1
|
Neisch AL, Pengo T, Avery AW, Li MG, Hays TS. Dynein-driven regulation of postsynaptic membrane architecture and synaptic function. J Cell Sci 2025; 138:JCS263844. [PMID: 39865922 PMCID: PMC11959486 DOI: 10.1242/jcs.263844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/28/2025] Open
Abstract
Cytoplasmic dynein is essential in motor neurons for retrograde cargo transport that sustains neuronal connectivity. Little, however, is known about dynein function on the postsynaptic side of the circuit. Here, we report distinct postsynaptic roles for dynein at neuromuscular junctions in Drosophila. Intriguingly, we show that dynein puncta accumulate postsynaptically at glutamatergic synaptic terminals. Moreover, Skittles (Sktl), a phosphatidylinositol 4-phosphate 5-kinase that produces phosphatidylinositol 4,5-bisphosphate (PIP2) to organize the spectrin cytoskeleton, also localizes specifically to glutamatergic synaptic terminals. Depletion of postsynaptic dynein disrupted the accumulation of Skittles and the PIP2 phospholipid, and organization of the spectrin cytoskeleton at the postsynaptic membrane. Coincidental with dynein depletion, we observed an increase in the size of ionotropic glutamate receptor (iGluR) fields and an increase in the amplitude and frequency of miniature excitatory junctional potentials. PIP2 levels did not affect iGluR clustering, nor did dynein affect the levels of iGluR subunits at the neuromuscular junction. Our observations suggest a separate, transport-independent function for dynein in iGluR cluster organization. Based on the close apposition of dynein puncta to the iGluR fields, we speculate that dynein at the postsynaptic membrane contributes to the organization of the receptor fields, hence ensuring proper synaptic transmission.
Collapse
Affiliation(s)
- Amanda L. Neisch
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adam W. Avery
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Min-Gang Li
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas S. Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Mallick A, Tan HL, Epstein JM, Jing Ng CM, Cook OM, Gaudry Q, Dacks AM. Serotonin acts through multiple cellular targets during an olfactory critical period. iScience 2024; 27:111083. [PMID: 39524339 PMCID: PMC11550141 DOI: 10.1016/j.isci.2024.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/11/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Serotonin (5-HT) modulates early development during critical periods when experience drives heightened levels of plasticity in neurons. Here, we investigate the cellular mechanisms by which 5-HT modulates critical period plasticity (CPP) in the olfactory system of Drosophila. We first demonstrate that 5-HT is necessary for experience-dependent structural plasticity in response to chronic CO2 exposure and can re-open the critical period long after it normally closes. Knocking down 5-HT7 receptors in a subset of GABAergic local interneurons was sufficient to block CPP, as was knocking down GABA receptors expressed by CO2-sensing olfactory sensory neurons (OSNs). Furthermore, direct modulation of OSNs via 5-HT2B receptors in CO2-sensing OSNs and autoreceptor expression by serotonergic neurons was also required for CPP. Thus, 5-HT targets individual neuron types in the olfactory system via distinct receptors to enable sensory driven plasticity.
Collapse
Affiliation(s)
- Ahana Mallick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Hua Leonhard Tan
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | - Oliver Mason Cook
- Departments of Biology and Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Andrew M. Dacks
- Departments of Biology and Neuroscience, West Virginia University, Morgantown, WV 26505, USA
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Mallick A, Dacks AM, Gaudry Q. Olfactory Critical Periods: How Odor Exposure Shapes the Developing Brain in Mice and Flies. BIOLOGY 2024; 13:94. [PMID: 38392312 PMCID: PMC10886215 DOI: 10.3390/biology13020094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Neural networks have an extensive ability to change in response to environmental stimuli. This flexibility peaks during restricted windows of time early in life called critical periods. The ubiquitous occurrence of this form of plasticity across sensory modalities and phyla speaks to the importance of critical periods for proper neural development and function. Extensive investigation into visual critical periods has advanced our knowledge of the molecular events and key processes that underlie the impact of early-life experience on neuronal plasticity. However, despite the importance of olfaction for the overall survival of an organism, the cellular and molecular basis of olfactory critical periods have not garnered extensive study compared to visual critical periods. Recent work providing a comprehensive mapping of the highly organized olfactory neuropil and its development has in turn attracted a growing interest in how these circuits undergo plasticity during critical periods. Here, we perform a comparative review of olfactory critical periods in fruit flies and mice to provide novel insight into the importance of early odor exposure in shaping neural circuits and highlighting mechanisms found across sensory modalities.
Collapse
Affiliation(s)
- Ahana Mallick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Kałafut J, Czerwonka A, Czapla K, Przybyszewska-Podstawka A, Hermanowicz JM, Rivero-Müller A, Borkiewicz L. Regulation of Notch1 Signalling by Long Non-Coding RNAs in Cancers and Other Health Disorders. Int J Mol Sci 2023; 24:12579. [PMID: 37628760 PMCID: PMC10454443 DOI: 10.3390/ijms241612579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Notch1 signalling plays a multifaceted role in tissue development and homeostasis. Currently, due to the pivotal role of Notch1 signalling, the relationship between NOTCH1 expression and the development of health disorders is being intensively studied. Nevertheless, Notch1 signalling is not only controlled at the transcriptional level but also by a variety of post-translational events. First is the ligand-dependent mechanical activation of NOTCH receptors and then the intracellular crosstalk with other signalling molecules-among those are long non-coding RNAs (lncRNAs). In this review, we provide a detailed overview of the specific role of lncRNAs in the modulation of Notch1 signalling, from expression to activity, and their connection with the development of health disorders, especially cancers.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Karolina Czapla
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Waszyngtona 15, 15-274 Bialystok, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| |
Collapse
|
5
|
Fabian B, Sachse S. Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects. Front Cell Neurosci 2023; 17:1130091. [PMID: 36923450 PMCID: PMC10010147 DOI: 10.3389/fncel.2023.1130091] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is long known that the nervous system of vertebrates can be shaped by internal and external factors. On the other hand, the nervous system of insects was long assumed to be stereotypic, although evidence for plasticity effects accumulated for several decades. To cover the topic comprehensively, this review recapitulates the establishment of the term "plasticity" in neuroscience and introduces its original meaning. We describe the basic composition of the insect olfactory system using Drosophila melanogaster as a representative example and outline experience-dependent plasticity effects observed in this part of the brain in a variety of insects, including hymenopterans, lepidopterans, locusts, and flies. In particular, we highlight recent advances in the study of experience-dependent plasticity effects in the olfactory system of D. melanogaster, as it is the most accessible olfactory system of all insect species due to the genetic tools available. The partly contradictory results demonstrate that morphological, physiological and behavioral changes in response to long-term olfactory stimulation are more complex than previously thought. Different molecular mechanisms leading to these changes were unveiled in the past and are likely responsible for this complexity. We discuss common problems in the study of experience-dependent plasticity, ways to overcome them, and future directions in this area of research. In addition, we critically examine the transferability of laboratory data to natural systems to address the topic as holistically as possible. As a mechanism that allows organisms to adapt to new environmental conditions, experience-dependent plasticity contributes to an animal's resilience and is therefore a crucial topic for future research, especially in an era of rapid environmental changes.
Collapse
Affiliation(s)
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
6
|
Yang X, Liu S, Lu W, Du M, Qiao Z, Liang Z, An Y, Gao J, Li X. Delta and jagged are candidate target genes of RNAi biopesticides for the control of Nilaparvata lugens. Front Bioeng Biotechnol 2022; 10:1023729. [PMID: 36466326 PMCID: PMC9715739 DOI: 10.3389/fbioe.2022.1023729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/10/2022] [Indexed: 11/07/2023] Open
Abstract
The brown planthopper (BPH; Nilaparvata lugens) is an important pest in rice cultivation, and chemical pesticide over-use and ineffectiveness of existing Bt transgenic rice against piercing-sucking insects make novel control methods necessary. RNA interference (RNAi) biopesticide is a new type of product with high efficiency and specificity and are simple to use. The Notch signaling pathway has extensive and important physiological functions and plays a key role in the development of insects. In this study, two key ligand genes of the Notch signaling pathway, delta (dl) and jagged (jag), were selected and their lethal effects and functional analysis were systematically evaluated using a stable short-winged population (Brachypterous strain) and a long-winged population (Macropterous strain) of BPHs. The full-length coding sequences of Nldl and Nljag comprised 1,863 and 3,837 base pairs, encoding 620 and 1,278 amino acids, respectively. The nucleic acid sequences of Nldl and Nljag were identical between the two strains. The expression levels of Nldl and Nljag were relatively high in the head of the nymphs, followed by those in the abdomen. Through RNAi treatment, we found that injection of BPH nymphs of both strains with dsNldl (10-50 ng/nymph) or dsNljag (100 ng/nymph) produced lethal or teratogenic effects. dsRNA treatment showed excellent inhibitory effects on the expression of target genes on days 1 and 5, suggesting that RNAi rapidly exhibits effects which persist for long periods of time in BPHs. Taken together, our results confirm the potential of Nldl and Nljag as target genes of RNAi biopesticides, and we propose optimized dosages for the control of BPHs.
Collapse
Affiliation(s)
- Xifa Yang
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shaokai Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture/College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenhui Lu
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhuangzhuang Qiao
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhen Liang
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yiting An
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jing Gao
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiang Li
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
7
|
Kałafut J, Czapiński J, Przybyszewska-Podstawka A, Czerwonka A, Odrzywolski A, Sahlgren C, Rivero-Müller A. Optogenetic control of NOTCH1 signaling. Cell Commun Signal 2022; 20:67. [PMID: 35585598 PMCID: PMC9118860 DOI: 10.1186/s12964-022-00885-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
The Notch signaling pathway is a crucial regulator of cell differentiation as well as tissue organization, whose deregulation is linked to the pathogenesis of different diseases. NOTCH1 plays a key role in breast cancer progression by increasing proliferation, maintenance of cancer stem cells, and impairment of cell death. NOTCH1 is a mechanosensitive receptor, where mechanical force is required to activate the proteolytic cleavage and release of the Notch intracellular domain (NICD). We circumvent this limitation by regulating Notch activity by light. To achieve this, we have engineered an optogenetic NOTCH1 receptor (optoNotch) to control the activation of NOTCH1 intracellular domain (N1ICD) and its downstream transcriptional activities. Using optoNotch we confirm that NOTCH1 activation increases cell proliferation in MCF7 and MDA-MB-468 breast cancer cells in 2D and spheroid 3D cultures, although causing distinct cell-type specific migratory phenotypes. Additionally, optoNotch activation induced chemoresistance on the same cell lines. OptoNotch allows the fine-tuning, ligand-independent, regulation of N1ICD activity and thus a better understanding of the spatiotemporal complexity of Notch signaling. Video Abstract.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | | | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland.
| |
Collapse
|
8
|
Dombrovski M, Condron B. Critical periods shaping the social brain: A perspective from Drosophila. Bioessays 2020; 43:e2000246. [PMID: 33215730 DOI: 10.1002/bies.202000246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/08/2022]
Abstract
Many sensory processing regions of the central brain undergo critical periods of experience-dependent plasticity. During this time ethologically relevant information shapes circuit structure and function. The mechanisms that control critical period timing and duration are poorly understood, and this is of special importance for those later periods of development, which often give rise to complex cognitive functions such as social behavior. Here, we review recent findings in Drosophila, an organism that has some unique experimental advantages, and introduce novel views for manipulating plasticity in the post-embryonic brain. Critical periods in larval and young adult flies resemble classic vertebrate models with distinct onset and termination, display clear connections with complex behaviors, and provide opportunities to control the time course of plasticity. These findings may extend our knowledge about mechanisms underlying extension and reopening of critical periods, a concept that has great relevance to many human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Barry Condron
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Salazar JL, Yang SA, Yamamoto S. Post-Developmental Roles of Notch Signaling in the Nervous System. Biomolecules 2020; 10:biom10070985. [PMID: 32630239 PMCID: PMC7408554 DOI: 10.3390/biom10070985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in Drosophila, the Notch signaling pathway has been studied in numerous developmental contexts in diverse multicellular organisms. The role of Notch signaling in nervous system development has been extensively investigated by numerous scientists, partially because many of the core Notch signaling components were initially identified through their dramatic ‘neurogenic’ phenotype of developing fruit fly embryos. Components of the Notch signaling pathway continue to be expressed in mature neurons and glia cells, which is suggestive of a role in the post-developmental nervous system. The Notch pathway has been, so far, implicated in learning and memory, social behavior, addiction, and other complex behaviors using genetic model organisms including Drosophila and mice. Additionally, Notch signaling has been shown to play a modulatory role in several neurodegenerative disease model animals and in mediating neural toxicity of several environmental factors. In this paper, we summarize the knowledge pertaining to the post-developmental roles of Notch signaling in the nervous system with a focus on discoveries made using the fruit fly as a model system as well as relevant studies in C elegans, mouse, rat, and cellular models. Since components of this pathway have been implicated in the pathogenesis of numerous psychiatric and neurodegenerative disorders in human, understanding the role of Notch signaling in the mature brain using model organisms will likely provide novel insights into the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Jose L. Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, BCM, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8119
| |
Collapse
|
10
|
Glomerulus-Selective Regulation of a Critical Period for Interneuron Plasticity in the Drosophila Antennal Lobe. J Neurosci 2020; 40:5549-5560. [PMID: 32532889 PMCID: PMC7363474 DOI: 10.1523/jneurosci.2192-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
Several features of the adult nervous systems develop in a "critical period" (CP), during which high levels of plasticity allow neural circuits to be tuned for optimal performance. Through an analysis of long-term olfactory habituation (LTH) in female Drosophila, we provide new insight into mechanisms by which CPs are regulated in vivo LTH manifests as a persistently reduced behavioral response to an odorant encountered for 4 continuous days and occurs together with the growth of specific, odorant-responsive glomeruli in the antennal lobe. We show that the CP for behavioral and structural plasticity induced by ethyl butyrate (EB) or carbon dioxide (CO2) closes within 48 h after eclosion. The elaboration of excitatory projection neuron (PN) processes likely contribute to glomerular volume increases, as follows: both occur together and similarly require cAMP signaling in the antennal lobe inhibitory local interneurons. Further, the CP for structural plasticity could be extended beyond 48 h if EB- or CO2-responsive olfactory sensory neurons (OSNs) are silenced after eclosion; thus, OSN activity is required for closing the CP. Strikingly, silencing of glomerulus-selective OSNs extends the CP for structural plasticity only in respective target glomeruli. This indicates the existence of a local, short-range mechanism for regulating CP closure. Such a local mechanism for CP regulation can explain why plasticity induced by the odorant geranyl acetate (which is attractive) shows no CP although it involves the same core plasticity mechanisms as CO2 and EB. Local control of closure mechanisms during the critical period can potentially impart evolutionarily adaptive, odorant-specific features to behavioral plasticity.SIGNIFICANCE STATEMENT The critical period for plasticity represents a stage of life at which animals learn specific tasks or features with particular facility. This work provides fresh evidence that mechanisms for regulating critical periods are broadly conserved across evolution. Thus, a critical period for long-term olfactory habituation in Drosophila, which closes early in adulthood can, like the critical period for ocular dominance plasticity in mammals, be extended by blocking sensory neurons early in life. Further observations show that critical periods for plasticity can be regulated by spatially restricted mechanisms, potentially allowing varied critical periods for plasticity to stimuli of different ethological relevance.
Collapse
|
11
|
Bai Y, Suzuki T. Activity-Dependent Synaptic Plasticity in Drosophila melanogaster. Front Physiol 2020; 11:161. [PMID: 32158405 PMCID: PMC7052306 DOI: 10.3389/fphys.2020.00161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The Drosophila nervous system is a valuable model to examine the mechanisms of activity-dependent synaptic modification (plasticity) owing to its relatively simple organization and the availability of powerful genetic tools. The larval neuromuscular junction (NMJ) in particular is an accessible model for the study of synaptic development and plasticity. In addition to the NMJ, huge strides have also been made on understanding activity-dependent synaptic plasticity in the Drosophila olfactory and visual systems. In this review, we focus mainly on the underlying processes of activity-dependent synaptic plasticity at both pre-synaptic and post-synaptic terminals, and summarize current knowledge on activity-dependent synaptic plasticity in different parts of the Drosophila melanogaster nervous system (larval NMJ, olfactory system, larval visual system, and adult visual system). We also examine links between synaptic development and activity-dependent synaptic plasticity, and the relationships between morphological and physiological plasticity. We provide a point of view from which we discern that the underlying mechanism of activity-dependent plasticity may be common throughout the nervous systems in Drosophila melanogaster.
Collapse
Affiliation(s)
- Yiming Bai
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Suzuki
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
12
|
Ho DM, Artavanis-Tsakonas S, Louvi A. The Notch pathway in CNS homeostasis and neurodegeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e358. [PMID: 31502763 DOI: 10.1002/wdev.358] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 12/19/2022]
Abstract
The role of the Notch signaling pathway in neural development has been well established over many years. More recent studies, however, have demonstrated that Notch continues to be expressed and active throughout adulthood in many areas of the central nervous system. Notch signals have been implicated in adult neurogenesis, memory formation, and synaptic plasticity in the adult organism, as well as linked to acute brain trauma and chronic neurodegenerative conditions. NOTCH3 mutations are responsible for the most common form of hereditary stroke, the progressive disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Notch has also been associated with several progressive neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Although numerous studies link Notch activity with CNS homeostasis and neurodegenerative diseases, the data thus far are primarily correlative, rather than functional. Nevertheless, the evidence for Notch pathway activity in specific neural cellular contexts is strong, and certainly intriguing, and points to the possibility that the pathway carries therapeutic promise. This article is categorized under: Nervous System Development > Flies Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Diana M Ho
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | | | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience and Program on Neurogenetics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Golovin RM, Vest J, Vita DJ, Broadie K. Activity-Dependent Remodeling of Drosophila Olfactory Sensory Neuron Brain Innervation during an Early-Life Critical Period. J Neurosci 2019; 39:2995-3012. [PMID: 30755492 PMCID: PMC6468095 DOI: 10.1523/jneurosci.2223-18.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/07/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022] Open
Abstract
Critical periods are windows of development when the environment has a pronounced effect on brain circuitry. Models of neurodevelopmental disorders, including autism spectrum disorders, intellectual disabilities, and schizophrenia, are linked to disruption of critical period remodeling. Critical periods open with the onset of sensory experience; however, it remains unclear exactly how sensory input modifies brain circuits. Here, we examine olfactory sensory neuron (OSN) innervation of the Drosophila antennal lobe of both sexes as a genetic model of this question. We find that olfactory sensory experience during an early-use critical period drives loss of OSN innervation of antennal lobe glomeruli and subsequent axon retraction in a dose-dependent mechanism. This remodeling does not result from olfactory receptor loss or OSN degeneration, but rather from rapid synapse elimination and axon pruning in the target olfactory glomerulus. Removal of the odorant stimulus only during the critical period leads to OSN reinnervation, demonstrating that remodeling is transiently reversible. We find that this synaptic refinement requires the OSN-specific olfactory receptor and downstream activity. Conversely, blocking OSN synaptic output elevates glomeruli remodeling. We find that GABAergic neurotransmission has no detectable role, but that glutamatergic signaling via NMDA receptors is required for OSN synaptic refinement. Together, these results demonstrate that OSN inputs into the brain manifest robust, experience-dependent remodeling during an early-life critical period, which requires olfactory reception, OSN activity, and NMDA receptor signaling. This work reveals a pathway linking initial olfactory sensory experience to glutamatergic neurotransmission in the activity-dependent remodeling of brain neural circuitry in an early-use critical period.SIGNIFICANCE STATEMENT Neurodevelopmental disorders manifest symptoms at specific developmental milestones that suggest an intersection between early sensory experience and brain neural circuit remodeling. One classic example is Fragile X syndrome caused by loss of an RNA-binding translation regulator of activity-dependent synaptic refinement. As a model, Drosophila olfactory circuitry is well characterized, genetically tractable, and rapidly developing, and thus ideally suited to probe underlying mechanisms. Here, we find olfactory sensory neurons are dramatically remodeled by heightened sensory experience during an early-life critical period. We demonstrate removing the olfactory stimulus during the critical period can reverse the connectivity changes. We find that this remodeling requires neural activity and NMDA receptor-mediated glutamatergic transmission. This improved understanding may help us design treatments for neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | | | - Kendal Broadie
- Vanderbilt Brain Institute,
- Department of Biological Sciences, and
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
14
|
Bazzari FH, Abdallah DM, El-Abhar HS. Pharmacological Interventions to Attenuate Alzheimer’s Disease Progression: The Story So Far. Curr Alzheimer Res 2019; 16:261-277. [DOI: 10.2174/1567205016666190301111120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/15/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia in the elderly. Up to date, the available pharmacological options for AD are limited to cholinesterase inhibitors and memantine that may only provide modest symptomatic management with no significance in slowing down the disease progression. Over the past three decades, the increased interest in and the understanding of AD major pathological hallmarks have provided an insight into the mechanisms mediating its pathogenesis, which in turn introduced a number of hypotheses and novel targets for the treatment of AD. Initially, targeting amyloid-beta and tau protein was considered the most promising therapeutic approach. However, further investigations have identified other major players, such as neuroinflammation, impaired insulin signalling and defective autophagy, that may contribute to the disease progression. While some promising drugs are currently being investigated in human studies, the majority of the previously developed medical agents have come to an end in clinical trials, as they have failed to illustrate any beneficial outcome. This review aims to discuss the different introduced approaches to alleviate AD progression; in addition, provides a comprehensive overview of the drugs in the development phase as well as their mode of action and an update of their status in clinical trials.
Collapse
Affiliation(s)
- Firas H. Bazzari
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S. El-Abhar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Slankster E, Odell SR, Mathew D. Strength in diversity: functional diversity among olfactory neurons of the same type. J Bioenerg Biomembr 2019; 51:65-75. [PMID: 30604088 PMCID: PMC6382560 DOI: 10.1007/s10863-018-9779-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023]
Abstract
Most animals depend upon olfaction to find food, mates, and to avoid predators. An animal's olfactory circuit helps it sense its olfactory environment and generate critical behavioral responses. The general architecture of the olfactory circuit, which is conserved across species, is made up of a few different neuronal types including first-order receptor neurons, second- and third-order neurons, and local interneurons. Each neuronal type differs in their morphology, physiology, and neurochemistry. However, several recent studies have suggested that there is intrinsic diversity even among neurons of the same type and that this diversity is important for neural function. In this review, we first examine instances of intrinsic diversity observed among individual types of olfactory neurons. Next, we review potential genetic and experience-based plasticity mechanisms that underlie this diversity. Finally, we consider the implications of intrinsic neuronal diversity for circuit function. Overall, we hope to highlight the importance of intrinsic diversity as a previously underestimated property of circuit function.
Collapse
Affiliation(s)
- Eryn Slankster
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
| | - Seth R Odell
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
- Integrated Neuroscience Program, University of Nevada, Reno, NV, 89557, USA
| | - Dennis Mathew
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA.
- Integrated Neuroscience Program, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
16
|
Pekar O, Ow MC, Hui KY, Noyes MB, Hall SE, Hubbard EJA. Linking the environment, DAF-7/TGFβ signaling and LAG-2/DSL ligand expression in the germline stem cell niche. Development 2017; 144:2896-2906. [PMID: 28811311 DOI: 10.1242/dev.147660] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/01/2017] [Indexed: 02/04/2023]
Abstract
The developmental accumulation of proliferative germ cells in the C. elegans hermaphrodite is sensitive to the organismal environment. Previously, we found that the TGFβ signaling pathway links the environment and proliferative germ cell accumulation. Neuronal DAF-7/TGFβ causes a DAF-1/TGFβR signaling cascade in the gonadal distal tip cell (DTC), the germline stem cell niche, where it negatively regulates a DAF-3 SMAD and DAF-5 Sno-Ski. LAG-2, a founding DSL ligand family member, is produced in the DTC and activates the GLP-1/Notch receptor on adjacent germ cells to maintain germline stem cell fate. Here, we show that DAF-7/TGFβ signaling promotes expression of lag-2 in the DTC in a daf-3-dependent manner. Using ChIP and one-hybrid assays, we find evidence for direct interaction between DAF-3 and the lag-2 promoter. We further identify a 25 bp DAF-3 binding element required for the DTC lag-2 reporter response to the environment and to DAF-7/TGFβ signaling. Our results implicate DAF-3 repressor complex activity as a key molecular mechanism whereby the environment influences DSL ligand expression in the niche to modulate developmental expansion of the germline stem cell pool.
Collapse
Affiliation(s)
- Olga Pekar
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Kailyn Y Hui
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Marcus B Noyes
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Sarah E Hall
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
17
|
Hsieh YW, Alqadah A, Chuang CF. Mechanisms controlling diversification of olfactory sensory neuron classes. Cell Mol Life Sci 2017; 74:3263-3274. [PMID: 28357469 DOI: 10.1007/s00018-017-2512-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022]
Abstract
Animals survive in harsh and fluctuating environments using sensory neurons to detect and respond to changes in their surroundings. Olfactory sensory neurons are essential for detecting food, identifying danger, and sensing pheromones. The ability to sense a large repertoire of different types of odors is crucial to distinguish between different situations, and is achieved through neuronal diversity within the olfactory system. Here, we review the developmental mechanisms used to establish diversity of olfactory sensory neurons in various model organisms, including Caenorhabditis elegans, Drosophila, and vertebrate models. Understanding and comparing how different olfactory neurons develop within the nervous system of different animals can provide insight into how the olfactory system is shaped in humans.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA.
| |
Collapse
|
18
|
Golovin RM, Broadie K. Developmental experience-dependent plasticity in the first synapse of the Drosophila olfactory circuit. J Neurophysiol 2016; 116:2730-2738. [PMID: 27683892 DOI: 10.1152/jn.00616.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
Evidence accumulating over the past 15 years soundly refutes the dogma that the Drosophila nervous system is hardwired. The preponderance of studies reveals activity-dependent neural circuit refinement driving optimization of behavioral outputs. We describe developmental, sensory input-dependent plasticity in the brain olfactory antennal lobe, which we term long-term central adaption (LTCA). LTCA is evoked by prolonged exposure to an odorant during the first week of posteclosion life, resulting in a persistently decreased response to aversive odors and an enhanced response to attractive odors. This limited window of early-use, experience-dependent plasticity represents a critical period of olfactory circuit refinement tuned by initial sensory input. Consequent behavioral adaptations have been associated with changes in the output of olfactory projection neurons to higher brain centers. Recent studies have indicated a central role for local interneuron signaling in LTCA presentation. Genetic and molecular analyses have implicated the mRNA-binding fragile X mental retardation protein and ataxin-2 regulators, Notch trans-synaptic signaling, and cAMP signal transduction as core regulatory steps driving LTCA. In this article, we discuss the structural, functional, and behavioral changes associated with LTCA and review our current understanding of the molecular pathways underlying these developmental, experience-dependent changes in the olfactory circuitry.
Collapse
Affiliation(s)
- Randall M Golovin
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; and
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; and .,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|