1
|
Deng Y, Liu X, Jian X, Zhang Y, Hou Y, Hou S, Qi F, Xiao S, Deng C. A novel cryopreservation solution for adipose tissue based on metformin. Stem Cell Res Ther 2025; 16:20. [PMID: 39849625 PMCID: PMC11756080 DOI: 10.1186/s13287-025-04142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Autologous fat grafting (AFG) often needs multiple sessions due to low volume retention. Young adipose tissue demonstrates a more pronounced therapeutic effect; thus, the cryopreservation of adipose tissue of young origin is particularly crucial. This study investigated the protective effect of a new cryopreservation solution combining trehalose, glycerol, and metformin on adipose tissue. METHODS This study initially examined the effect of various concentrations of metformin (0, 1, 2, 4, and 8 mM) on oxidative damage in adipose tissue to identify the optimal concentration. Subsequently, 1.5 mL of fresh human adipose tissue was subjected to freezing using trehalose + glycerol (TG group), trehalose + glycerol + metformin (TGM group), and the common cryoprotectant dimethyl sulfoxide (DMSO) + fetal bovine serum (FBS) (DF group). Samples were cryopreserved in liquid nitrogen for 2 weeks. After thawing, 1 mL of adipose tissue from each group was transplanted subcutaneously into the backs of nude mice. The cryoprotective effects on adipose tissue viability were evaluated during transplantation one month after transplantation. RESULTS The 2 mM concentration of metformin exhibited the lowest reactive oxygen species (ROS) level (29.20 ± 1.73) compared to other concentrations (P < 0.05). Cell proliferation and migration assays also supported the superior performance of the 2 mM concentration. Apoptotic analyses of stromal vascular fraction (SVF) cells showed the lowest levels in the 2 mM group. Compared to other cryopreservation groups, the adipose tissue in the TGM group closely resembled fresh adipose tissue in terms of gross structure and histological characteristics, with the lowest apoptosis rate of SVF cells. In vivo analysis revealed the highest tissue retention rate in the TGM group, with histological examination indicating robust structural integrity. CONCLUSION The TGM cryopreservation solution, containing metformin, greatly preserves adipose tissue, reduces apoptosis, and improves tissue retention rates. This solution was non-toxic and safe, making it well-suited for tissue cryopreservation in clinical settings.
Collapse
Affiliation(s)
- Yaping Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Xin Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Xichao Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Yan Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Yinchi Hou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Suyun Hou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China.
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, Zunyi City, Guizhou Province, 563003, China.
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China.
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, Zunyi City, Guizhou Province, 563003, China.
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China.
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, Zunyi City, Guizhou Province, 563003, China.
| |
Collapse
|
2
|
Izaguirre-Pérez N, Ligero G, Aguilar-Solana PA, Carrillo-Ávila JA, Rodriguez-Reyes CR, Biunno I, Aguilar-Quesada R, Catalina P. Trehalose Cryopreservation of Human Mesenchymal Stem Cells from Cord Tissue. Biopreserv Biobank 2024. [PMID: 39723442 DOI: 10.1089/bio.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Adequate hypothermic storage of human mesenchymal stem cells (hMSCs) is of fundamental importance since they have been explored in several regenerative medicine initiatives. However, the actual clinical application of hMSCs necessitates hypothermic storage for long periods, a process that requires the use of non-toxic and efficient cryo-reagents capable of maintaining high viability and differentiating properties after thawing. Current cryopreservation methods are based on cryoprotectant agents (CPAs) containing dimethylsulphoxide (DMSO), which have been shown to be toxic for clinical applications. In this study, we describe a simple and effective trehalose (TRE)-based solution to cryo-store human umbilical cord-derived MSCs (UC-MSCs) in liquid nitrogen. Cells viability, identity, chromosomal stability, proliferative and migration capacity, and stress response were assessed after cryopreservation in TRE as CPA, testing different concentrations by itself or in combination with ethylene glycol (EG). Here we show that TRE-stored UC-MSCs provided lower cell recovery rates compared with DMSO-based solution, but maintained good functional properties, stability, and differentiating potential. The best cell recovery was obtained using 0.5 M TRE with 10% EG showing no differences in the osteogenic, adipogenic, and chondrogenic differentiation capacity. A second cycle of cryopreservation in this TRE-based solution had no additional impact on the viability and morphology, although slightly affected cell migration. Furthermore, the expression of the stress-related genes, HSPA1A, SOD2, TP53, BCL-2, and BAX, did not show a higher response in UC-MSCs cryopreserved in 0.5 M TRE + 10% EG compared with DMSO. Together these results, in addition to ascertained therapeutic properties of TRE, provide sufficient evidence to consider TRE-based medium as a low-cost and efficient solution for the storage of human UC-MSCs cells and potentially substitute DMSO-based cryo-reagents.
Collapse
Affiliation(s)
| | - Gertrudis Ligero
- Coordinating Node, Andalusian Public Health System Biobank, Granada, Spain
| | | | | | | | - Ida Biunno
- Integrated System Engineering, Bresso-Milano, Italy
- Department of Translational Medicine-Pavia, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
3
|
Atia MM, Badr EL-Deen AA, Abdel-Tawab H, Alghriany A. Rehabilitation of N, N'-methylenebisacrylamide-induced DNA destruction in the testis of adult rats by adipose-derived mesenchymal stem cells and conditional medium. Heliyon 2024; 10:e40380. [PMID: 39669145 PMCID: PMC11636104 DOI: 10.1016/j.heliyon.2024.e40380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Environmental pollutant acrylamide has toxic effect on human health. Numerous industries such as the paper, and cosmetics, use acrylamide in their manufacturing. In certain foods, acrylamide arises at extremely high temperatures. Mesenchymal stem cells can shield different tissues from the damaging effects of free radicals induced by acrylamide. This study aimed to compare the therapeutic efficacy against acrylamide-induced toxicity between adipose-derived mesenchymal stem cells (MSCs) and their conditioned media (CM), evaluating which is more effective. Seventy adult male rats were employed in this study, distributed among 5 groups. The control group consisted of 10 rats, while each of the other four groups comprised 15 rats. The AC group received a daily oral acrylamide (AC) dosage of 3 mg/kg. In the AC + AD-MSCs and AC + AD-MSCs CM groups, after 4 weeks of AC administration, rats were injected with 0.65 × 106 AD-MSCs/0.5 ml PBS and 0.5 ml of AD-MSCs CM, respectively, via the caudal vein, and were observed for 15 days. The recovery group (Rec.), subjected to 4 weeks of AC treatment, and was allowed an additional 15 days for recuperation. The result in AC and Rec. groups revealed elevated DNA damage, P53 protein levels, apoptosis, LPO, and testosterone (free and total). In contrast, the administration of CM and the transplanting of AD-MSCs decreased the levels of these proteins. According to histological analysis, treating testicular cells with AD-MSCs mitigated histopathological lesions, fibrosis, and toxicity caused by AC. The regulation of P53, LPO protein levels, and testosterone levels, supported the function of AD-MSCs in lowering testis DNA damage and apoptosis.
Collapse
Affiliation(s)
- Mona M. Atia
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
- Department of Biology, Faculty of Biotechnology, Badr University in Assiut (BUA), Egypt
| | - Aya Ahmed Badr EL-Deen
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| | - Hanem.S. Abdel-Tawab
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| | - Alshaimaa.A.I. Alghriany
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| |
Collapse
|
4
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
5
|
Ma CY, Zhai Y, Li CT, Liu J, Xu X, Chen H, Tse HF, Lian Q. Translating mesenchymal stem cell and their exosome research into GMP compliant advanced therapy products: Promises, problems and prospects. Med Res Rev 2024; 44:919-938. [PMID: 38095832 DOI: 10.1002/med.22002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/22/2023] [Accepted: 11/26/2023] [Indexed: 04/06/2024]
Abstract
Mesenchymal stem cells (MSCs) are one of the few stem cell types used in clinical practice as therapeutic agents for immunomodulation and ischemic tissue repair, due to their unique paracrine capacity, multiple differentiation potential, active components in exosomes, and effective mitochondria donation. At present, MSCs derived from tissues such as bone marrow and umbilical cord are widely applied in preclinical and clinical studies. Nevertheless, there remain challenges to the maintenance of consistently good quality MSCs derived from different donors or tissues, directly impacting their application as advanced therapy products. In this review, we discuss the promises, problems, and prospects associated with translation of MSC research into a pharmaceutical product. We review the hurdles encountered in translation of MSCs and MSC-exosomes from the research bench to an advanced therapy product compliant with good manufacturing practice (GMP). These difficulties include how to set up GMP-compliant protocols, what factors affect raw material selection, cell expansion to product formulation, establishment of quality control (QC) parameters, and quality assurance to comply with GMP standards. To avoid human error and reduce the risk of contamination, an automatic, closed system that allows real-time monitoring of QC should be considered. We also highlight potential advantages of pluripotent stem cells as an alternative source for MSC and exosomes generation and manufacture.
Collapse
Affiliation(s)
- Chui-Yan Ma
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuqing Zhai
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chung Tony Li
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
| | - Jie Liu
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hung-Fat Tse
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Department of Cardiology, Cardiac and Vascular Center, Shenzhen Hong Kong University Hospital, Shenzhen, China
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Qizhou Lian
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Ali ASM, Berg J, Roehrs V, Wu D, Hackethal J, Braeuning A, Woelken L, Rauh C, Kurreck J. Xeno-Free 3D Bioprinted Liver Model for Hepatotoxicity Assessment. Int J Mol Sci 2024; 25:1811. [PMID: 38339088 PMCID: PMC10855587 DOI: 10.3390/ijms25031811] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Three-dimensional (3D) bioprinting is one of the most promising methodologies that are currently in development for the replacement of animal experiments. Bioprinting and most alternative technologies rely on animal-derived materials, which compromises the intent of animal welfare and results in the generation of chimeric systems of limited value. The current study therefore presents the first bioprinted liver model that is entirely void of animal-derived constituents. Initially, HuH-7 cells underwent adaptation to a chemically defined medium (CDM). The adapted cells exhibited high survival rates (85-92%) after cryopreservation in chemically defined freezing media, comparable to those preserved in standard medium (86-92%). Xeno-free bioink for 3D bioprinting yielded liver models with high relative cell viability (97-101%), akin to a Matrigel-based liver model (83-102%) after 15 days of culture. The established xeno-free model was used for toxicity testing of a marine biotoxin, okadaic acid (OA). In 2D culture, OA toxicity was virtually identical for cells cultured under standard conditions and in CDM. In the xeno-free bioprinted liver model, 3-fold higher concentrations of OA than in the respective monolayer culture were needed to induce cytotoxicity. In conclusion, this study describes for the first time the development of a xeno-free 3D bioprinted liver model and its applicability for research purposes.
Collapse
Affiliation(s)
- Ahmed S. M. Ali
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Viola Roehrs
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | | | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany;
| | - Lisa Woelken
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, 14195 Berlin, Germany (C.R.)
| | - Cornelia Rauh
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, 14195 Berlin, Germany (C.R.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
7
|
Wang J, Shi X, Xiong M, Tan WS, Cai H. Trehalose glycopolymers for cryopreservation of tissue-engineered constructs. Cryobiology 2021; 104:47-55. [PMID: 34800528 DOI: 10.1016/j.cryobiol.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/03/2022]
Abstract
The development of an effective cryopreservation method to achieve off-the-shelf and bioactive tissue-engineered constructs (TECs) is important to meet the requirements for clinical applications. The trehalose, a non-permeable cryoprotectant (CPA), has difficulty in penetrating the plasma membranes of mammalian cells and has only been used in combination with other cell penetrating CPA (such as DMSO) to cryopreserve mammalian cells. However, the inherent cytotoxicity of DMSO results in increasing risks with respect to cryopreserved cells. Therefore, in this study, permeable trehalose glycopolymers were synthesised for cryopreservation of TECs. The trehalose glycopolymers exhibited good ice inhibiting activities and biocompatibilities. Furthermore, the viability and function of TECs after cryopreservation with 5.0 wt% S2 were similar to those of the non-cryopreserved TECs. We developed an effective preservation strategy for the off-the-shelf availability of TECs.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaodi Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minghao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
8
|
Therapeutic Effect of Stem Cells on Male Infertility in a Rat Model: Histological, Molecular, Biochemical, and Functional Study. Stem Cells Int 2021; 2021:8450721. [PMID: 34733332 PMCID: PMC8560298 DOI: 10.1155/2021/8450721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022] Open
Abstract
Methotrexate (MTX) is a folic acid antagonist, widely used as a chemotherapeutic and immunosuppressive drug, but it is toxic to reproductive systems. In recent years, the era of stem cell applications becomes a promising point as a possible therapeutic agent in male infertility. This study is aimed at evaluating the therapeutic effects of stem cells at histological, molecular, biochemical, and functional levels in a methotrexate-induced testicular damage model. Material and Methods. Thirty rats were divided randomly into three groups (ten rats each): group 1 (control): animals received an intraperitoneal injection of 2 ml phosphate-buffered saline per week for 4 weeks, group 2 (MTX-treated group): animals were intraperitoneally injected with methotrexate (8 mg/kg) once weekly for 4 weeks, and group 3 (ADMSC-treated group): methotrexate-treated animals received a single dose of 1 × 106 stem cells/rat at the 5th week. At the 8th week, blood samples were collected for hormonal analysis; then, animals were sacrificed. The testes were dissected; the right testis was stained with hematoxylin and eosin. Random sections were taken from group 3 and examined with a fluorescent microscope. The left testis was divided into two specimens: the first was used for an electron microscope and the second was homogenized for molecular and biochemical assessments. Results. Group 2 showed significant histological changes, decreased free testosterone level, decrease in stem cell factor expression, and dysfunction of the oxidation state. The results revealed significant improvement of these parameters. Conclusion. Transplantation of adipose tissue-derived stem cells (ADMSCs) can improve the testicular damage histologically and functionally in a rat model.
Collapse
|
9
|
Crowley CA, Smith WPW, Seah KTM, Lim SK, Khan WS. Cryopreservation of Human Adipose Tissues and Adipose-Derived Stem Cells with DMSO and/or Trehalose: A Systematic Review. Cells 2021; 10:cells10071837. [PMID: 34360005 PMCID: PMC8307030 DOI: 10.3390/cells10071837] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Adipose tissue senescence is implicated as a major player in obesity- and ageing-related disorders. There is a growing body of research studying relevant mechanisms in age-related diseases, as well as the use of adipose-derived stem cells in regenerative medicine. The cell banking of tissue by utilising cryopreservation would allow for much greater flexibility of use. Dimethyl sulfoxide (DMSO) is the most commonly used cryopreservative agent but is toxic to cells. Trehalose is a sugar synthesised by lower organisms to withstand extreme cold and drought that has been trialled as a cryopreservative agent. To examine the efficacy of trehalose in the cryopreservation of human adipose tissue, we conducted a systematic review of studies that used trehalose for the cryopreservation of human adipose tissues and adipose-derived stem cells. Thirteen articles, including fourteen studies, were included in the final review. All seven studies that examined DMSO and trehalose showed that they could be combined effectively to cryopreserve adipocytes. Although studies that compared nonpermeable trehalose with DMSO found trehalose to be inferior, studies that devised methods to deliver nonpermeable trehalose into the cell found it comparable to DMSO. Trehalose is only comparable to DMSO when methods are devised to introduce it into the cell. There is some evidence to support using trehalose instead of using no cryopreservative agent.
Collapse
Affiliation(s)
- Conor A. Crowley
- Australasian College of Cosmetic Surgery, Parramatta, NSW 2150, Australia;
| | - William P. W. Smith
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK;
| | - K. T. Matthew Seah
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
- Correspondence:
| | - Soo-Keat Lim
- The Ashbrook Cosmetic Surgery, Mosman, NSW 2088, Australia;
| | - Wasim S. Khan
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| |
Collapse
|
10
|
Eroglu B, Genova E, Zhang Q, Su Y, Shi X, Isales C, Eroglu A. Photobiomodulation has rejuvenating effects on aged bone marrow mesenchymal stem cells. Sci Rep 2021; 11:13067. [PMID: 34158600 PMCID: PMC8219765 DOI: 10.1038/s41598-021-92584-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
The plasticity and proliferative capacity of stem cells decrease with aging, compromising their tissue regenerative potential and therapeutic applications. This decline is directly linked to mitochondrial dysfunction. Here, we present an effective strategy to reverse aging of mouse bone marrow mesenchymal stem cells (BM-MSCs) by restoring their mitochondrial functionality using photobiomodulation (PBM) therapy. Following the characterization of young and aged MSCs, our results show that a near-infrared PBM treatment delivering 3 J/cm2 is the most effective modality for improving mitochondrial functionality and aging markers. Furthermore, our results unveil that young and aged MSCs respond differently to the same modality of PBM: whereas the beneficial effect of a single PBM treatment dissipates within 7 h in aged stem cells, it is lasting in young ones. Nevertheless, by applying three consecutive treatments at 24-h intervals, we were able to obtain a lasting rejuvenating effect on aged MSCs. Our findings are of particular significance for improving autologous stem cell transplantation in older individuals who need such therapies most.
Collapse
Affiliation(s)
- Binnur Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Evan Genova
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Yun Su
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Xingming Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Carlos Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
11
|
Cryopreservation Engineering Strategies for Mass Production of Adipose-Derived Stem Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-019-1359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Mazini L, Ezzoubi M, Malka G. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: flow chart and regulation updates before and after COVID-19. Stem Cell Res Ther 2021; 12:1. [PMID: 33397467 PMCID: PMC7781178 DOI: 10.1186/s13287-020-02006-w] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have raised big interest in therapeutic applications in regenerative medicine and appear to fulfill the criteria for a successful cell therapy. Their low immunogenicity and their ability to self-renew, to differentiate into different tissue-specific progenitors, to migrate into damaged sites, and to act through autocrine and paracrine pathways have been altogether testified as the main mechanisms whereby cell repair and regeneration occur. The absence of standardization protocols in cell management within laboratories or facilities added to the new technologies improved at patient's bedside and the discrepancies in cell outcomes and engraftment increase the limitations on their widespread use by balancing their real benefit versus the patient safety and security. Also, comparisons across pooled patients are particularly difficult in the fact that multiple medical devices are used and there is absence of harmonized assessment assays despite meeting regulations agencies and efficient GMP protocols. Moreover, the emergence of the COVID-19 breakdown added to the complexity of implementing standardization. Cell- and tissue-based therapies are completely dependent on the biological manifestations and parameters associated to and induced by this virus where the scope is still unknown. The initial flow chart identified for stem cell therapies should be reformulated and updated to overcome patient infection and avoid significant variability, thus enabling more patient safety and therapeutic efficiency. The aim of this work is to highlight the major guidelines and differences in ADSC processing meeting the current good manufacturing practices (cGMP) and the cellular therapy-related policies. Specific insights on standardization of ADSCs proceeding at different check points are also presented as a setup for the cord blood and bone marrow.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Center of Biological and Medical Sciences CIAM, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mohamed Ezzoubi
- Centre des Brûlés et chirurgie réparatrice, Centre Hospitalier Universitaire Ibn Rochd Casablanca, Faculté de Médecine et de Pharmacie Casablanca, Casablanca, Morocco
| | - Gabriel Malka
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Center of Biological and Medical Sciences CIAM, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
13
|
Chemically Defined and Xeno-Free Cryopreservation of Human-Induced Pluripotent Stem Cells. Methods Mol Biol 2021; 2180:569-579. [PMID: 32797435 DOI: 10.1007/978-1-0716-0783-1_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) can be derived from a variety of biopsy samples and have an unlimited capacity for self-renewal and differentiation into almost any cell type in the body. Therefore, hiPSCs offer unprecedented opportunities for patient-specific cell therapies, modeling of human diseases, biomarker discovery, and drug testing. However, clinical applications of hiPSCs require xeno-free and, ideally, chemically defined methods for their generation, expansion, and cryopreservation. In this chapter, we present a chemically defined and xeno-free slow freezing method for hiPSCs along with a chemically undefined protocol. Both approaches yield reasonable post-thaw viability and cell growth.
Collapse
|
14
|
Zhang TY, Tan PC, Xie Y, Zhang XJ, Zhang PQ, Gao YM, Zhou SB, Li QF. The combination of trehalose and glycerol: an effective and non-toxic recipe for cryopreservation of human adipose-derived stem cells. Stem Cell Res Ther 2020; 11:460. [PMID: 33129347 PMCID: PMC7602354 DOI: 10.1186/s13287-020-01969-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
Background Adipose-derived stem cells (ADSCs) promote tissue regeneration and repair. Cryoprotective agents (CPAs) protect cells from cryodamage during cryopreservation. Safe and efficient cryopreservation of ADSCs is critical for cell-based therapy in clinical applications. However, most CPAs are used at toxic concentrations, limiting their clinical application. Objective The aim of this study is to develop a non-toxic xeno-free novel CPA aiming at achieving high-efficiency and low-risk ADSC cryopreservation. Methods We explored different concentrations of trehalose (0.3 M, 0.6 M, 1.0 M, and 1.25 M) and glycerol (10%, 20%, and 30% v/v) for optimization and evaluated and compared the outcomes of ADSCs cryopreservation between a combination of trehalose and glycerol and the commonly used CPA DMSO (10%) + FBS (90%). All samples were slowly frozen and stored in liquid nitrogen for 30 days. The effectiveness was evaluated by the viability, proliferation, migration, and multi-potential differentiation of the ADSCs after thawing. Results Compared with the groups treated with individual reagents, the 1.0 M trehalose (Tre) + 20% glycerol (Gly) group showed significantly higher efficiency in preserving ADSC activities after thawing, with better outcomes in both cell viability and proliferation capacity. Compared with the 10% DMSO + 90% FBS treatment, the ADSCs preserved in 1.0 M Tre + 20% Gly showed similar cell viability, surface markers, and multi-potential differentiation but a significantly higher migration capability. The results indicated that cell function preservation can be improved by 1.0 M Tre + 20% Gly. Conclusions The 1.0 M Tre + 20% Gly treatment preserved ADSCs with a higher migration capability than 10% DMSO + 90% FBS and with viability higher than that with trehalose or glycerol alone but similar to that with 10% DMSO + 90% FBS and fresh cells. Moreover, the new CPA achieves stemness and multi-potential differentiation similar to those in fresh cells. Our results demonstrate that 1.0 M Tre + 20% Gly can more efficiently cryopreserve ADSCs and is a non-toxic CPA that may be suitable for clinical applications.
Collapse
Affiliation(s)
- Tian-Yu Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, 200011, People's Republic of China.,College of Life Sciences, Shanghai Normal University, Shanghai, People's Republic of China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, 200011, People's Republic of China
| | - Yun Xie
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, 200011, People's Republic of China
| | - Xiao-Jie Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, 200011, People's Republic of China.,College of Life Sciences, Shanghai Normal University, Shanghai, People's Republic of China
| | - Pei-Qi Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, 200011, People's Republic of China
| | - Yi-Ming Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, 200011, People's Republic of China
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, 200011, People's Republic of China.
| | - Qing-Feng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
15
|
Pogozhykh D, Eicke D, Gryshkov O, Wolkers WF, Schulze K, Guzmán CA, Blasczyk R, Figueiredo C. Towards Reduction or Substitution of Cytotoxic DMSO in Biobanking of Functional Bioengineered Megakaryocytes. Int J Mol Sci 2020; 21:ijms21207654. [PMID: 33081128 PMCID: PMC7589913 DOI: 10.3390/ijms21207654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022] Open
Abstract
Donor platelet transfusion is currently the only efficient treatment of life-threatening thrombocytopenia, but it is highly challenged by immunological, quality, and contamination issues, as well as short shelf life of the donor material. Ex vivo produced megakaryocytes and platelets represent a promising alternative strategy to the conventional platelet transfusion. However, practical implementation of such strategy demands availability of reliable biobanking techniques, which would permit eliminating continuous cell culture maintenance, ensure time for quality testing, enable stock management and logistics, as well as availability in a ready-to-use manner. At the same time, protocols applying DMSO-based cryopreservation media were associated with increased risks of adverse long-term side effects after patient use. Here, we show the possibility to develop cryopreservation techniques for iPSC-derived megakaryocytes under defined xeno-free conditions with significant reduction or complete elimination of DMSO. Comprehensive phenotypic and functional in vitro characterization of megakaryocytes has been performed before and after cryopreservation. Megakaryocytes cryopreserved DMSO-free, or using low DMSO concentrations, showed the capability to produce platelets in vivo after transfusion in a mouse model. These findings propose biobanking approaches essential for development of megakaryocyte-based replacement and regenerative therapies.
Collapse
Affiliation(s)
- Denys Pogozhykh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
- Correspondence: (D.P.); (C.F.)
| | - Dorothee Eicke
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz Universität Hannover, 30823 Garbsen, Germany;
| | - Willem F. Wolkers
- Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (K.S.); (C.A.G.)
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (K.S.); (C.A.G.)
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
| | - Constança Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
- Correspondence: (D.P.); (C.F.)
| |
Collapse
|
16
|
Chemically Defined, Clinical-Grade Cryopreservation of Human Adipose Stem Cells. Methods Mol Biol 2020. [PMID: 32797434 DOI: 10.1007/978-1-0716-0783-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Adipose-derived stem cells (ASCs) reside in the stromal compartment of adipose tissue and can be easily harvested in large quantities through a clinically safe liposuction procedure. ASCs do not induce immunogenic reactions and rather exert immunosuppressive effects. Therefore, they can be used for both autologous and allogeneic transplantations. They hold great promise for cell-based therapies and tissue engineering. A prerequisite to the realization of this promise is the development of successful cryopreservation methods for ASCs. In this chapter, we describe a xeno-free- and chemically defined cryopreservation protocol, which can be used for various clinical applications of ASCs.
Collapse
|
17
|
Mutsenko V, Barlič A, Pezić T, Dermol-Černe J, Dovgan B, Sydykov B, Wolkers WF, Katkov II, Glasmacher B, Miklavčič D, Gryshkov O. Me 2SO- and serum-free cryopreservation of human umbilical cord mesenchymal stem cells using electroporation-assisted delivery of sugars. Cryobiology 2019; 91:104-114. [PMID: 31593692 DOI: 10.1016/j.cryobiol.2019.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/23/2019] [Accepted: 10/03/2019] [Indexed: 02/08/2023]
Abstract
Cryopreservation is the universal technology used to enable long-term storage and continuous availability of cell stocks and tissues for regenerative medicine demands. The main components of standard freezing media are dimethyl sulfoxide (hereinafter Me2SO) and fetal bovine serum (FBS). However, for manufacturing of cells and tissue-engineered products in accordance with the principles of Good Manufacturing Practice (GMP), current considerations in regenerative medicine suggest development of Me2SO- and serum-free biopreservation strategies due to safety concerns over Me2SO-induced side effects and immunogenicity of animal serum. In this work, the effect of electroporation-assisted pre-freeze delivery of sucrose, trehalose and raffinose into human umbilical cord mesenchymal stem cells (hUCMSCs) on their post-thaw survival was investigated. The optimal strength of electric field at 8 pulses with 100 μs duration and 1 Hz pulse repetition frequency was determined to be 1.5 kV/cm from permeabilization (propidium iodide uptake) vs. cell recovery data (resazurin reduction assay). Using sugars as sole cryoprotectants with electroporation, concentration-dependent increase in cell survival was observed. Irrespective of sugar type, the highest cell survival (up to 80%) was achieved at 400 mM extracellular concentration and electroporation. Cell freezing without electroporation yielded significantly lower survival rates. In the optimal scenario, cells were able to attach 24 h after thawing demonstrating characteristic shape and sugar-loaded vacuoles. Application of 10% Me2SO/90% FBS as a positive control provided cell survival exceeding 90%. Next, high glass transition temperatures determined for optimal concentrations of sugars by differential scanning calorimetry (DSC) suggest the possibility to store samples at -80 °C. In summary, using electroporation to incorporate cryoprotective sugars into cells is an effective strategy towards Me2SO- and serum-free cryopreservation and may pave the way for further progress in establishing clinically safe biopreservation strategies for efficient long-term biobanking of cells.
Collapse
Affiliation(s)
- Vitalii Mutsenko
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany.
| | | | - Tamara Pezić
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Barbara Dovgan
- Educell Ltd, Trzin, Slovenia; University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Bulat Sydykov
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Willem F Wolkers
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Igor I Katkov
- Laboratory of the Amorphous State, Institute for Natural and Engineering Sciences, Belgorod National Research University, Belgorod, Russia; MIP Vitronix, ltd, Belgorod, Russia
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
18
|
Dessels C, Pepper MS. Reference Gene Expression in Adipose-Derived Stromal Cells Undergoing Adipogenic Differentiation. Tissue Eng Part C Methods 2019; 25:353-366. [PMID: 31062665 PMCID: PMC6589494 DOI: 10.1089/ten.tec.2019.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
IMPACT STATEMENT As the use of adipose-derived stromal cells (ASCs) in clinical trials increases, so does the amount of experimental data from research groups, many of which use human ASCs to study adipogenesis in obesity. Different conditions are constantly being applied to ASCs in vitro, to obtain a therapeutic product for potential downstream applications. Few articles have looked at the effect of different conditions on ASC reference gene (RG) expression and stability, which was the aim of this research, as such this article will assist other researchers to make an informed decision about RG selection for gene expression studies using ASCs including those for adipogenesis.
Collapse
Affiliation(s)
- Carla Dessels
- Institute for Cellular and Molecular Medicine, Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Neri S. Genetic Stability of Mesenchymal Stromal Cells for Regenerative Medicine Applications: A Fundamental Biosafety Aspect. Int J Mol Sci 2019; 20:ijms20102406. [PMID: 31096604 PMCID: PMC6566307 DOI: 10.3390/ijms20102406] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) show widespread application for a variety of clinical conditions; therefore, their use necessitates continuous monitoring of their safety. The risk assessment of mesenchymal stem cell-based therapies cannot be separated from an accurate and deep knowledge of their biological properties and in vitro and in vivo behavior. One of the most relevant safety issues is represented by the genetic stability of MSCs, that can be altered during in vitro manipulation, frequently required before clinical application. MSC genetic stability has the potential to influence the transformation and the therapeutic effect of these cells. At present, karyotype evaluation represents the definitely prevailing assessment of MSC stability, but DNA alterations of smaller size should not be underestimated. This review will focus on current scientific knowledge about the genetic stability of mesenchymal stem cells. The techniques used and possible improvements together with regulatory aspects will also be discussed.
Collapse
Affiliation(s)
- Simona Neri
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
20
|
The Impact of Varying Cooling and Thawing Rates on the Quality of Cryopreserved Human Peripheral Blood T Cells. Sci Rep 2019; 9:3417. [PMID: 30833714 PMCID: PMC6399228 DOI: 10.1038/s41598-019-39957-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
For the clinical delivery of immunotherapies it is anticipated that cells will be cryopreserved and shipped to the patient where they will be thawed and administered. An established view in cellular cryopreservation is that following freezing, cells must be warmed rapidly (≤5 minutes) in order to maintain high viability. In this study we examine the interaction between the rate of cooling and rate of warming on the viability, and function of T cells formulated in a conventional DMSO based cryoprotectant and processed in conventional cryovials. The data obtained show that provided the cooling rate is -1 °C min-1 or slower, there is effectively no impact of warming rate on viable cell number within the range of warming rates examined (1.6 °C min-1 to 113 °C min-1). It is only following a rapid rate of cooling (-10 °C min-1) that a reduction in viable cell number is observed following slow rates of warming (1.6 °C min-1 and 6.2 °C min-1), but not rapid rates of warming (113 °C min-1 and 45 °C min-1). Cryomicroscopy studies revealed that this loss of viability is correlated with changes in the ice crystal structure during warming. At high cooling rates (-10 °C min-1) the ice structure appeared highly amorphous, and when subsequently thawed at slow rates (6.2 °C min-1 and below) ice recrystallization was observed during thaw suggesting mechanical disruption of the frozen cells. This data provides a fascinating insight into the crystal structure dependent behaviour during phase change of frozen cell therapies and its effect on live cell suspensions. Furthermore, it provides an operating envelope for the cryopreservation of T cells as an emerging industry defines formulation volumes and cryocontainers for immunotherapy products.
Collapse
|
21
|
Meligy FY, Abo Elgheed AT, Alghareeb SM. Therapeutic effect of adipose-derived mesenchymal stem cells on Cisplatin induced testicular damage in adult male albino rat. Ultrastruct Pathol 2019; 43:28-55. [DOI: 10.1080/01913123.2019.1572256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fatma Y. Meligy
- Histology and Cell Biology Department, Assiut University, Assiut, Egypt
| | | | | |
Collapse
|
22
|
Ntai A, La Spada A, De Blasio P, Biunno I. Trehalose to cryopreserve human pluripotent stem cells. Stem Cell Res 2018; 31:102-112. [PMID: 30071393 DOI: 10.1016/j.scr.2018.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/22/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023] Open
Abstract
The successful exploitation of human pluripotent stem cells (hPSCs) for research, translational or commercial reasons requires the implementation of a simple and efficient cryopreservation method. Cryopreservation is usually performed with dimethylsulphoxide (DMSO), in addition to animal proteins. However, even at sub-toxic levels, DMSO diminishes the pluripotency capacity of hPSCs and affects their epigenetic system by acting on the three DNA methyltransferases (Dnmts) and histone modification enzymes. Our study aimed to test trehalose-based cryosolutions containing ethylene glycol (EG) or glycerol (GLY) on hESCs RC17, hiPSCs CTR2#6 and long-term neuroepithelial-like stem cells (lt-NES) AF22. Here, we demostrate the effectiveness of these cryosolutions in hPSCs by showing an acceptable rate of cell viability and high stability compared to standard 10% DMSO freezing medium (CS10). All cell lines retained their morphology, self renewal potential and pluripotency, and none of the cryosolutions affected their differentiation potential. Genotoxicity varied among different stem cells types, while trehalose-based cryopreservation did not sensibly alter the homeostasis of endoplasmic reticulum (ER). This study provides evidence that pluripotent and neural stem cells stored in trehalose alone or with other cryoprotectants (CPAs) maintain their functional properties, indicating their potential use in cell therapies if produced in good manufacturing practice (GMP) facility.
Collapse
Affiliation(s)
- Aikaterini Ntai
- Integrated Systems Engineering S.r.l. (ISENET), Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Alberto La Spada
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Pasquale De Blasio
- Integrated Systems Engineering S.r.l. (ISENET), Via G. Fantoli 16/15, 20138 Milan, Italy.
| | - Ida Biunno
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), Via G. Fantoli 16/15, 20138 Milan, Italy; IRCCS Multimedica, via G. Fantoli 16/15, 20138 Milan, Italy.
| |
Collapse
|
23
|
Methods of Isolation, Characterization and Expansion of Human Adipose-Derived Stem Cells (ASCs): An Overview. Int J Mol Sci 2018; 19:ijms19071897. [PMID: 29958391 PMCID: PMC6073397 DOI: 10.3390/ijms19071897] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Considering the increasing interest in adipose-derived stem cells (ASCs) in regenerative medicine, optimization of methods aimed at isolation, characterization, expansion and evaluation of differentiation potential is critical to ensure (a) the quality of stem cells also in terms of genetic stability; (b) the reproducibility of beneficial effects; and (c) the safety of their use. Numerous studies have been conducted to understand the mechanisms that regulate ASC proliferation, growth and differentiation, however standard protocols about harvesting and processing techniques are not yet defined. It is also important to note that some steps in the procedures of harvesting and/or processing have been reported to affect recovery and/or the physiology of ASCs. Even considering the great opportunity that the ASCs provide for the identification of novel molecular targets for new or old drugs, the definition of homogeneous preparation methods that ensure adequate quality assurance and control, in accordance with current GMPs (good manufacturing practices), is required. Here, we summarize the literature reports to provide a detailed overview of the methodological issues underlying human ASCs isolation, processing, characterization, expansion, differentiation techniques, recalling at the same time their basilar principles, advantages and limits, in particular focusing on how these procedures could affect the ASC quality, functionality and plasticity.
Collapse
|
24
|
Yamazaki T, Enosawa S, Tokiwa T. Effect of cryopreservation on the appearance and liver function of hepatocyte-like cells in cultures of cirrhotic liver of biliary atresia. In Vitro Cell Dev Biol Anim 2018; 54:401-405. [PMID: 29728912 DOI: 10.1007/s11626-018-0260-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/15/2018] [Indexed: 11/26/2022]
Abstract
Previously, we reported that non-parenchymal cell (NPC) fractions from cirrhotic liver of biliary atresia (BA) may contain stem/progenitor cells, and clusters of hepatocyte-like cells appear via hepatocyte growth factor/c-Met signaling in primary cultures of NPCs. BA is a rare and serious liver disease, and procurement of BA cells is difficult. Therefore, cryopreservation of BA liver cells is an unavoidable challenge. In this study, we examined the appearance and liver function of hepatocyte-like cells in cultures of BA liver-derived NPC fractions after cryopreservation for 1 or 6 mo using a chemically defined cryopreservation solution, STEM-CELLBANKER. Although a decrease in cell viability was observed in recovered cells after 1 mo of cryopreservation, clusters of hepatocyte-like cells appeared in the culture of cells that had been cryopreserved for 1 or 6 mo, similar to non-cryopreserved cells. In addition, these hepatocyte-like cells expressed hepatocyte-related mRNAs and demonstrated albumin production and glycogen storage. The present results suggest that hepatic stem/progenitor cells in NPC fractions may be efficiently cryopreserved, as demonstrated by the appearance of hepatocyte-like cells that show various hepatic functions even after cryopreservation. This study may lead to future BA cell therapy using the patient's own cells.
Collapse
Affiliation(s)
- Taisuke Yamazaki
- Department of Liver Cell Biology, Kohno Clinical Medicine Research Institute, 3-4-4 Kitashinagawa, Shinagawa-ku, 140-0001, Tokyo, Japan.
| | - Shin Enosawa
- Division for Advanced Medical Sciences, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, 157-8535, Tokyo, Japan
| | - Takayoshi Tokiwa
- Department of Liver Cell Biology, Kohno Clinical Medicine Research Institute, 3-4-4 Kitashinagawa, Shinagawa-ku, 140-0001, Tokyo, Japan
| |
Collapse
|
25
|
Liu Q, Chen F, Wang L, Zhang Y. [Research progress of the donor factors and experimental factors affecting adipogenic differentiation of adipose derived stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1390-1395. [PMID: 29798597 PMCID: PMC8632588 DOI: 10.7507/1002-1892.201704057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/31/2017] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To summarize the donor factors and experimental factors that affect adipogenic differentiation of adipose derived stem cells, so as to provide reference for adipogenic differentiation of adipose derived stem cells. METHODS The related research literature about donor factors and experimental factors affecting adipogenic differentiation of adipose derived stem cells in recent years was extensively reviewed and summarized. RESULTS There are a lot of donor factors and experimental factors affecting adipogenic differentiation of adipose derived stem cells, but some of the factors are still controversial, such as donor age, health status, adipose tissue of different parts, and so on. These factors need to be further studied. CONCLUSION The donor factors and experimental factors that affect adipogenic differentiation of adipose derived stem cells should be deeply studied and the controversial issues should be clarified to lay a solid foundation for the application of adipose derived stem cells in adipose tissue engineering.
Collapse
Affiliation(s)
- Qin Liu
- Department of Medical Experiments, Wuhan General Hospital of Chinese PLA, Wuhan Hubei, 430070, P.R.China
| | - Fang Chen
- Department of Medical Experiments, Wuhan General Hospital of Chinese PLA, Wuhan Hubei, 430070, P.R.China
| | - Liping Wang
- Department of Medical Experiments, Wuhan General Hospital of Chinese PLA, Wuhan Hubei, 430070, P.R.China
| | - Yi Zhang
- Department of Medical Experiments, Wuhan General Hospital of Chinese PLA, Wuhan Hubei, 430070,
| |
Collapse
|
26
|
Zanata F, Shaik S, Devireddy RV, Wu X, Ferreira LM, Gimble JM. Cryopreserved Adipose Tissue-Derived Stromal/Stem Cells: Potential for Applications in Clinic and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 951:137-146. [PMID: 27837560 DOI: 10.1007/978-3-319-45457-3_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adipose-Derived Stromal/Stem Cells (ASC) have considerable potential for regenerative medicine due to their abilities to proliferate, differentiate into multiple cell lineages, high cell yield, relative ease of acquisition, and almost no ethical concerns since they are derived from adult tissue. Storage of ASC by cryopreservation has been well described that maintains high cell yield and viability, stable immunophenotype, and robust differentiation potential post-thaw. This ability is crucial for banking research and for clinical therapeutic purposes that avoid the morbidity related to repetitive liposuction tissue harvests. ASC secrete various biomolecules such as cytokines which are reported to have immunomodulatory properties and therapeutic potential to reverse symptoms of multiple degenerative diseases/disorders. Nevertheless, safety regarding the use of these cells clinically is still under investigation. This chapter focuses on the different aspects of cryopreserved ASC and the methods to evaluate their functionality for future clinical use.
Collapse
Affiliation(s)
- Fabiana Zanata
- Federal University of Sao Paulo, Sao Paulo, SP, Brazil
- Center for Stem Cell Research & Regenerative Medicine, Tulane University, New Orleans, LA, USA
| | - Shahensha Shaik
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Ram V Devireddy
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Xiying Wu
- La Cell LLC, New Orleans BioInnovation Center, Suite 304, 1441 Canal Street, New Orleans, LA, 70112, USA
| | | | - Jeffrey M Gimble
- Center for Stem Cell Research & Regenerative Medicine, Tulane University, New Orleans, LA, USA.
- La Cell LLC, New Orleans BioInnovation Center, Suite 304, 1441 Canal Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
27
|
Characterization of the new human pleomorphic undifferentiated sarcoma TP53-null cell line mfh-val2. Cytotechnology 2017; 69:539-550. [PMID: 28676915 DOI: 10.1007/s10616-017-0112-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/21/2016] [Indexed: 01/01/2023] Open
Abstract
Pleomorphic undifferentiated sarcoma (PUS), also called malignant fibrous histiocytoma, is a soft tissue sarcoma which occurs predominantly in the extremities. Its origin is a poorly defined mesenchymal cell, which derives to histiocytic and fibroblastic cells. The patient, a 58 year-old man, presented a lesion located in the forearm composed by spindle cells and multinucleated giant cells, which expressed vimentin and adopted a histological pattern formed by irregular-swirling fascicles. Cells were cultured in vitro and a new cell line was established. We characterized this new cell line by histological analyses, cytogenetics (using G-bands and spectral karyotype technique) and cytometric analyses. Cells were grown in culture for more than 100 passages. They had elongated or polygonal morphology. The cells presented a saturation rate of 70,980 cells/cm2, a plating efficiency of 21.5% and a mitotic index of 21 mitoses per field. The cell line was tumorigenic in nude mice. The ploidy study using flow cytometry revealed an aneuploid peak with a DNA index of 1.43. A side population was detected, demonstrating the presence of stem and progenitor cells. Cytogenetics showed a hypotriploid range with many clonal unbalanced rearrangements. Loss of p53 gene was evidenced by MLPA. We describe, for the first time, the characterization of a new human PUS TP53-null cell line called mfh-val2. Mfh-val2 presents a wide number of applications as a TP53-null cell line and a great interest in order to characterize genetic alterations influencing the oncogenesis or progression of PUS and to advance in the biological investigation of this tumor.
Collapse
|
28
|
Oshakbayev K, Dukenbayeva B, Togizbayeva G, Gazaliyeva M, Syzdykova A, Daurenbekov K, Issa P. Accumulated substancies and calorific capacity in adipose tissue: Physical and chemical clinical trial. BBA CLINICAL 2017. [PMID: 28626640 PMCID: PMC5466547 DOI: 10.1016/j.bbacli.2017.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Aim To study physical and chemical structures and properties including calorific value of human adipose tissue in different anatomical location in autopsy-assigned clinical trial. Methods A pilot physical and chemical descriptive randomized autopsy-assigned trial. Adipose tissue 252 sampled from 36 individuals at autopsy who between 36 and 63 years old died from road accidents. Interventions: Chemical functional groups and calorific value were studied using infrared and atomic adsorptive spectrometries, elemental chemical analysis and differential scanning calorimetry. Adipose tissue was sampled from the 7 various anatomical locations. Results The highest levels of the analysed chemical substancies were found in dense atherosclerotic plaque. Dense atherosclerotic plaque contains the most of metabolic products, organic and inorganic elements. Dense atherosclerotic plaque has the most of calorific value. The lowest calorific capacity has a pararenal fat. Conclusions Human body lipids serve as a harbor for various organic substances, they may absorb different metabolic products, and they have different calorific capacity depending on their location and forms. Atherosclerotic plaque contains the most of organic and inorganic elements, and brings the highest energy potential. The body adipose tissue is heterogeneous in content and in property. Atherosclerosis plaque contains the largest amount of organic/inorganic functional groups. Atherosclerosis plaque is a harbor for various organic substances. Adipose tissue has different calorific capacity depending on its locations and forms. Plaques bring the highest of energy potential in compare to other fats.
Collapse
Affiliation(s)
| | | | | | | | - Alma Syzdykova
- Nazarbayev University Medical Center, Astana, Kazakhstan
| | | | - Pernekul Issa
- Kazakh University for technology and business, Astana, Kazakhstan
| |
Collapse
|
29
|
Effect of cryopreservation on proliferation and differentiation of periodontal ligament stem cell sheets. Stem Cell Res Ther 2017; 8:77. [PMID: 28412975 PMCID: PMC5392927 DOI: 10.1186/s13287-017-0530-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/20/2017] [Accepted: 03/04/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cryopreservation has been extensively applied to the long-term storage of a diverse range of biological materials. However, no comprehensive study is currently available on the cryopreservation of periodontal ligament stem cell (PDLSC) sheets which have been suggested as excellent transplant materials for periodontal tissue regeneration. The aim of this study is to investigate the effect of cryopreservation on the structural integrity and functional viability of PDLSC sheets. METHODS PDLSC sheets prepared from extracted human molars were divided into two groups: the cryopreservation group (cPDLSC sheets) and the freshly prepared control group (fPDLSC sheets). The cPDLSC sheets were cryopreserved in a solution consisting of 90% fetal bovine serum and 10% dimethyl sulfoxide for 3 months. Cell viability and cell proliferation rates of PDLSCs in both groups were evaluated by cell viability assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. The multilineage differentiation potentials of the cells were assessed by von Kossa staining and Oil Red O staining. The chromosomal stability was examined by karyotype analysis. Moreover, the cell sheets in each group were transplanted subcutaneously into the dorsal site of nude mice, after which Sirius Red staining was performed to analyze the efficiency of tissue regeneration. RESULTS The PDLSCs derived from both groups of cell sheets showed no significant difference in their viability, proliferative capacities, and multilineage differentiation potentials, as well as chromosomal stability. Furthermore, transplantation experiments based on a mouse model demonstrated that the cPDLSC sheets were equally effective in generating viable osteoid tissues in vivo as their freshly prepared counterparts. In both cases, the regenerated tissues showed similar network patterns of bone-like matrix. CONCLUSIONS Our results offer convincing evidence that cryopreservation does not alter the biological properties of PDLSC sheets and could enhance their clinical utility in tissue regeneration.
Collapse
|