1
|
Tadres D, Riedl J, Eden A, Bontempo AE, Lin J, Reid SF, Roehrich B, Williams K, Sepunaru L, Louis M. Sensation of electric fields in the Drosophila melanogaster larva. Curr Biol 2025; 35:1848-1860.e4. [PMID: 40174584 PMCID: PMC12040295 DOI: 10.1016/j.cub.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
Electrosensation has emerged as a crucial sensory modality for social communication, foraging, and predation across the animal kingdom. However, its presence and functional role as well as the neural basis of electric field perception in Drosophila and other invertebrates remain unclear. In environments with controlled electric fields, we identified electrosensation as a new sense in the Drosophila melanogaster larva. We found that the Drosophila larva performs robust electrotaxis: when exposed to a uniform electric field, larvae migrate toward the cathode (negatively charged elecrode) and quickly respond to changes in the orientation of the field to maintain cathodal movement. Through a behavioral screen, we identified a subset of sensory neurons located at the tip of the larval head that are necessary for electrotaxis. Calcium imaging revealed that a pair of Gr66a-positive sensory neurons (one on each side of the head) encodes the strength and orientation of the electric field. Our results indicate that electric fields elicit robust behavioral and neural responses in the Drosophila larva, providing new evidence for the significance of electrosensation in invertebrates.
Collapse
Affiliation(s)
- David Tadres
- University of California, Santa Barbara, MCDB Department & Neuroscience Research Institute (NRI), Santa Barbara, CA 93106, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Julia Riedl
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Alexander Eden
- University of California, Santa Barbara, Mechanical Engineering Department, Santa Barbara, CA 93106, USA
| | - Angela E Bontempo
- University of California, Santa Barbara, MCDB Department & Neuroscience Research Institute (NRI), Santa Barbara, CA 93106, USA
| | - Jingtong Lin
- University of California, Santa Barbara, MCDB Department & Neuroscience Research Institute (NRI), Santa Barbara, CA 93106, USA
| | - Samuel F Reid
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Brian Roehrich
- University of California, Santa Barbara, Department of Chemistry and Biochemistry, Santa Barbara, CA 93106, USA
| | - Kevin Williams
- University of California, Santa Barbara, MCDB Department & Neuroscience Research Institute (NRI), Santa Barbara, CA 93106, USA
| | - Lior Sepunaru
- University of California, Santa Barbara, Department of Chemistry and Biochemistry, Santa Barbara, CA 93106, USA
| | - Matthieu Louis
- University of California, Santa Barbara, MCDB Department & Neuroscience Research Institute (NRI), Santa Barbara, CA 93106, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain.
| |
Collapse
|
2
|
Liu L, Huang B, Lu Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience 2024; 27:109201. [PMID: 38433903 PMCID: PMC10906530 DOI: 10.1016/j.isci.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.
Collapse
Affiliation(s)
- Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China
| | - Yingxian Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
3
|
Tee LF, Young JJ, Maruyama K, Kimura S, Suzuki R, Endo Y, Kimura KD. Electric shock causes a fleeing-like persistent behavioral response in the nematode Caenorhabditis elegans. Genetics 2023; 225:iyad148. [PMID: 37595066 PMCID: PMC10550322 DOI: 10.1093/genetics/iyad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/27/2023] [Indexed: 08/20/2023] Open
Abstract
Behavioral persistency reflects internal brain states, which are the foundations of multiple brain functions. However, experimental paradigms enabling genetic analyses of behavioral persistency and its associated brain functions have been limited. Here, we report novel persistent behavioral responses caused by electric stimuli in the nematode Caenorhabditis elegans. When the animals on bacterial food are stimulated by alternating current, their movement speed suddenly increases 2- to 3-fold, persisting for more than 1 minute even after a 5-second stimulation. Genetic analyses reveal that voltage-gated channels in the neurons are required for the response, possibly as the sensors, and neuropeptide signaling regulates the duration of the persistent response. Additional behavioral analyses implicate that the animal's response to electric shock is scalable and has a negative valence. These properties, along with persistence, have been recently regarded as essential features of emotion, suggesting that C. elegans response to electric shock may reflect a form of emotion, akin to fear.
Collapse
Affiliation(s)
- Ling Fei Tee
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Jared J Young
- Mills College at Northeastern University, Oakland, CA 94613, USA
| | - Keisuke Maruyama
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Sota Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Ryoga Suzuki
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Yuto Endo
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koutarou D Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Zhang X, Xu XZS. Electroreception: Worms leap to insects for dispersal. Curr Biol 2023; 33:R775-R777. [PMID: 37490866 PMCID: PMC10914292 DOI: 10.1016/j.cub.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Electroreception is employed by some fishes to locate prey or predators. However, why the nematode Caenorhabditis elegans senses electric fields is unclear. A new study shows that electroreception helps these microscopic worms to attach themselves to insects for transportation.
Collapse
Affiliation(s)
- Xinxing Zhang
- Life Sciences Institute University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - X Z Shawn Xu
- Life Sciences Institute University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Chiba T, Okumura E, Nishigami Y, Nakagaki T, Sugi T, Sato K. Caenorhabditis elegans transfers across a gap under an electric field as dispersal behavior. Curr Biol 2023:S0960-9822(23)00674-7. [PMID: 37348502 DOI: 10.1016/j.cub.2023.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/04/2023] [Accepted: 05/17/2023] [Indexed: 06/24/2023]
Abstract
Interactions between different animal species are a critical determinant of each species' evolution and range expansion. Chemical, visual, and mechanical interactions have been abundantly reported, but the importance of electric interactions is not well understood. Here, we report the discovery that the nematode Caenorhabditis elegans transfers across electric fields to achieve phoretic attachment to insects. First, we found that dauer larvae of C. elegans nictating on a substrate in a Petri dish moved directly to the lid through the air due to the electrostatic force from the lid. To more systematically investigate the transfer behavior, we constructed an assay system with well-controlled electric fields: the worms flew up regardless of whether a positive or negative electric field was applied, suggesting that an induced charge within the worm is related to this transfer. The mean take-off speed is 0.86 m/s, and the worm flies up under an electric field exceeding 200 kV/m. This worm transfer occurs even when the worms form a nictation column composed of up to 100 worms; we term this behavior "multiworm transfer." These observations led us to conclude that C. elegans can transfer and attach to the bumblebee Bombus terrestris, which was charged by rubbing with flower pollen in the lab. The charge on the bumblebee was measured with a coulomb-meter to be 806 pC, which was within the range of bumblebee charges and of the same order of flying insect charges observed in nature, suggesting that electrical interactions occur among different species.
Collapse
Affiliation(s)
- Takuya Chiba
- Graduate School of Life Science, Hokkaido University, Kita 8 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Etsuko Okumura
- Yokkaichi Tech. Department, TEISO TOYOKA CO, LTD 4005-1 Shiohama, Yokkaichi, Mie 510-0863, Japan
| | - Yukinori Nishigami
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21 Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Toshiyuki Nakagaki
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21 Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Takuma Sugi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| | - Katsuhiko Sato
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21 Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| |
Collapse
|
6
|
Sabry Z, Wang R, Jahromi A, Rabeler C, Kristan WB, Collins EMS. Head removal enhances planarian electrotaxis. J Exp Biol 2022; 225:276204. [PMID: 35924486 PMCID: PMC9482365 DOI: 10.1242/jeb.243972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Certain animal species utilize electric fields for communication, hunting and spatial orientation. Freshwater planarians move toward the cathode in a static electric field (cathodic electrotaxis). This planarian behavior was first described by Raymond Pearl more than a century ago. However, planarian electrotaxis has received little attention since, and the underlying mechanisms and evolutionary significance remain unknown. To close this knowledge gap, we developed an apparatus and scoring metrics for automated quantitative and mechanistic studies of planarian behavior upon exposure to a static electric field. Using this automated setup, we characterized electrotaxis in the planarian Dugesia japonica and found that this species responds to voltage instead of current, in contrast to results from previous studies using other planarian species. Surprisingly, we found differences in electrotaxis ability between small (shorter) and large (longer) planarians. To determine the cause of these differences, we took advantage of the regenerative abilities of planarians and compared electrotaxis in head, tail and trunk fragments of various lengths. We found that tail and trunk fragments electrotaxed, whereas head fragments did not, regardless of size. Based on these data, we hypothesized that signals from the head may interfere with electrotaxis when the head area/body area reached a critical threshold. In support of this hypothesis, we found that (1) smaller intact planarians that cannot electrotax have a relatively larger head-to-body-ratio than large planarians that can electrotax, and (2) the electrotaxis behavior of cut head fragments was negatively correlated with the head-to-body ratio of the fragments. Moreover, we could restore cathodic electrotaxis in head fragments via decapitation, directly demonstrating inhibition of electrotaxis by the head. Summary: A new method for quantitative studies of planarian electrotaxis shows that Dugesia japonica move toward the cathode. This behavior is enhanced by removal of the head.
Collapse
Affiliation(s)
- Ziad Sabry
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Rui Wang
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA.,Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Aryo Jahromi
- Department of Mechanical Engineering, University of California San Diego, La Jolla, California, USA
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - William B Kristan
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA.,Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania, USA.,Department of Physics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Pandey P, Kaur G, Babu K. Crosstalk between neurons and glia through G-protein coupled receptors: Insights from Caenorhabditis elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:119-144. [PMID: 36357074 DOI: 10.1016/bs.pmbts.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past decades have witnessed a dogmatic shift from glia as supporting cells in the nervous system to their active roles in neurocentric functions. Neurons and glia communicate and show bidirectional responses through tripartite synapses. Studies across species indicate that neurotransmitters released by neurons are perceived by glial receptors, which allow for gliotransmitter release. These gliotransmitters can result in activation of neurons via neuronal GPCR receptors. However, studies of these molecular interactions are in their infancy. Caenorhabditis elegans has a conserved neuron-glia architectural repertoire with molecular and functional resemblance to mammals. Further, glia in C. elegans can be manipulated through ablation and mutations allowing for deciphering of glial dependent processes in vivo at single glial resolutions. Here, we will review recent findings from vertebrate and invertebrate organisms with a focus on how C. elegans can be used to advance our understanding of neuron-glia interactions through GPCRs.
Collapse
Affiliation(s)
- Pratima Pandey
- Indian Institute of Science Education and Research, Mohali, Punjab, India.
| | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kavita Babu
- Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
8
|
Davidian D, LeGro M, Barghouth PG, Rojas S, Ziman B, Maciel EI, Ardell D, Escobar AL, Oviedo NJ. Restoration of DNA integrity and cell cycle by electric stimulation in planarian tissues damaged by ionizing radiation. J Cell Sci 2022; 135:274829. [PMID: 35322853 PMCID: PMC9264365 DOI: 10.1242/jcs.259304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/05/2022] [Indexed: 10/18/2022] Open
Abstract
Exposure to high levels of ionizing γ-radiation leads to irreversible DNA damage and cell death. Here, we establish that exogenous application of electric stimulation enables cellular plasticity to reestablish stem cell activity in tissues damaged by ionizing radiation. We show that sub-threshold direct current stimulation (DCS) rapidly restores pluripotent stem cell populations previously eliminated by lethally γ-irradiated tissues of the planarian flatworm Schmidtea mediterranea. Our findings reveal that DCS enhances DNA repair, transcriptional activity, and cell cycle entry in post-mitotic cells. These responses involve rapid increases in cytosolic [Ca2+] through the activation of L-type Cav channels and intracellular Ca2+ stores leading to the activation of immediate early genes and ectopic expression of stem cell markers in postmitotic cells. Overall, we show the potential of electric current stimulation to reverse the damaging effects of high dose γ-radiation in adult tissues. Furthermore, our results provide mechanistic insights describing how electric stimulation effectively translates into molecular responses capable of regulating fundamental cellular functions without the need for genetic or pharmacological intervention.
Collapse
Affiliation(s)
- Devon Davidian
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Melanie LeGro
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Paul G Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Salvador Rojas
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Benjamin Ziman
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Eli Isael Maciel
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - David Ardell
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Health Sciences Research Institute, University of California, Merced, USA
| | - Ariel L Escobar
- Department of Bioengineering, University of California, Merced, USA.,Health Sciences Research Institute, University of California, Merced, USA
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Health Sciences Research Institute, University of California, Merced, USA
| |
Collapse
|
9
|
Caprini D, Schwartz S, Lanza E, Milanetti E, Lucente V, Ferrarese G, Chiodo L, Nicoletti M, Folli V. A Shearless Microfluidic Device Detects a Role in Mechanosensitivity for AWC ON Neuron in Caenorhabditis elegans. Adv Biol (Weinh) 2021; 5:e2100927. [PMID: 34423577 DOI: 10.1002/adbi.202100927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Indexed: 11/08/2022]
Abstract
AWC olfactory neurons are fundamental for chemotaxis toward volatile attractants in Caenorhabditis elegans. Here, it is shown that AWCON responds not only to chemicals but also to mechanical stimuli caused by fluid flow changes in a microfluidic device. The dynamics of calcium events are correlated with the stimulus amplitude. It is further shown that the mechanosensitivity of AWCON neurons has an intrinsic nature rather than a synaptic origin, and the calcium transient response is mediated by TAX-4 cGMP-gated cation channel, suggesting the involvement of one or more "odorant" receptors in AWCON mechano-transduction. In many cases, the responses show plateau properties resembling bistable calcium dynamics where neurons can switch from one stable state to the other. To investigate the unprecedentedly observed mechanosensitivity of AWCON neurons, a novel microfluidic device is designed to minimize the fluid shear flow in the arena hosting the nematodes. Animals in this device show reduced neuronal activation of AWCON neurons. The results observed indicate that the tangential component of the mechanical stress is the main contributor to the mechanosensitivity of AWCON . Furthermore, the microfluidic platform, integrating shearless perfusion and calcium imaging, provides a novel and more controlled solution for in vivo analysis both in micro-organisms and cultured cells.
Collapse
Affiliation(s)
- Davide Caprini
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| | - Silvia Schwartz
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| | - Enrico Lanza
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| | - Edoardo Milanetti
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy.,Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Valeria Lucente
- CREST OPTICS S.p.A., Via di Torre Rossa 66, Rome, 00165, Italy
| | - Giuseppe Ferrarese
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy.,Department of Engineering, Campus Bio-Medico University, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Letizia Chiodo
- Department of Engineering, Campus Bio-Medico University, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Martina Nicoletti
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy.,Department of Engineering, Campus Bio-Medico University, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Viola Folli
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| |
Collapse
|
10
|
Youssef K, Archonta D, Kubiseski TJ, Tandon A, Rezai P. Electric egg-laying: a new approach for regulating C. elegans egg-laying behaviour in a microchannel using electric field. LAB ON A CHIP 2021; 21:821-834. [PMID: 33527103 DOI: 10.1039/d0lc00964d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, the novel effect of electric field (EF) on adult C. elegans egg-laying in a microchannel is discovered and correlated with neural and muscular activities. The quantitative effects of worm aging and EF strength, direction, and exposure duration on egg-laying are studied phenotypically using egg-count, body length, head movement, and transient neuronal activity readouts. Electric egg-laying rate increases significantly when worms face the anode and the response is EF-dependent, i.e. stronger (6 V cm-1) and longer EF (40 s) exposure result in a shorter egg laying response duration. Worm aging significantly deteriorates the electric egg-laying behaviour with an 88% decrease in the egg-count from day-1 to day-4 post young-adult stage. Fluorescent imaging of intracellular calcium dynamics in the main parts of the egg-laying neural circuit demonstrates the involvement and sensitivity of the serotonergic hermaphrodite specific neurons (HSNs), vulva muscles, and ventral cord neurons to the EF. HSN mutation also results in a reduced rate of electric egg-laying allowing the use of this technique for cellular screening and mapping of the neural basis of electrosensation in C. elegans. This novel assay can be parallelized and performed in a high-throughput manner for drug and gene screening applications.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada.
| | - Daphne Archonta
- Department of Mechanical Engineering, York University, Toronto, ON, Canada.
| | | | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada.
| |
Collapse
|
11
|
Hunting ER, Matthews J, de Arróyabe Hernáez PF, England SJ, Kourtidis K, Koh K, Nicoll K, Harrison RG, Manser K, Price C, Dragovic S, Cifra M, Odzimek A, Robert D. Challenges in coupling atmospheric electricity with biological systems. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:45-58. [PMID: 32666310 PMCID: PMC7782408 DOI: 10.1007/s00484-020-01960-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 05/24/2023]
Abstract
The atmosphere is host to a complex electric environment, ranging from a global electric circuit generating fluctuating atmospheric electric fields to local lightning strikes and ions. While research on interactions of organisms with their electrical environment is deeply rooted in the aquatic environment, it has hitherto been confined to interactions with local electrical phenomena and organismal perception of electric fields. However, there is emerging evidence of coupling between large- and small-scale atmospheric electrical phenomena and various biological processes in terrestrial environments that even appear to be tied to continental waters. Here, we synthesize our current understanding of this connectivity, discussing how atmospheric electricity can affect various levels of biological organization across multiple ecosystems. We identify opportunities for research, highlighting its complexity and interdisciplinary nature and draw attention to both conceptual and technical challenges lying ahead of our future understanding of the relationship between atmospheric electricity and the organization and functioning of biological systems.
Collapse
Affiliation(s)
- Ellard R Hunting
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | | | - Sam J England
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Konstantinos Kourtidis
- Department of Environmental Engineering, Demokritus University of Thrace, Xanthi, Greece
- ISLP Xanthi Branch, ENTA Unit, ATHENA Research and Innovation Center, Xanthi, Greece
| | - Kuang Koh
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Keri Nicoll
- Department of Electronic and Electrical Engineering, University of Bath, Bath, UK
- Department of Meteorology, University of Reading, Reading, UK
| | | | | | - Colin Price
- Department of Geophysics. Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Snezana Dragovic
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Michal Cifra
- Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czechia
| | - Anna Odzimek
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
12
|
Alicea B. Raising the Connectome: The Emergence of Neuronal Activity and Behavior in Caenorhabditis elegans. Front Cell Neurosci 2020; 14:524791. [PMID: 33100971 PMCID: PMC7522492 DOI: 10.3389/fncel.2020.524791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022] Open
Abstract
The differentiation of neurons and formation of connections between cells is the basis of both the adult phenotype and behaviors tied to cognition, perception, reproduction, and survival. Such behaviors are associated with local (circuits) and global (connectome) brain networks. A solid understanding of how these networks emerge is critical. This opinion piece features a guided tour of early developmental events in the emerging connectome, which is crucial to a new view on the connectogenetic process. Connectogenesis includes associating cell identities with broader functional and developmental relationships. During this process, the transition from developmental cells to terminally differentiated cells is defined by an accumulation of traits that ultimately results in neuronal-driven behavior. The well-characterized developmental and cell biology of Caenorhabditis elegans will be used to build a synthesis of developmental events that result in a functioning connectome. Specifically, our view of connectogenesis enables a first-mover model of synaptic connectivity to be demonstrated using data representing larval synaptogenesis. In a first-mover model of Stackelberg competition, potential pre- and postsynaptic relationships are shown to yield various strategies for establishing various types of synaptic connections. By comparing these results to what is known regarding principles for establishing complex network connectivity, these strategies are generalizable to other species and developmental systems. In conclusion, we will discuss the broader implications of this approach, as what is presented here informs an understanding of behavioral emergence and the ability to simulate related biological phenomena.
Collapse
Affiliation(s)
- Bradly Alicea
- Orthogonal Research and Education Laboratory, Champaign, IL, United States
- OpenWorm Foundation, Boston, MA, United States
| |
Collapse
|
13
|
How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli. Genetics 2019; 212:25-51. [PMID: 31053616 PMCID: PMC6499529 DOI: 10.1534/genetics.118.300241] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022] Open
Abstract
Caenorhabditis elegans lives in a complex habitat in which they routinely experience large fluctuations in temperature, and encounter physical obstacles that vary in size and composition. Their habitat is shared by other nematodes, by beneficial and harmful bacteria, and nematode-trapping fungi. Not surprisingly, these nematodes can detect and discriminate among diverse environmental cues, and exhibit sensory-evoked behaviors that are readily quantifiable in the laboratory at high resolution. Their ability to perform these behaviors depends on <100 sensory neurons, and this compact sensory nervous system together with powerful molecular genetic tools has allowed individual neuron types to be linked to specific sensory responses. Here, we describe the sensory neurons and molecules that enable C. elegans to sense and respond to physical stimuli. We focus primarily on the pathways that allow sensation of mechanical and thermal stimuli, and briefly consider this animal’s ability to sense magnetic and electrical fields, light, and relative humidity. As the study of sensory transduction is critically dependent upon the techniques for stimulus delivery, we also include a section on appropriate laboratory methods for such studies. This chapter summarizes current knowledge about the sensitivity and response dynamics of individual classes of C. elegans mechano- and thermosensory neurons from in vivo calcium imaging and whole-cell patch-clamp electrophysiology studies. We also describe the roles of conserved molecules and signaling pathways in mediating the remarkably sensitive responses of these nematodes to mechanical and thermal cues. These studies have shown that the protein partners that form mechanotransduction channels are drawn from multiple superfamilies of ion channel proteins, and that signal transduction pathways responsible for temperature sensing in C. elegans share many features with those responsible for phototransduction in vertebrates.
Collapse
|
14
|
Nicoletti M, Loppini A, Chiodo L, Folli V, Ruocco G, Filippi S. Biophysical modeling of C. elegans neurons: Single ion currents and whole-cell dynamics of AWCon and RMD. PLoS One 2019; 14:e0218738. [PMID: 31260485 PMCID: PMC6602206 DOI: 10.1371/journal.pone.0218738] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/07/2019] [Indexed: 01/28/2023] Open
Abstract
C. elegans neuronal system constitutes the ideal framework for studying simple, yet realistic, neuronal activity, since the whole nervous system is fully characterized with respect to the exact number of neurons and the neuronal connections. Most recent efforts are devoted to investigate and clarify the signal processing and functional connectivity, which are at the basis of sensing mechanisms, signal transmission, and motor control. In this framework, a refined modelof whole neuron dynamics constitutes a key ingredient to describe the electrophysiological processes, both at thecellular and at the network scale. In this work, we present Hodgkin-Huxley-based models of ion channels dynamics black, built on data available both from C. elegans and from other organisms, expressing homologous channels. We combine these channel models to simulate the electrical activity oftwo among the most studied neurons in C. elegans, which display prototypical dynamics of neuronal activation, the chemosensory AWCON and the motor neuron RMD. Our model properly describes the regenerative responses of the two cells. We analyze in detail the role of ion currents, both in wild type and in in silico knockout neurons. Moreover, we specifically investigate the behavior of RMD, identifying a heterogeneous dynamical response which includes bistable regimes and sustained oscillations. We are able to assess the critical role of T-type calcium currents, carried by CCA-1 channels, and leakage currents in the regulation of RMD response. Overall, our results provide new insights in the activity of key C. elegans neurons. The developed mathematical framework constitute a basis for single-cell and neuronal networks analyses, opening new scenarios in the in silico modeling of C. elegans neuronal system.
Collapse
Affiliation(s)
- Martina Nicoletti
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
- Center for Life Nano Science CLNS@Sapienza, Istituto Italiano di Tecnologia - IIT, Rome, Italy
| | | | - Letizia Chiodo
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
| | - Viola Folli
- Center for Life Nano Science CLNS@Sapienza, Istituto Italiano di Tecnologia - IIT, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano Science CLNS@Sapienza, Istituto Italiano di Tecnologia - IIT, Rome, Italy
| | - Simonetta Filippi
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
15
|
Hunting ER, Harrison RG, Bruder A, van Bodegom PM, van der Geest HG, Kampfraath AA, Vorenhout M, Admiraal W, Cusell C, Gessner MO. Atmospheric Electricity Influencing Biogeochemical Processes in Soils and Sediments. Front Physiol 2019; 10:378. [PMID: 31040789 PMCID: PMC6477044 DOI: 10.3389/fphys.2019.00378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
The Earth’s subsurface represents a complex electrochemical environment that contains many electro-active chemical compounds that are relevant for a wide array of biologically driven ecosystem processes. Concentrations of many of these electro-active compounds within Earth’s subsurface environments fluctuate during the day and over seasons. This has been observed for surface waters, sediments and continental soils. This variability can affect particularly small, relatively immobile organisms living in these environments. While various drivers have been identified, a comprehensive understanding of the causes and consequences of spatio-temporal variability in subsurface electrochemistry is still lacking. Here we propose that variations in atmospheric electricity (AE) can influence the electrochemical environments of soils, water bodies and their sediments, with implications that are likely relevant for a wide range of organisms and ecosystem processes. We tested this hypothesis in field and laboratory case studies. Based on measurements of subsurface redox conditions in soils and sediment, we found evidence for both local and global variation in AE with corresponding patterns in subsurface redox conditions. In the laboratory, bacterial respiratory responses, electron transport activity and H2S production were observed to be causally linked to changes in atmospheric cation concentrations. We argue that such patterns are part of an overlooked phenomenon. This recognition widens our conceptual understanding of chemical and biological processes in the Earth’s subsurface and their interactions with the atmosphere and the physical environment.
Collapse
Affiliation(s)
- Ellard R Hunting
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom.,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States.,Institute of Environmental Sciences, Leiden University, Leiden, Netherlands
| | - R Giles Harrison
- Department of Meteorology, University of Reading, Reading, United Kingdom
| | - Andreas Bruder
- Laboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | | | - Harm G van der Geest
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Andries A Kampfraath
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | | | - Wim Admiraal
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Casper Cusell
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Mark O Gessner
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Department of Ecology, Berlin Institute of Technology, Berlin, Germany
| |
Collapse
|
16
|
Aubry G, Lu H. Droplet array for screening acute behaviour response to chemicals in Caenorhabditis elegans. LAB ON A CHIP 2017; 17:4303-4311. [PMID: 29120477 DOI: 10.1039/c7lc00945c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Caenorhabditis elegans is an excellent model organism for studying chemosensation as a significant part of its nervous system and genome are devoted to the detection of chemical cues. Studies of decision-making, learning, mating behaviour, and intraspecies communication require measuring the acute behavioural response to chemical stimulation. Such assays require precise and repeatable chemical delivery and are often arduous when performed manually. Microfluidic platforms have been developed for chemosensation studies in C. elegans. However, these platforms lack temporal resolution in chemical delivery necessary for screening acute behaviour and cannot selectively recover animals, a necessary feature for genetic screens. Here we present a droplet array for screening acute behavioural responses of C. elegans to chemical stimulation. Using droplets enables isolating the worms and controlling the chemical environment. The chamber design of the static array allows continuous monitoring of animal behaviour. By combining a gradient of confinement and flow restriction features, we demonstrate selective and sequential trapping of multiple droplets as well as their release on demand. These functions enable repeated capture of animals, monitoring of their behaviour upon chemical stimulation and subsequent release. To demonstrate the ability to screen multiple conditions, we measured worm thrashing activity in response to different concentrations of tetramisole. To illustrate the ability to capture acute behavioural responses, we monitored the behavioural response of male to pheromone stimulation. Due to the versatility of the chamber operation and its ultra-low volume uses of reagents, we envision this platform to be highly suited to combinatorial screening and drug discovery.
Collapse
Affiliation(s)
- G Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, USA.
| | | |
Collapse
|