1
|
Karpenko A, Shelenkov A, Petrova L, Gusarov V, Zamyatin M, Mikhaylova Y, Akimkin V. Two multidrug-resistant Proteus mirabilis clones carrying extended spectrum beta-lactamases revealed in a single hospital department by whole genome sequencing. Heliyon 2024; 10:e40821. [PMID: 39687096 PMCID: PMC11648881 DOI: 10.1016/j.heliyon.2024.e40821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Proteus mirabilis bacteria is a component of normal intestinal microflora of humans and animals, but can also be found in hospital settings causing urinary tract infections and sepsis. The problem of treating such infections is complicated by multidrug-resistant isolates producing extended spectrum beta-lactamases (ESBL), and the number of ESBL-carrying P. mirabilis strains has significantly increased recently. This study presents a detailed analysis of 12 multidrug-resistant P. mirabilis isolates obtained from the wounds of different patients in one surgical department of a multidisciplinary hospital in Moscow, Russia, using the short- and long-read whole genome sequencing. The isolates under investigation divided into two clusters (clones) C1 and C2 based on their genomic profiles and carried antimicrobial resistance (AMR) genes corresponding well with phenotypic profiles, which was the first case of reporting two different P. mirabilis clones obtained simultaneously from the same specimens at one hospital, to the best of our knowledge. Some genes, including ESBL encoding ones, were specific for either C1 or C2 (aac(6')-Ib10, ant(2″)-Ia, qnrA1, bla VEB-6 and fosA3, bla CTX -M-65 , correspondingly). Additionally, the Salmonella genomic islands 1 were found that differed in composition of multiple antibiotic resistance regions between C1 and C2 groups. CRISPR-Cas system type I-E was revealed only in C2 isolates, while the same set of virulence factors was determined for both P. mirabilis clones. Diversity of all genetic factors found in case of simultaneous existence of two clones collected from the same source at one department indicates high pathogenic potential of P. mirabilis and poses a requirement of proper spreading monitoring. The data obtained will facilitate the understanding of AMR transfer and dynamics within clinical P. mirabilis isolates and contribute to epidemiological surveillance of this pathogen.
Collapse
Affiliation(s)
- Anna Karpenko
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Andrey Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Lyudmila Petrova
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Vitaly Gusarov
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Mikhail Zamyatin
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Yulia Mikhaylova
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Vasiliy Akimkin
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| |
Collapse
|
2
|
Han Y, Gao YF, Xu HT, Li JP, Li C, Song CL, Lei CW, Chen X, Wang Q, Ma BH, Wang HN. Characterization and risk assessment of novel SXT/R391 integrative and conjugative elements with multidrug resistance in Proteus mirabilis isolated from China, 2018-2020. Microbiol Spectr 2024; 12:e0120923. [PMID: 38197656 PMCID: PMC10871549 DOI: 10.1128/spectrum.01209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 11/09/2023] [Indexed: 01/11/2024] Open
Abstract
Proteus mirabilis can transfer transposons, insertion sequences, and gene cassettes to the chromosomes of other hosts through SXT/R391 integrative and conjugative elements (ICEs), significantly increasing the possibility of antibiotic resistance gene (ARG) evolution and expanding the risk of ARGs transmission among bacteria. A total of 103 strains of P. mirabilis were isolated from 25 farms in China from 2018 to 2020. The positive detection rate of SXT/R391 ICEs was 25.2% (26/103). All SXT/R391 ICEs positive P. mirabilis exhibited a high level of overall drug resistance. Conjugation experiments showed that all 26 SXT/R391 ICEs could efficiently transfer to Escherichia coli EC600 with a frequency of 2.0 × 10-7 to 6.0 × 10-5. The acquired ARGs, genetic structures, homology relationships, and conservation sequences of 26 (19 different subtypes) SXT/R391 ICEs were investigated by high-throughput sequencing, whole-genome typing, and phylogenetic tree construction. ICEPmiChnHBRJC2 carries erm (42), which have never been found within an SXT/R391 ICE in P. mirabilis, and ICEPmiChnSC1111 carries 19 ARGs, including clinically important cfr, blaCTX-M-65, and aac(6')-Ib-cr, making it the ICE with the most ARGs reported to date. Through genetic stability, growth curve, and competition experiments, it was found that the transconjugant of ICEPmiChnSCNNC12 did not have a significant fitness cost on the recipient bacterium EC600 and may have a higher risk of transmission and dissemination. Although the transconjugant of ICEPmiChnSCSZC20 had a relatively obvious fitness cost on EC600, long-term resistance selection pressure may improve bacterial fitness through compensatory adaptation, providing scientific evidence for risk assessment of horizontal transfer and dissemination of SXT/R391 ICEs in P. mirabilis.IMPORTANCEThe spread of antibiotic resistance genes (ARGs) is a major public health concern. The study investigated the prevalence and genetic diversity of integrative and conjugative elements (ICEs) in Proteus mirabilis, which can transfer ARGs to other hosts. The study found that all of the P. mirabilis strains carrying ICEs exhibited a high level of drug resistance and a higher risk of transmission and dissemination of ARGs. The analysis of novel multidrug-resistant ICEs highlighted the potential for the evolution and spread of novel resistance mechanisms. These findings emphasize the importance of monitoring the spread of ICEs carrying ARGs and the urgent need for effective strategies to combat antibiotic resistance. Understanding the genetic diversity and potential for transmission of ARGs among bacteria is crucial for developing targeted interventions to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Feng Gao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - He-ting Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jin-Peng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Cai-Liang Song
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chang-Wei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xuan Chen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Qin Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Bo-Heng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hong-Ning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Chen J, Zou Y, Zheng T, Huang S, Guo L, Lin J, Zheng Q. The in Vitro Fermentation of Cordyceps militaris Polysaccharides Changed the Simulated Gut Condition and Influenced Gut Bacterial Motility and Translocation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14193-14204. [PMID: 36305603 DOI: 10.1021/acs.jafc.2c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The motility ability of intestinal lipopolysaccharide (LPS)-producing bacteria determines their translocation to the enterohepatic circulation and works as an infectious complication. In this study, the health effects of Cordyceps militaris polysaccharides (CMPs) were re-evaluated based on whether these polysaccharides could affect the motility of gut commensal LPS-producing bacteria and impede their translocation. The results showed that CMP-m fermentation in the gut could change the chemical environment, leading to a decrease in velocity and a shift in the motility pattern. Further study suggested that detachment/fragmentation of flagella, decreased motor forces, and changed chemical conditions might account for this weakened motility. The adhesion and invasion abilities of gut bacteria were also reduced, with lower expression of virulence-related genes. These results indicated that the health regulation effects of CMP-m might be through decreasing the motility of LPS-producing bacteria, hindering their translocation and therefore reducing the LPS level in the enterohepatic circulation.
Collapse
Affiliation(s)
- Jieming Chen
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Yuan Zou
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Taotao Zheng
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Shishi Huang
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Liqiong Guo
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Junfang Lin
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qianwang Zheng
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
4
|
Antibiotic Resistance in Proteus mirabilis: Mechanism, Status, and Public Health Significance. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is a specific opportunistic pathogen of many infections including urinary tract infections (UTIs). Risk factors are linked with the acquisition of multidrug-resistant (MDR) to 3 or more classes of antimicrobials) strains. The resistance in extended-spectrum alpha-lactamase is rare, but the rising resistance in extended-spectrum beta-lactamase (ESBL) producing strains is a matter of concern. β-lactamases and antibiotic modifying enzymes mainly constitute the ESBLs resistance mechanism by hydrolyzing the antibiotics. Mutation or Porin loss could lead to the reduced permeability of antibiotics, enhanced efflux pump activity hindering the antibiotic access to the target site, antibiotic failure to bind at the target site because of the target modification, and lipopolysaccharide mutation causing the resistance against polymyxin antibiotics. This review aimed to explore various antimicrobial resistance mechanisms in Proteus mirabilis and their impact on public health status.
Collapse
|
5
|
Lv P, Hao G, Cao Y, Cui L, Wang G, Sun S. Detection of Carbapenem Resistance of Proteus mirabilis Strains Isolated from Foxes, Raccoons and Minks in China. BIOLOGY 2022; 11:biology11020292. [PMID: 35205158 PMCID: PMC8869598 DOI: 10.3390/biology11020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
Proteus mirabilis, an opportunistic pathogen, is found to be an emerging threat to both animals and humans for a variety of infections. However, the characteristics of P. mirabilis infections from foxes, raccoons and minks remain unclear. In this context, we identified the antibiotic resistance genes and virulence genes of P. mirabilis isolates from foxes, raccoons and minks in China. Most isolates showed resistance to florfenicol (90.57%), trimethoprim-sulfamethoxazole (73.58%), and imipenem (71.70%). A total of 73.58% of isolates were resistant to antibiotics from at least three or more classes, and were categorized as multi-drug resistant. A total of 33.33% of the isolates were resistant to antibiotics from seven classes. The most prevalent resistant were sul1 (94.34%), followed by floR, blaTEM, aac(6’)Ib-cr and blaOXA-1 with the detection rate of 88.68%, 83.02%, 71.70% and 60.38%, respectively. Among the 51 P. mirabilis isolates that were resistant to beta-lactam antibiotics, all isolates carried at least one beta-lactam gene. In addition, blaNDM and blaOXA-24 genes were firstly reported in carbapenem-resistant P. mirabilis isolates from foxes, raccoons and minks. All isolates exhibited the virulence genes ureC, zapA, pmfA, atfA and mrpA. P. mirabilis isolates carrying all detected 10 virulence genes from different animal species showed different lethal abilities in a G. mellonella larvae model. More importantly, the profiles of antibiotic resistance genes of isolates from fur animals and the environment were generally similar, and phylogenetic analysis showed that the P. mirabilis isolates from farm environment samples may have close relatedness with that from animals.
Collapse
Affiliation(s)
- Penghao Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
| | - Guijuan Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
- Correspondence: (G.H.); (G.W.); (S.S.); Tel.: +86-182-5202-6546 (G.H.); +86-185-6011-3839 (G.W.); +86-137-0538-9710 (S.S.)
| | - Yanli Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
| | - Lulu Cui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
| | - Guisheng Wang
- Shandong Animal Disease Prevention and Control Center, Taian 261500, China
- Correspondence: (G.H.); (G.W.); (S.S.); Tel.: +86-182-5202-6546 (G.H.); +86-185-6011-3839 (G.W.); +86-137-0538-9710 (S.S.)
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
- Correspondence: (G.H.); (G.W.); (S.S.); Tel.: +86-182-5202-6546 (G.H.); +86-185-6011-3839 (G.W.); +86-137-0538-9710 (S.S.)
| |
Collapse
|
6
|
Algammal AM, Hashem HR, Alfifi KJ, Hetta HF, Sheraba NS, Ramadan H, El-Tarabili RM. atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci Rep 2021; 11:9476. [PMID: 33947875 PMCID: PMC8096940 DOI: 10.1038/s41598-021-88861-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 02/02/2023] Open
Abstract
Proteus mirabilis is a common opportunistic pathogen causing severe illness in humans and animals. To determine the prevalence, antibiogram, biofilm-formation, screening of virulence, and antimicrobial resistance genes in P. mirabilis isolates from ducks; 240 samples were obtained from apparently healthy and diseased ducks from private farms in Port-Said Province, Egypt. The collected samples were examined bacteriologically, and then the recovered isolates were tested for atpD gene sequencing, antimicrobial susceptibility, biofilm-formation, PCR detection of virulence, and antimicrobial resistance genes. The prevalence of P. mirabilis in the examined samples was 14.6% (35/240). The identification of the recovered isolates was confirmed by the atpD gene sequencing, where the tested isolates shared a common ancestor. Besides, 94.3% of P. mirabilis isolates were biofilm producers. The recovered isolates were resistant to penicillins, sulfonamides, β-Lactam-β-lactamase-inhibitor-combinations, tetracyclines, cephalosporins, macrolides, and quinolones. Using PCR, the retrieved strains harbored atpD, ureC, rsbA, and zapA virulence genes with a prevalence of 100%, 100%, 94.3%, and 91.4%, respectively. Moreover, 31.4% (11/35) of the recovered strains were XDR to 8 antimicrobial classes that harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Besides, 22.8% (8/35) of the tested strains were MDR to 3 antimicrobial classes and possessed blaTEM, tetA, and sul1genes. Furthermore, 17.1% (6/35) of the tested strains were MDR to 7 antimicrobial classes and harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Alarmingly, three strains were carbapenem-resistant that exhibited PDR to all the tested 10 antimicrobial classes and shared blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Of them, two strains harbored the blaNDM-1 gene, and one strain carried the blaKPC gene. In brief, to the best of our knowledge, this is the first study demonstrating the emergence of XDR and MDR-P.mirabilis in ducks. Norfloxacin exhibited promising antibacterial activity against the recovered XDR and MDR-P. mirabilis. The emergence of PDR, XDR, and MDR-strains constitutes a threat alarm that indicates the complicated treatment of the infections caused by these superbugs.
Collapse
Affiliation(s)
- Abdelazeem M. Algammal
- grid.33003.330000 0000 9889 5690Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| | - Hany R. Hashem
- grid.411170.20000 0004 0412 4537Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514 Egypt
| | - Khyreyah J. Alfifi
- grid.440760.10000 0004 0419 5685Department of Biology, Faculty of Science, Tabuk University, Tabuk, 7149 Saudi Arabia
| | - Helal F. Hetta
- grid.252487.e0000 0000 8632 679XDepartment of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, 71515 Egypt
| | - Norhan S. Sheraba
- grid.463319.aVACSERA, the Holding Company for Biological Products and Vaccines, Giza, 12511 Egypt
| | - Hazem Ramadan
- grid.10251.370000000103426662Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Reham M. El-Tarabili
- grid.33003.330000 0000 9889 5690Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| |
Collapse
|
7
|
Czerwonka G, Gmiter D, Durlik-Popińska K. Draft Genome of Proteus mirabilis Serogroup O18 Elaborating Phosphocholine-Decorated O Antigen. Front Cell Infect Microbiol 2021; 11:620010. [PMID: 33842384 PMCID: PMC8027243 DOI: 10.3389/fcimb.2021.620010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Proteus mirabilis is a pathogenic, Gram-negative, rod-shaped bacterium that causes ascending urinary tract infections. Swarming motility, urease production, biofilm formation, and the properties of its lipopolysaccharide (LPS) are all factors that contribute to the virulence of this bacterium. Uniquely, members of the O18 serogroup elaborate LPS molecules capped with O antigen polymers built of pentasaccharide repeats; these repeats are modified with a phosphocholine (ChoP) moiety attached to the proximal sugar of each O unit. Decoration of the LPS with ChoP is an important surface modification of many pathogenic and commensal bacteria. The presence of ChoP on the bacterial envelope is correlated with pathogenicity, as decoration with ChoP plays a role in bacterial adhesion to mucosal surfaces, resistance to antimicrobial peptides and sensitivity to complement-mediated killing in several species. The genome of P. mirabilis O18 is 3.98 Mb in size, containing 3,762 protein-coding sequences and an overall GC content of 38.7%. Annotation performed using the RAST Annotation Server revealed genes associated with choline phosphorylation, uptake and transfer. Moreover, amino acid sequence alignment of the translated licC gene revealed it to be homologous to LicC from Streptococcus pneumoniae encoding CTP:phosphocholine cytidylyltransferase. Recognized homologs are located in the O antigen gene clusters of Proteus species, near the wzx gene encoding the O antigen flippase, which translocates lipid-linked O units across the inner membrane. This study reveals the genes potentially engaged in LPS decoration with ChoP in P. mirabilis O18.
Collapse
Affiliation(s)
- Grzegorz Czerwonka
- Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Dawid Gmiter
- Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | | |
Collapse
|
8
|
Sun Y, Wen S, Zhao L, Xia Q, Pan Y, Liu H, Wei C, Chen H, Ge J, Wang H. Association among biofilm formation, virulence gene expression, and antibiotic resistance in Proteus mirabilis isolates from diarrhetic animals in Northeast China. BMC Vet Res 2020; 16:176. [PMID: 32503535 PMCID: PMC7275385 DOI: 10.1186/s12917-020-02372-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Background The aim of this study was to investigate the association among biofilm formation, virulence gene expression, and antibiotic resistance in P. mirabilis isolates collected from diarrhetic animals (n = 176) in northeast China between September 2014 and October 2016. Results Approximately 92.05% of the isolates were biofilm producers, whereas 7.95% of the isolates were non-producers. The prevalence of virulence genes in the biofilm producer group was significantly higher than that in the non-producer group. Biofilm production was significantly associated with the expression of ureC, zapA, rsmA, hmpA, mrpA, atfA, and pmfA (P < 0.05). The results of drug susceptibility tests revealed that approximately 76.7% of the isolates were multidrug-resistant (MDR) and extensively drug-resistant (XDR). Biofilm production was significantly associated with resistance to doxycycline, tetracycline, sulfamethoxazole, kanamycin, and cephalothin (P < 0.05). Although the pathogenicity of the biofilm producers was stronger than that of the non-producers, the biofilm-forming ability of the isolates was not significantly associated with morbidity and mortality in mice (P > 0.05). Conclusion Our findings suggested that a high level of multidrug resistance in P. mirabilis isolates obtained from diarrhetic animals in northeast China. The results of this study indicated that the positive rates of the genes expressed by biofilm-producing P. mirabilis isolates were significantly higher than those expressed by non-producing isolates.
Collapse
Affiliation(s)
- Yadong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.,Liaoning Vocational College of Ecological Engineering, Shenyang, 110122, P.R. China
| | - Shanshan Wen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, P.R. China
| | - Qiqi Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Yue Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hanghang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Chengwei Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, P.R. China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, 150030, P.R. China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.
| |
Collapse
|
9
|
Gong Z, Shi X, Bai F, He X, Zhang H, Li Y, Wan Y, Lin Y, Qiu Y, Chen Q, Hu Q, Cao H. Characterization of a Novel Diarrheagenic Strain of Proteus mirabilis Associated With Food Poisoning in China. Front Microbiol 2019; 10:2810. [PMID: 31921012 PMCID: PMC6921692 DOI: 10.3389/fmicb.2019.02810] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Proteus mirabilis is commonly considered to be an opportunistic pathogen causing urinary tract infections (UTIs) in humans. However, some strains of P. mirabilis were found to be associated with food poisoning outbreaks, with the pathogenic mechanism still unclear. In our study, we described a novel strain of P. mirabilis C02011 isolated from patients’ specimens in a food poisoning in China. In order to determine its gastrointestinal pathogenicity, experiments were performed to compare P. mirabilis B02005 strain (isolated from healthy people) and P. mirabilis American Type Culture Collection (ATCC) 29906 strain both in vitro [Caco-2 cells: bacterial adhesion and invasion assays, Giemsa staining, and transmission electron microscopy (TEM)] and in vivo [BALB/c mouse model: fecal character, colon injury, histological examination, immunochemistry, and western blotting (WB)]. According to the results, C02011 strain exhibited almost identical characteristics with B02005 strain in bacterial appearance and proliferation. In vitro, Caco-2 cells were infected with P. mirabilis C02011, B02005, and P. mirabilis ATCC 29906 strains. After that, Giemsa staining and TEM were used for observing the infection process of C02011 strain. Meanwhile, the adhesive abilities of different strains were rated as follows: P. mirabilis B02005 > P. mirabilis C02011 > P. mirabilis ATCC 29906 (P < 0.01). Invasive abilities of different strains were rated as follows: P. mirabilis C02011 > P. mirabilis B02005 > P. mirabilis ATCC 29906 (P < 0.01). In vivo, BALB/c mice were infected with P. mirabilis C02011 and B02005 strains. C02011 strain shows more virulence than B02005 strain in terms of the following indicators: (1) feces water content and fecal character; (2) colon length of mice; (3) histological examination on mouse intestine tissues; (4) ELISA for detecting TNF-α level in the colon; and (5) WB and immunohistochemistry (IHC) for detecting occludin protein expression in the colon. On the basis of these results, we firstly validated that the novel strain of P. mirabilis C02011 shows more gastrointestinal pathogenicity than the other strains isolated from a healthy individual. In addition, type IV secretion system (T4SS) was preliminarily confirmed to play an important role in the pathogenesis of diarrheal P. mirabilis isolated from the food poisoning incident.
Collapse
Affiliation(s)
- Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolu Shi
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fang Bai
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hanyun Zhang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yubin Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiman Lin
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiongcheng Chen
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Sanches MS, Baptista AAS, de Souza M, Menck-Costa MF, Koga VL, Kobayashi RKT, Rocha SPD. Genotypic and phenotypic profiles of virulence factors and antimicrobial resistance of Proteus mirabilis isolated from chicken carcasses: potential zoonotic risk. Braz J Microbiol 2019; 50:685-694. [PMID: 31049879 PMCID: PMC6863274 DOI: 10.1007/s42770-019-00086-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/25/2019] [Indexed: 10/26/2022] Open
Abstract
Proteus mirabilis is an opportunistic pathogen often associated with a variety of human infections acquired both in the community and in hospitals. In this context, the present work aimed to evaluate the genotypic and phenotypic characteristics of the virulence factors and antimicrobial resistance determinants of 32 P. mirabilis strains isolated from chicken carcasses in a poultry slaughterhouse in the north of the state of Paraná, Brazil, in order to assess a potential zoonotic risk. The isolates presented a variety of virulence genes that contribute to the development of infection in humans. The mrpA, pmfA, atfA (fimbriae), ireA (siderophores receptor), zapA, ptA (Proteases), and hpmA (hemolysin) genes were found in 32 (100%) isolates and ucaA (fimbriae) in 16 (50%). All isolates showed aggregative adherence in HEp-2 cells and formed biofilms. Of all strains, 27 (84.38%) showed cytotoxic effects in Vero cells. Antimicrobial susceptibility was tested using 20 antimicrobials, in which 25 (78.13%) strains were considered multidrug-resistant. The presence of blaESBL and blaampC genes conferring resistance to β-lactams and qnr to quinolones were also detected in the isolates after presumption in the phenotypic test, in which 7 (21.88%) isolates contained the CTX-M-2 group, 11 (34.38%) contained CIT group and 19 (59.38%) contained qnrD. Therefore, chicken carcasses contaminated with P. mirabilis may pose a health risk to the consumer, as these isolates have a variety of virulence and antimicrobial resistance characteristics that can be found in P. mirabilis strains isolated from human infections.
Collapse
Affiliation(s)
- Matheus Silva Sanches
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Ana Angelita Sampaio Baptista
- Laboratory of Avian Medicine, Department of Preventive Veterinary Medicine, Agricultural Sciences Center, Universidade Estadual de Londrina, Londrina, Brazil
| | - Marielen de Souza
- Laboratory of Avian Medicine, Department of Preventive Veterinary Medicine, Agricultural Sciences Center, Universidade Estadual de Londrina, Londrina, Brazil
| | - Maísa Fabiana Menck-Costa
- Laboratory of Avian Medicine, Department of Preventive Veterinary Medicine, Agricultural Sciences Center, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vanessa Lumi Koga
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil.
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, Paraná, 86051-980, Brazil.
| |
Collapse
|
11
|
Hamilton AL, Kamm MA, Ng SC, Morrison M. Proteus spp. as Putative Gastrointestinal Pathogens. Clin Microbiol Rev 2018; 31:e00085-17. [PMID: 29899011 PMCID: PMC6056842 DOI: 10.1128/cmr.00085-17] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proteus species, members of the Enterobacteriaceae family, are usually considered commensals in the gut and are most commonly recognized clinically as a cause of urinary tract infections. However, the recent identification of Proteus spp. as potential pathogens in Crohn's disease recurrence after intestinal resection serves as a stimulus to examine their potential role as gut pathogens. Proteus species possess many virulence factors potentially relevant to gastrointestinal pathogenicity, including motility; adherence; the production of urease, hemolysins, and IgA proteases; and the ability to acquire antibiotic resistance. Gastrointestinal conditions that have been linked to Proteus include gastroenteritis (spontaneous and foodborne), nosocomial infections, appendicitis, colonization of devices such as nasogastric tubes, and Crohn's disease. The association of Proteus species with Crohn's disease was particularly strong. Proteus species are low-abundance commensals of the human gut that harbor significant pathogenic potential; further investigation is needed.
Collapse
Affiliation(s)
- Amy L Hamilton
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
12
|
Yeh HY, Line JE, Hinton A. Molecular Analysis, Biochemical Characterization, Antimicrobial Activity, and Immunological Analysis of Proteus mirabilis
Isolated from Broilers. J Food Sci 2018; 83:770-779. [DOI: 10.1111/1750-3841.14056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/13/2017] [Accepted: 12/28/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Hung-Yueh Yeh
- Poultry Microbiological Safety and Processing Research Unit, U.S. Natl. Poultry Research Center, Agricultural Research Service; U.S. Dept. of Agriculture; 950 College Station Road Athens GA 30605-2720 U.S.A
| | - John E. Line
- Poultry Microbiological Safety and Processing Research Unit, U.S. Natl. Poultry Research Center, Agricultural Research Service; U.S. Dept. of Agriculture; 950 College Station Road Athens GA 30605-2720 U.S.A
| | - Arthur Hinton
- Poultry Microbiological Safety and Processing Research Unit, U.S. Natl. Poultry Research Center, Agricultural Research Service; U.S. Dept. of Agriculture; 950 College Station Road Athens GA 30605-2720 U.S.A
| |
Collapse
|