1
|
Schwartz JC, Farrell CP, Freimanis G, Sewell AK, Phillips JD, Hammond JA. A genome assembly and transcriptome atlas of the inbred Babraham pig to illuminate porcine immunogenetic variation. Immunogenetics 2024; 76:361-380. [PMID: 39294478 PMCID: PMC11496355 DOI: 10.1007/s00251-024-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
The inbred Babraham pig serves as a valuable biomedical model for research due to its high level of homozygosity, including in the major histocompatibility complex (MHC) loci and likely other important immune-related gene complexes, which are generally highly diverse in outbred populations. As the ability to control for this diversity using inbred organisms is of great utility, we sought to improve this resource by generating a long-read whole genome assembly and transcriptome atlas of a Babraham pig. The genome was de novo assembled using PacBio long reads and error-corrected using Illumina short reads. Assembled contigs were then mapped to the porcine reference assembly, Sscrofa11.1, to generate chromosome-level scaffolds. The resulting TPI_Babraham_pig_v1 assembly is nearly as contiguous as Sscrofa11.1 with a contig N50 of 34.95 Mb and contig L50 of 23. The remaining sequence gaps are generally the result of poor assembly across large and highly repetitive regions such as the centromeres and tandemly duplicated gene families, including immune-related gene complexes, that often vary in gene content between haplotypes. We also further confirm homozygosity across the Babraham MHC and characterize the allele content and tissue expression of several other immune-related gene complexes, including the antibody and T cell receptor loci, the natural killer complex, and the leukocyte receptor complex. The Babraham pig genome assembly provides an alternate highly contiguous porcine genome assembly as a resource for the livestock genomics community. The assembly will also aid biomedical and veterinary research that utilizes this animal model such as when controlling for genetic variation is critical.
Collapse
Affiliation(s)
| | - Colin P Farrell
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - John D Phillips
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - John A Hammond
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK.
| |
Collapse
|
2
|
Goatley LC, Nash RH, Andrews C, Hargreaves Z, Tng P, Reis AL, Graham SP, Netherton CL. Cellular and Humoral Immune Responses after Immunisation with Low Virulent African Swine Fever Virus in the Large White Inbred Babraham Line and Outbred Domestic Pigs. Viruses 2022; 14:v14071487. [PMID: 35891467 PMCID: PMC9322176 DOI: 10.3390/v14071487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
African swine fever virus is currently present in all of the world’s continents apart from Antarctica, and efforts to control the disease are hampered by the lack of a commercially available vaccine. The Babraham large white pig is a highly inbred line that could represent a powerful tool to improve our understanding of the protective immune responses to this complex pathogen; however, previous studies indicated differential vaccine responses after the African swine fever virus challenge of inbred minipigs with different swine leukocyte antigen haplotypes. Lymphocyte numbers and African swine fever virus-specific antibody and T-cell responses were measured in inbred and outbred animals after inoculation with a low virulent African swine fever virus isolate and subsequent challenge with a related virulent virus. Surprisingly, diminished immune responses were observed in the Babraham pigs when compared to the outbred animals, and the inbred pigs were not protected after challenge. Recovery of Babraham pigs after challenge weakly correlated with antibody responses, whereas protective responses in outbred animals more closely correlated with the T-cell response. The Babraham pig may, therefore, represent a useful model for studying the role of antibodies in protection against the African swine fever virus.
Collapse
|
3
|
Le Page L, Gillespie A, Schwartz JC, Prawits LM, Schlerka A, Farrell CP, Hammond JA, Baldwin CL, Telfer JC, Hammer SE. Subpopulations of swine γδ T cells defined by TCRγ and WC1 gene expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104214. [PMID: 34329647 DOI: 10.1016/j.dci.2021.104214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
γδ T cells constitute a major portion of lymphocytes in the blood of both ruminants and swine. Subpopulations of swine γδ T cells have been distinguished by CD2 and CD8α expression. However, it was not clear if they have distinct expression profiles of their T-cell receptor (TCR) or WC1 genes. Identifying receptor expression will contribute to understanding the functional differences between these subpopulations and their contributions to immune protection. Here, we annotated three genomic assemblies of the swine TCRγ gene locus finding four gene cassettes containing C, J and V genes, although some haplotypes carried a null TRGC gene (TRGC4). Genes in the TRGC1 cassette were homologs of bovine TRGC5 cassette while the others were not homologous to bovine genes. Here we evaluated three principal populations of γδ T cells (CD2+/SWC5-, CD2-/SWC5+, and CD2-/SWC5-). Both CD2- subpopulations transcribed WC1 co-receptor genes, albeit with different patterns of gene expression but CD2+ cells did not. All subpopulations transcribed TCR genes from all four cassettes, although there were differences in expression levels. Finally, the CD2+ and CD2- γδ T-cell populations differed in their representation in various organs and tissues, presumably at least partially reflective of different ligand specificities for their receptors.
Collapse
Affiliation(s)
- Lauren Le Page
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Lisa-Maria Prawits
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Angela Schlerka
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Colin P Farrell
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Cynthia L Baldwin
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Janice C Telfer
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
4
|
Baratelli M, Morgan S, Hemmink JD, Reid E, Carr BV, Lefevre E, Montaner-Tarbes S, Charleston B, Fraile L, Tchilian E, Montoya M. Identification of a Newly Conserved SLA-II Epitope in a Structural Protein of Swine Influenza Virus. Front Immunol 2020; 11:2083. [PMID: 33042120 PMCID: PMC7524874 DOI: 10.3389/fimmu.2020.02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/30/2020] [Indexed: 11/30/2022] Open
Abstract
Despite the role of pigs as a source of new Influenza A Virus viruses (IAV) potentially capable of initiating human pandemics, immune responses to swine influenza virus (SwIV) in pigs are not fully understood. Several SwIV epitopes presented by swine MHC (SLA) class I have been identified using different approaches either in outbred pigs or in Babraham large white inbred pigs, which are 85% identical by genome wide SNP analysis. On the other hand, some class II SLA epitopes were recently described in outbred pigs. In this work, Babraham large white inbred pigs were selected to identify SLA II epitopes from SwIV H1N1. PBMCs were screened for recognition of overlapping peptides covering the NP and M1 proteins from heterologous IAV H1N1 in IFNγ ELISPOT. A novel SLA class II restricted epitope was identified in NP from swine H1N1. This conserved novel epitope could be the base for further vaccine approaches against H1N1 in pigs.
Collapse
Affiliation(s)
- Massimiliano Baratelli
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | - Sergio Montaner-Tarbes
- Innovex Therapeutics S.L., Badalona, Spain.,Animal Health Department, Universidad de Lleida, Lleida, Spain
| | | | - Lorenzo Fraile
- Animal Health Department, Universidad de Lleida, Lleida, Spain
| | | | - Maria Montoya
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Universitat Autònoma de Barcelona, Bellaterra, Spain.,The Pirbright Institute, Surrey, United Kingdom.,Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Di Zazzo A, Lee SM, Sung J, Niutta M, Coassin M, Mashaghi A, Inomata T. Variable Responses to Corneal Grafts: Insights from Immunology and Systems Biology. J Clin Med 2020; 9:E586. [PMID: 32098130 PMCID: PMC7074162 DOI: 10.3390/jcm9020586] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Corneal grafts interact with their hosts via complex immunobiological processes that sometimes lead to graft failure. Prediction of graft failure is often a tedious task due to the genetic and nongenetic heterogeneity of patients. As in other areas of medicine, a reliable prediction method would impact therapeutic decision-making in corneal transplantation. Valuable insights into the clinically observed heterogeneity of host responses to corneal grafts have emerged from multidisciplinary approaches, including genomics analyses, mechanical studies, immunobiology, and theoretical modeling. Here, we review the emerging concepts, tools, and new biomarkers that may allow for the prediction of graft survival.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Sang-Mok Lee
- Department of Ophthalmology, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do 25601, Korea;
- Department of Cornea, External Disease & Refractive Surgery, HanGil Eye Hospital, Incheon 21388, Korea
| | - Jaemyoung Sung
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA;
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| | - Matteo Niutta
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Alireza Mashaghi
- Systems Biomedicine and Pharmacology Division, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Strategic Operating Room Management and Improvement, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Hospital Administration, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| |
Collapse
|
6
|
Böhringer D, Grotejohann B, Ihorst G, Reinshagen H, Spierings E, Reinhard T. Rejection Prophylaxis in Corneal Transplant. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:259-265. [PMID: 29735006 DOI: 10.3238/arztebl.2018.0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/19/2017] [Accepted: 01/11/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Graft rejection. Twenty to thirty percent of patients with corneal transplants experience at least one rejection episode in the first 5 years after transplantation. Prophylaxis through matching for human leukocyte antigens (HLA) is controversial. We herein report the results of the Functional ANtigen matChing in keratoplastY (FANCY) trial. METHODS FANCY was a randomized, double-blind, multicenter clinical trial. The primary objective was to evaluate superiority of HLA matching versus random graft assignment. The primary endpoint was rejection-free graft survival. We included both normal-risk and high-risk indications. The study is registered with ClinicalTrials. gov (NCT00810472). RESULTS 721 patients were included, 639 patients were randomized. 474 patients underwent keratoplasty within the study; 165 patients received grafts outside the trial. One patient died and one patient was lost to follow up. We observed 33 graft rejections in the HLA matching arm (n = 224). The corresponding estimated cumulative incidence rate of immune reactions after two years was 15.7%. We observed 40 rejections in the control arm (n = 249). After two years this yields an estimated cumulative incidence rate of 17%. CONCLUSION In our heterogenous study group, HLA matching did not show a significant advantage compared to random graft assignment. The rejection rate in our sample was lower than expected. Therefore no definite conclusions can be drawn as to whether HLA matching is beneficial in corneal transplantation.
Collapse
Affiliation(s)
- Daniel Böhringer
- * The members of the FANCY Study Group are listed at the end of this article; Eye Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Clinical Trials Unit, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; ADMEDICO Augenzentrum Olten, Switzerland; Laboratory for Translational Immunology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig. PLoS Pathog 2018; 14:e1007017. [PMID: 29772011 PMCID: PMC5957346 DOI: 10.1371/journal.ppat.1007017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/10/2018] [Indexed: 12/04/2022] Open
Abstract
There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens. Influenza virus infection in pigs represents a significant problem to industry and also carries substantial risks to human health. Pigs can be infected with both bird and human forms of influenza where these viruses can mix with swine influenza viruses to generate new pandemic strains that can spread quickly and kill many millions of people across the globe. To date, the study of immunology and vaccination against flu in pigs has been hampered by a lack of suitable tools and reagents. Here, we have built a complete molecular toolset that allows such study. These tools could also be applied to other important infections in pigs such as foot-and-mouth disease and the normally fatal African Swine Fever virus. Finally, pigs are set to become an important model organism for study of influenza A virus infection. Here, we make use of a new research toolset to study a Broadly Protective Influenza Vaccine (BPIV) candidate, S-FLU, which could offer protection against all influenza A viruses. These new tools have been used to demonstrate the induction of large numbers of antigen specific CD8+ T cells to conserved NP epitopes in the respiratory tract after aerosol immunization.
Collapse
|
8
|
Schwartz JC, Hemmink JD, Graham SP, Tchilian E, Charleston B, Hammer SE, Ho C, Hammond JA. The major histocompatibility complex homozygous inbred Babraham pig as a resource for veterinary and translational medicine. HLA 2018; 92:40-43. [PMID: 29687612 PMCID: PMC6099331 DOI: 10.1111/tan.13281] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
Abstract
The Babraham pig is a highly inbred breed first developed in the United Kingdom approximately 50 years ago. Previous reports indicate a very high degree of homozygosity across the genome, including the major histocompatibility complex (MHC) region, but confirmation of homozygosity at the specific MHC loci was lacking. Using both direct sequencing and PCR-based sequence-specific typing, we confirm that Babraham pigs are essentially homozygous at their MHC loci and formalise their MHC haplotype as Hp-55.6. This enhances the utility of the Babraham pig as a useful biomedical model for studies in which controlling for genetic variation is important.
Collapse
Affiliation(s)
| | - J. D. Hemmink
- The Pirbright InstitutePirbrightSurreyUK
- The Roslin Institute, Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
- Livestock GeneticsThe International Livestock Research InstituteNairobiKenya
| | | | | | | | - S. E. Hammer
- Institute of Immunology, Department of PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - C.‐S. Ho
- Gift of Life MichiganAnn ArborMichigan
| | | |
Collapse
|
9
|
Donor Endothelial Cell Count Does Not Correlate With Descemet Stripping Automated Endothelial Keratoplasty Transplant Survival After 2 Years of Follow-up. Cornea 2017; 36:649-654. [DOI: 10.1097/ico.0000000000001189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|