from S. sanguinis. In addition, S. sanguinis can generate energy through gluconeogenesis and seems to have evolved different communication mechanisms, indicating that novel proteins may be responsible for intra-species communication.
Collapse
Affiliation(s)
- B Valdebenito
- Centro de Bioinformática y Simulación Molecular (CBSM), University of Talca, Talca, Chile
| | - P O Tullume-Vergara
- Facultad de Ciencias Biológicas, Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru
| | - W González
- Centro de Bioinformática y Simulación Molecular (CBSM), University of Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Talca, Chile
| | - J Kreth
- Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - R A Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), University of Talca, Talca, Chile
| |
Collapse
|
19
|
Kreth J, Giacaman RA, Raghavan R, Merritt J. The road less traveled - defining molecular commensalism with Streptococcus sanguinis. Mol Oral Microbiol 2017; 32:181-196. [PMID: 27476770 PMCID: PMC5288394 DOI: 10.1111/omi.12170] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 12/15/2022]
Abstract
The commensal oral microbial flora has evolved with the human host to support colonization of the various intraoral sites without triggering a significant immune response. In exchange, the commensal microbes provide critical protection against invading pathogens. The intrinsic ability of the oral flora to create a symbiotic microbial community with the host can be disturbed, selecting for the overgrowth of a dysbiotic community that can result in dental diseases, such as caries and periodontitis. Although the mechanisms of molecular pathogenesis in oral diseases are well characterized, much less is known about the molecular mechanisms used by the commensal flora to maintain oral health. Here we focus on the commensal species Streptococcus sanguinis, which is found in abundance in the early oral biofilm and is strongly correlated with oral health. Streptococcus sanguinis exhibits a variety of features that make it ideally suited as a model organism to explore the molecular basis for commensalism. As such, this review will describe our current mechanistic understanding of S. sanguinis commensalism and speculate upon its molecular traits that may be exploitable to maintain or restore oral health under conditions that would otherwise lead to disease.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Rodrigo A. Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), University of Talca, Talca, Chile
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
20
|
Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis. Infect Immun 2016; 84:1470-1477. [PMID: 26930704 PMCID: PMC4862721 DOI: 10.1128/iai.01203-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
Here, we report for the first time that the Streptococcus sanguinis nox gene encoding NADH oxidase is involved in both competition with Streptococcus mutans and virulence for infective endocarditis. An S. sanguinis nox mutant was found to fail to inhibit the growth of Streptococcus mutans under microaerobic conditions. In the presence of oxygen, the recombinant Nox protein of S. sanguinis could reduce oxygen to water and oxidize NADH to NAD(+) The oxidation of NADH to NAD(+) was diminished in the nox mutant. The nox mutant exhibited decreased levels of extracellular H2O2; however, the intracellular level of H2O2 in the mutant was increased. Furthermore, the virulence of the nox mutant was attenuated in a rabbit endocarditis model. The nox mutant also was shown to be more sensitive to blood killing, oxidative and acid stresses, and reduced growth in serum. Thus, NADH oxidase contributes to multiple phenotypes related to competitiveness in the oral cavity and systemic virulence.
Collapse
|