1
|
Smith CE, Bartlett JD, Simmer JP, Hu JCC. Challenges of Studying Amelogenesis in Gene-Targeted Mouse Models. Int J Mol Sci 2025; 26:4905. [PMID: 40430043 PMCID: PMC12112697 DOI: 10.3390/ijms26104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Research on how a stratified oral epithelium gained the capability to create the hardest hydroxyapatite-based mineralized tissue produced biologically to protect the surfaces of teeth has been ongoing for at least 175 years. Many advances have been made in unraveling some of the key factors that allowed the innermost undifferentiated epithelial cells sitting on a skin-type basement membrane to transform into highly polarized cells capable of forming and controlling the mineralization of the extracellular organic matrix that becomes enamel. Genetic manipulation of mice has proven to be a useful approach for studying specific events in the amelogenesis developmental sequence but there have been pitfalls in interpreting loss of function data caused in part by conflicting literature, technical problems in tissue preservation, and the total amount of time spent on tooth development between different species that have led to equivocal conclusions. This critical review attempts to discuss some of these issues and highlight the challenges of characterizing amelogenesis in gene-targeted mouse models.
Collapse
Affiliation(s)
- Charles E. Smith
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, 3640 University St., Montreal, QC H3A 0C7, Canada;
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48190, USA;
| | - John D. Bartlett
- Division of Biosciences, College of Dentistry, Ohio State University, 305 W. 12th Ave., Columbus, OH 43210, USA;
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48190, USA;
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48190, USA;
| |
Collapse
|
2
|
Zhao Z, Attanasio C, Zong C, Pedano MS, Cadenas de Llano-Pérula M. How does orthodontic tooth movement influence the dental pulp? RNA-sequencing on human premolars. Int Endod J 2024; 57:1783-1801. [PMID: 39086033 DOI: 10.1111/iej.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES The objective of this study is to analyse the gene expression profile of the dental pulp (DP) of human premolars subjected to 7 and 28 days of orthodontic force (OF) in vivo by using RNA sequencing. The maxillary and mandibular DP were additionally compared. METHODS Healthy patients requiring orthodontic premolar extractions were randomly assigned to one of the three groups: control (CG) where no OF was applied, 7 and 28 days, where premolars were extracted either 7 or 28 days after the application of a 50-100 g OF. Total RNA was extracted from the DP and analysed via RNA-seq. Differentially expressed genes (DEGs) were identified using a false discovery rate and fold change threshold of <0.05 and ≥1.5, respectively. Functional analysis was performed. RESULTS After 7 days of OF, pulp reaction indicates immune response, hypoxia, DNA damage and epigenetic regulation. After 28 days, cell adhesion, migration, organization and tissue repair are evident. The maxillary and mandibular pulp tissues react differently to OF. The maxilla exhibits minimal alterations, mostly related to immune response at 7 days and tissue repair at 28 days, whereas the mandible shows mostly DNA damage and epigenetic regulation at 7 days and return to the original state at 28 days. CONCLUSIONS This study demonstrates that the early reaction of the DP to OF is marked by immune response, hypoxia and DNA damage. In contrast, after 28 days, cell adhesion, migration, organization, tissue repair and dentine formation are observed. Maxillary and mandibular premolars react differently to OF: although the maxilla exhibits minimal alterations at both time points, the mandible mostly shows DNA damage, epigenetic regulation, and immune response at 7 days. These disparities could stem from different blood supplies or the lower maxillary bone density, potentially triggering faster biological changes. Our findings provide insights into the gene regulatory networks modulating DP response to OF.
Collapse
Affiliation(s)
- Zuodong Zhao
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Catia Attanasio
- Laboratory of Gene Regulation and Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Chen Zong
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Mariano Simón Pedano
- Department of Oral Health Sciences-Endodontics and BIOMAT - Biomaterials Research Group, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - María Cadenas de Llano-Pérula
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Fu Y, Miyazaki K, Chiba Y, Funada K, Yuta T, Tian T, Mizuta K, Kawahara J, Zhang L, Martin D, Iwamoto T, Takahashi I, Fukumoto S, Yoshizaki K. Identification of GPI-anchored protein LYPD1 as an essential factor for odontoblast differentiation in tooth development. J Biol Chem 2023; 299:104638. [PMID: 36963497 PMCID: PMC10130355 DOI: 10.1016/j.jbc.2023.104638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Lipid rafts are membrane microdomains rich in cholesterol, sphingolipids, glycosylphosphatidylinositol-anchored proteins (GPI-APs), and receptors. These lipid raft components are localized at the plasma membrane and are essential for signal transmission and organogenesis. However, few reports have been published on the specific effects of lipid rafts on tooth development. Using microarray and single-cell RNA sequencing methods, we found that a GPI-AP, lymphocyte antigen-6/Plaur domain-containing 1 (Lypd1), was specifically expressed in preodontoblasts. Depletion of Lypd1 in tooth germ using an ex vivo organ culture system and in mouse dental pulp (mDP) cells resulted in the inhibition of odontoblast differentiation. Activation of bone morphogenetic protein (BMP) signaling by BMP2 treatment in mDP cells promoted odontoblast differentiation via phosphorylation of Smad1/5/8, while this BMP2-mediated odontoblast differentiation was inhibited by depletion of Lypd1. Furthermore, we created a deletion construct of the C terminus containing the omega site in LYPD1; this site is necessary for localizing GPI-APs to the plasma membrane and lipid rafts. We identified that this site is essential for odontoblast differentiation and morphological change of mDP cells. These findings demonstrated that LYPD1 is a novel marker of preodontoblasts in the developing tooth; in addition, they suggest that LYPD1 is important for tooth development and that it plays a pivotal role in odontoblast differentiation by regulating Smad1/5/8 phosphorylation through its effect as a GPI-AP in lipid rafts.
Collapse
Affiliation(s)
- Yao Fu
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Kanako Miyazaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yuta Chiba
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Keita Funada
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tomomi Yuta
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tian Tian
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Kanji Mizuta
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Jumpei Kawahara
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Ling Zhang
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Daniel Martin
- Genomics and Computational Biology Core (National Institute on Deafness and Other Communication Disorders), National Institutes of Health, Bethesda, Maryland, USA
| | - Tsutomu Iwamoto
- Division of Oral Health Sciences, Department of Pediatric Dentistry/Special Needs Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Satoshi Fukumoto
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan.
| |
Collapse
|
4
|
Yuta T, Tian T, Chiba Y, Miyazaki K, Funada K, Mizuta K, Fu Y, Kawahara J, Iwamoto T, Takahashi I, Fukumoto S, Yoshizaki K. Development of a novel ex vivo organ culture system to improve preservation methods of regenerative tissues. Sci Rep 2023; 13:3354. [PMID: 36849572 PMCID: PMC9971270 DOI: 10.1038/s41598-023-29629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Recent advances in regenerative technology have made the regeneration of various organs using pluripotent stem cells possible. However, a simpler screening method for evaluating regenerated organs is required to apply this technology to clinical regenerative medicine in the future. We have developed a simple evaluation method using a mouse tooth germ culture model of organs formed by epithelial-mesenchymal interactions. In this study, we successfully established a simple method that controls tissue development in a temperature-dependent manner using a mouse tooth germ ex vivo culture model. We observed that the development of the cultured tooth germ could be delayed by low-temperature culture and resumed by the subsequent culture at 37 °C. Furthermore, the optimal temperature for the long-term preservation of tooth germ was 25 °C, a subnormothermic temperature that maintains the expression of stem cell markers. We also found that subnormothermic temperature induces the expression of cold shock proteins, such as cold-inducible RNA-binding protein, RNA-binding motif protein 3, and serine and arginine rich splicing factor 5. This study provides a simple screening method to help establish the development of regenerative tissue technology using a tooth organ culture model. Our findings may be potentially useful for making advances in the field of regenerative medicine.
Collapse
Affiliation(s)
- Tomomi Yuta
- grid.177174.30000 0001 2242 4849Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tian Tian
- grid.177174.30000 0001 2242 4849Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yuta Chiba
- grid.177174.30000 0001 2242 4849Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan ,grid.177174.30000 0001 2242 4849Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Kanako Miyazaki
- grid.177174.30000 0001 2242 4849Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Keita Funada
- grid.177174.30000 0001 2242 4849Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Kanji Mizuta
- grid.177174.30000 0001 2242 4849Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yao Fu
- grid.177174.30000 0001 2242 4849Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Jumpei Kawahara
- grid.177174.30000 0001 2242 4849Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tsutomu Iwamoto
- grid.265073.50000 0001 1014 9130Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Takahashi
- grid.177174.30000 0001 2242 4849Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Satoshi Fukumoto
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan. .,Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan. .,Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan. .,Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan.
| |
Collapse
|
5
|
GSK3beta inhibitor-induced dental mesenchymal stem cells regulate ameloblast differentiation. J Oral Biosci 2022; 64:400-409. [DOI: 10.1016/j.job.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
6
|
Ou S, Cesarato N, Mauran P, Gellé MP, Thiele H, Betz RC, Viguier M, Gusdorf L. A new de novo heterozygous missense mutation in the desmoplakin gene, causing Naxos and Carvajal disease, associating oligodontia and nail fragility. Clin Exp Dermatol 2022; 47:1424-1426. [PMID: 35574671 DOI: 10.1111/ced.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
A new de novo heterozygous mutation in the desmoplakin gene, causing Naxos and Carvajal disease, has been reported in a 13-year-old Caucasian girl, with expanded clinical phenotype. In addition to woolly hair, palmoplantar keratoderma and cardiomyopathy, she had oligodontia and nail fragility. These additional clinical features may help in the diagnosis of Naxos and Carvajal disease, known to be severe on the cardiac level.
Collapse
Affiliation(s)
- Sokounthie Ou
- Services of Dermatology and Venereology, Centre Hospitalier Universitaire (CHU) de Reims, Reims, France
| | - Nicole Cesarato
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pierre Mauran
- Services of Pediatric and Congenital Cardiology, Centre Hospitalier Universitaire (CHU) de Reims, Reims, France
| | - Marie-Paule Gellé
- Services of Pediatric Oncology, Centre Hospitalier Universitaire (CHU) de Reims, Reims, France
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Manuelle Viguier
- Services of Dermatology and Venereology, Centre Hospitalier Universitaire (CHU) de Reims, Reims, France
| | - Laurence Gusdorf
- Services of Dermatology and Venereology, Centre Hospitalier Universitaire (CHU) de Reims, Reims, France
| |
Collapse
|
7
|
Jia L, Chiba Y, Saito K, Yoshizaki K, Tian T, Han X, Mizuta K, Chiba M, Wang X, Al Thamin S, Yamada A, Fukumoto S. The tooth-specific basic helix-loop-helix factor AmeloD promotes differentiation of ameloblasts. J Cell Physiol 2021; 237:1597-1606. [PMID: 34812512 DOI: 10.1002/jcp.30639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
Tissue-specific basic helix-loop-helix (bHLH) transcription factors play an important role in cellular differentiation. We recently identified AmeloD as a tooth-specific bHLH transcription factor. However, the role of AmeloD in cellular differentiation has not been investigated. The aim of this study was to elucidate the role of AmeloD in dental epithelial cell differentiation. We found that AmeloD-knockout (AmeloD-KO) mice developed an abnormal structure and altered ion composition of enamel in molars, suggesting that AmeloD-KO mice developed enamel hypoplasia. In molars of AmeloD-KO mice, the transcription factor Sox21 encoding SRY-Box transcription factor 21 and ameloblast differentiation marker genes were significantly downregulated. Furthermore, overexpression of AmeloD in the dental epithelial cell line M3H1 upregulated Sox21 and ameloblast differentiation marker genes, indicating that AmeloD is critical for ameloblast differentiation. Our study demonstrated that AmeloD is an important transcription factor in amelogenesis for promoting ameloblast differentiation. This study provides new insights into the mechanisms of amelogenesis.
Collapse
Affiliation(s)
- LingLing Jia
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tian Tian
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xu Han
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kanji Mizuta
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Mitsuki Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Xin Wang
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shahad Al Thamin
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Chiba Y, Yoshizaki K, Tian T, Miyazaki K, Martin D, Genomics and Computational Biology Core, Saito K, Yamada A, Fukumoto S. Integration of Single-Cell RNA- and CAGE-seq Reveals Tooth-Enriched Genes. J Dent Res 2021; 101:220345211049785. [PMID: 34806461 PMCID: PMC9052834 DOI: 10.1177/00220345211049785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Organ development is dictated by the regulation of genes preferentially expressed in tissues or cell types. Gene expression profiling and identification of specific genes in organs can provide insights into organogenesis. Therefore, genome-wide analysis is a powerful tool for clarifying the mechanisms of development during organogenesis as well as tooth development. Single-cell RNA sequencing (scRNA-seq) is a suitable tool for unraveling the gene expression profile of dental cells. Using scRNA-seq, we can obtain a large pool of information on gene expression; however, identification of functional genes, which are key molecules for tooth development, via this approach remains challenging. In the present study, we performed cap analysis of gene expression sequence (CAGE-seq) using mouse tooth germ to identify the genes preferentially expressed in teeth. The CAGE-seq counts short reads at the 5'-end of transcripts; therefore, this method can quantify the amount of transcripts without bias related to the transcript length. We hypothesized that this CAGE data set would be of great help for further understanding a gene expression profile through scRNA-seq. We aimed to identify the important genes involved in tooth development via bioinformatics analyses, using a combination of scRNA-seq and CAGE-seq. We obtained the scRNA-seq data set of 12,212 cells from postnatal day 1 mouse molars and the CAGE-seq data set from postnatal day 1 molars. scRNA-seq analysis revealed the spatiotemporal expression of cell type-specific genes, and CAGE-seq helped determine whether these genes are preferentially expressed in tooth or ubiquitously. Furthermore, we identified candidate genes as novel tooth-enriched and dental cell type-specific markers. Our results show that the integration of scRNA-seq and CAGE-seq highlights the genes important for tooth development among numerous gene expression profiles. These findings should contribute to resolving the mechanism of tooth development and establishing the basis for tooth regeneration in the future.
Collapse
Affiliation(s)
- Y. Chiba
- Section of Oral Medicine for
Children, Division of Oral Health, Growth and Development, Faculty of Dental
Science, Kyushu University, Fukuoka, Japan
| | - K. Yoshizaki
- Section of Orthodontics and
Dentofacial Orthopedics, Division of Oral Health, Growth and Development,
Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - T. Tian
- Section of Orthodontics and
Dentofacial Orthopedics, Division of Oral Health, Growth and Development,
Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - K. Miyazaki
- Section of Orthodontics and
Dentofacial Orthopedics, Division of Oral Health, Growth and Development,
Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - D. Martin
- Genomics and Computational
Biology Core, National Institute on Deafness and Other Communication
Disorders, National Institute of Dental and Craniofacial Research, National
Institutes of Health, Bethesda, MD, USA
| | - Genomics and Computational Biology Core
- Genomics and Computational
Biology Core, National Institute on Deafness and Other Communication
Disorders, National Institute of Dental and Craniofacial Research, National
Institutes of Health, Bethesda, MD, USA
| | - K. Saito
- Division of Pediatric Dentistry,
Department of Community Social Dentistry, Graduate School of Dentistry,
Tohoku University, Sendai, Japan
| | - A. Yamada
- Division of Pediatric Dentistry,
Department of Community Social Dentistry, Graduate School of Dentistry,
Tohoku University, Sendai, Japan
| | - S. Fukumoto
- Section of Oral Medicine for
Children, Division of Oral Health, Growth and Development, Faculty of Dental
Science, Kyushu University, Fukuoka, Japan
- Division of Pediatric Dentistry,
Department of Community Social Dentistry, Graduate School of Dentistry,
Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Müller L, Hatzfeld M, Keil R. Desmosomes as Signaling Hubs in the Regulation of Cell Behavior. Front Cell Dev Biol 2021; 9:745670. [PMID: 34631720 PMCID: PMC8495202 DOI: 10.3389/fcell.2021.745670] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Desmosomes are intercellular junctions, which preserve tissue integrity during homeostatic and stress conditions. These functions rely on their unique structural properties, which enable them to respond to context-dependent signals and transmit them to change cell behavior. Desmosome composition and size vary depending on tissue specific expression and differentiation state. Their constituent proteins are highly regulated by posttranslational modifications that control their function in the desmosome itself and in addition regulate a multitude of desmosome-independent functions. This review will summarize our current knowledge how signaling pathways that control epithelial shape, polarity and function regulate desmosomes and how desmosomal proteins transduce these signals to modulate cell behavior.
Collapse
Affiliation(s)
- Lisa Müller
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mechthild Hatzfeld
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - René Keil
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
10
|
Osawa Y, Kawai H, Tsunoda T, Komatsu H, Okawara M, Tsutsui Y, Yoshida Y, Yoshikawa S, Mori T, Yamazoe T, Yoshio S, Oide T, Inui A, Kanto T. Cluster of Differentiation 44 Promotes Liver Fibrosis and Serves as a Biomarker in Congestive Hepatopathy. Hepatol Commun 2021; 5:1437-1447. [PMID: 34430787 PMCID: PMC8369942 DOI: 10.1002/hep4.1721] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 02/04/2023] Open
Abstract
Congestive hepatopathy (CH) with chronic passive congestion is characterized by the progression of liver fibrosis without prominent inflammation and hepatocellular damage. Currently, the lack of reliable biomarkers for liver fibrosis in CH often precludes the clinical management of patients with CH. To explore fibrosis biomarkers, we performed proteome analysis on serum exosomes isolated from patients with CH after the Fontan procedure. Exosomal cluster of differentiation (CD)44 levels were increased in patients with CH compared to healthy volunteers and was accompanied by increases in serum levels of soluble CD44 and CD44 expression in the liver. To address the roles of CD44 in CH, we established a mouse model of chronic liver congestion by partial inferior vena cava ligation (pIVCL) that mimics CH by fibrosis progression with less inflammation and cellular damage. In the pIVCL mice, enhanced CD44 expression in hepatic stellate cells (HSCs) and deposition of its ligand hyaluronan were observed in the liver. Blood levels of soluble CD44 were correlated with liver fibrosis. The blockade of CD44 with specific antibody inhibited liver fibrosis in pIVCL mice and was accompanied by a reduction in S100 calcium-binding protein A4 expression following activation of HSCs. Conclusion: Chronic liver congestion promotes fibrosis through CD44. This identifies CD44 as a novel biomarker and therapeutic target of liver fibrosis in patients with CH.
Collapse
Affiliation(s)
- Yosuke Osawa
- Department of GastroenterologyInternational University of Health and Welfare HospitalNasushiobaraJapan.,Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Hironari Kawai
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Tomoyuki Tsunoda
- Department of Pediatric Hepatology and GastroenterologySaiseikai Yokohamashi Tobu HospitalTsurumi, YokohamaJapan
| | - Haruki Komatsu
- Department of PediatricsToho University Medical CenterSakura HospitalSakuraJapan
| | - Miku Okawara
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Yuriko Tsutsui
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Yuichi Yoshida
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Shiori Yoshikawa
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Taizo Mori
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Taiji Yamazoe
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Sachiyo Yoshio
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Takashi Oide
- Department of Pathology and Laboratory MedicineKohnodai HospitalNational Center for Global Health and MedicineIchikawaJapan
| | - Ayano Inui
- Department of Pediatric Hepatology and GastroenterologySaiseikai Yokohamashi Tobu HospitalTsurumi, YokohamaJapan
| | - Tatsuya Kanto
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| |
Collapse
|
11
|
A catenin of the plakophilin-subfamily, Pkp3, responds to canonical-Wnt pathway components and signals. Biochem Biophys Res Commun 2021; 563:31-39. [PMID: 34058472 DOI: 10.1016/j.bbrc.2021.05.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Vertebrate beta-catenin plays a key role as a transducer of canonical-Wnt signals. We earlier reported that, similar to beta-catenin, the cytoplasmic signaling pool of p120-catenin-isoform1 is stabilized in response to canonical-Wnt signals. To obtain a yet broader view of the Wnt-pathway's impact upon catenin proteins, we focused upon plakophilin3 (plakophilin-3; Pkp3) as a representative of the plakophilin-catenin subfamily. Promoting tissue integrity, the plakophilins assist in linking desmosomal cadherins to intermediate filaments at desmosome junctions, and in common with other catenins they perform additional functions including in the nucleus. In this report, we test whether canonical-Wnt pathway components modulate Pkp3 protein levels. We find that in common with beta-catenin and p120-catenin-isoform1, Pkp3 is stabilized in the presence of a Wnt-ligand or a dominant-active form of the LRP6 receptor. Pkp3's levels are conversely lowered upon expressing destruction-complex components such as GSK3β and Axin, and in further likeness to beta-catenin and p120-isoform1, Pkp3 associates with GSK3beta and Axin. Finally, we note that Pkp3-catenin trans-localizes into the nucleus in response to Wnt-ligand and its exogenous expression stimulates an accepted Wnt reporter. These findings fit an expanded model where context-dependent Wnt-signals or pathway components modulate Pkp3-catenin levels. Future studies will be needed to assess potential gene regulatory, cell adhesive, or cytoskeletal effects.
Collapse
|
12
|
Soudi A, Yazdanian M, Ranjbar R, Tebyanian H, Yazdanian A, Tahmasebi E, Keshvad A, Seifalian A. Role and application of stem cells in dental regeneration: A comprehensive overview. EXCLI JOURNAL 2021; 20:454-489. [PMID: 33746673 PMCID: PMC7975587 DOI: 10.17179/excli2021-3335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
Recently, a growing attention has been observed toward potential advantages of stem cell (SC)-based therapies in regenerative treatments. Mesenchymal stem/stromal cells (MSCs) are now considered excellent candidates for tissue replacement therapies and tissue engineering. Autologous MSCs importantly contribute to the state-of-the-art clinical strategies for SC-based alveolar bone regeneration. The donor cells and immune cells play a prominent role in determining the clinical success of MSCs therapy. In line with the promising future that stem cell therapy has shown for tissue engineering applications, dental stem cells have also attracted the attention of the relevant researchers in recent years. The current literature review aims to survey the variety and extension of SC-application in tissue-regenerative dentistry. In this regard, the relevant English written literature was searched using keywords: "tissue engineering", "stem cells", "dental stem cells", and "dentistry strategies". According to the available database, SCs application has become increasingly widespread because of its accessibility, plasticity, and high proliferative ability. Among the growing recognized niches and tissues containing higher SCs, dental tissues are evidenced to be rich sources of MSCs. According to the literature, dental SCs are mostly present in the dental pulp, periodontal ligament, and dental follicle tissues. In this regard, the present review has described the recent findings on the potential of dental stem cells to be used in tissue regeneration.
Collapse
Affiliation(s)
- Armin Soudi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Keshvad
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Bioscience Innovation Centre, London, UK
| |
Collapse
|
13
|
Saito K, Chiba Y, Yamada A, Fukumoto S. Identification and function analysis of ameloblast differentiation-related molecules using mouse incisors. PEDIATRIC DENTAL JOURNAL 2020. [DOI: 10.1016/j.pdj.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Wang X, Chiba Y, Jia L, Yoshizaki K, Saito K, Yamada A, Qin M, Fukumoto S. Expression Patterns of Claudin Family Members During Tooth Development and the Role of Claudin-10 ( Cldn10) in Cytodifferentiation of Stratum Intermedium. Front Cell Dev Biol 2020; 8:595593. [PMID: 33195274 PMCID: PMC7642450 DOI: 10.3389/fcell.2020.595593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 02/05/2023] Open
Abstract
There is growing evidence showing that tight junctions play an important role in developing enamel. Claudins are one of the main components of tight junctions and may have pivotal functions in modulating various cellular events, such as regulating cell differentiation and proliferation. Mutations in CLDN10 of humans are associated with HELIX syndrome and cause enamel defects. However, current knowledge regarding the expression patterns of claudins and the function of Cldn10 during tooth development remains fragmented. In this study, we aimed to analyze the expression patterns of claudin family members during tooth development and to investigate the role of Cldn10 in amelogenesis. Using cap analysis gene expression of developing mouse tooth germs compared with that of the whole body, we found that Cldn1 and Cldn10 were highly expressed in the tooth. Furthermore, single-cell RNA-sequence analysis using 7-day postnatal Krt14-RFP mouse incisors revealed Cldn1 and Cldn10 exhibited distinct expression patterns. Cldn10 has two isoforms, Cldn10a and Cldn10b, but only Cldn10b was expressed in the tooth. Immunostaining of developing tooth germs revealed claudin-10 was highly expressed in the inner enamel epithelium and stratum intermedium. We also found that overexpression of Cldn10 in the dental epithelial cell line, SF2, induced alkaline phosphatase (Alpl) expression, a marker of maturated stratum intermedium. Our findings suggest that Cldn10 may be a novel stratum intermedium marker and might play a role in cytodifferentiation of stratum intermedium.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Lingling Jia
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Chiba Y, Saito K, Martin D, Boger ET, Rhodes C, Yoshizaki K, Nakamura T, Yamada A, Morell RJ, Yamada Y, Fukumoto S. Single-Cell RNA-Sequencing From Mouse Incisor Reveals Dental Epithelial Cell-Type Specific Genes. Front Cell Dev Biol 2020; 8:841. [PMID: 32984333 PMCID: PMC7490294 DOI: 10.3389/fcell.2020.00841] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Dental epithelial stem cells give rise to four types of dental epithelial cells: inner enamel epithelium (IEE), outer enamel epithelium (OEE), stratum intermedium (SI), and stellate reticulum (SR). IEE cells further differentiate into enamel-forming ameloblasts, which play distinct roles, and are essential for enamel formation. These are conventionally classified by their shape, although their transcriptome and biological roles are yet to be fully understood. Here, we aimed to use single-cell RNA sequencing to clarify the heterogeneity of dental epithelial cell types. Unbiased clustering of 6,260 single cells from incisors of postnatal day 7 mice classified them into two clusters of ameloblast, IEE/OEE, SI/SR, and two mesenchymal populations. Secretory-stage ameloblasts expressed Amel and Enam were divided into Dspp + and Ambn + ameloblasts. Pseudo-time analysis indicated Dspp + ameloblasts differentiate into Ambn + ameloblasts. Further, Dspp and Ambn could be stage-specific markers of ameloblasts. Gene ontology analysis of each cluster indicated potent roles of cell types: OEE in the regulation of tooth size and SR in the transport of nutrients. Subsequently, we identified novel dental epithelial cell marker genes, namely Pttg1, Atf3, Cldn10, and Krt15. The results not only provided a resource of transcriptome data in dental cells but also contributed to the molecular analyses of enamel formation.
Collapse
Affiliation(s)
- Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Craig Rhodes
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| |
Collapse
|
16
|
Chiba Y, Yoshizaki K, Saito K, Ikeuchi T, Iwamoto T, Rhodes C, Nakamura T, de Vega S, Morell RJ, Boger ET, Martin D, Hino R, Inuzuka H, Bleck CKE, Yamada A, Yamada Y, Fukumoto S. G protein-coupled receptor Gpr115 ( Adgrf4) is required for enamel mineralization mediated by ameloblasts. J Biol Chem 2020; 295:15328-15341. [PMID: 32868297 DOI: 10.1074/jbc.ra120.014281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Dental enamel, the hardest tissue in the human body, is derived from dental epithelial cell ameloblast-secreted enamel matrices. Enamel mineralization occurs in a strictly synchronized manner along with ameloblast maturation in association with ion transport and pH balance, and any disruption of these processes results in enamel hypomineralization. G protein-coupled receptors (GPCRs) function as transducers of external signals by activating associated G proteins and regulate cellular physiology. Tissue-specific GPCRs play important roles in organ development, although their activities in tooth development remain poorly understood. The present results show that the adhesion GPCR Gpr115 (Adgrf4) is highly and preferentially expressed in mature ameloblasts and plays a crucial role during enamel mineralization. To investigate the in vivo function of Gpr115, knockout (Gpr115-KO) mice were created and found to develop hypomineralized enamel, with a larger acidic area because of the dysregulation of ion composition. Transcriptomic analysis also revealed that deletion of Gpr115 disrupted pH homeostasis and ion transport processes in enamel formation. In addition, in vitro analyses using the dental epithelial cell line cervical loop-derived dental epithelial (CLDE) cell demonstrated that Gpr115 is indispensable for the expression of carbonic anhydrase 6 (Car6), which has a critical role in enamel mineralization. Furthermore, an acidic condition induced Car6 expression under the regulation of Gpr115 in CLDE cells. Thus, we concluded that Gpr115 plays an important role in enamel mineralization via regulation of Car6 expression in ameloblasts. The present findings indicate a novel function of Gpr115 in ectodermal organ development and clarify the molecular mechanism of enamel formation.
Collapse
Affiliation(s)
- Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tomoko Ikeuchi
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Craig Rhodes
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Susana de Vega
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Ryoko Hino
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroyuki Inuzuka
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Christopher K E Bleck
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
17
|
Saito K, Michon F, Yamada A, Inuzuka H, Yamaguchi S, Fukumoto E, Yoshizaki K, Nakamura T, Arakaki M, Chiba Y, Ishikawa M, Okano H, Thesleff I, Fukumoto S. Sox21 Regulates Anapc10 Expression and Determines the Fate of Ectodermal Organ. iScience 2020; 23:101329. [PMID: 32674056 PMCID: PMC7363706 DOI: 10.1016/j.isci.2020.101329] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/22/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
The transcription factor Sox21 is expressed in the epithelium of developing teeth. The present study aimed to determine the role of Sox21 in tooth development. We found that disruption of Sox21 caused severe enamel hypoplasia, regional osteoporosis, and ectopic hair formation in the gingiva in Sox21 knockout incisors. Differentiation markers were lost in ameloblasts, which formed hair follicles expressing hair keratins. Molecular analysis and chromatin immunoprecipitation sequencing indicated that Sox21 regulated Anapc10, which recognizes substrates for ubiquitination-mediated degradation, and determined dental-epithelial versus hair follicle cell fate. Disruption of either Sox21 or Anapc10 induced Smad3 expression, accelerated TGF-β1-induced promotion of epithelial-to-mesenchymal transition (EMT), and resulted in E-cadherin degradation via Skp2. We conclude that Sox21 disruption in the dental epithelium leads to the formation of a unique microenvironment promoting hair formation and that Sox21 controls dental epithelial differentiation and enamel formation by inhibiting EMT via Anapc10. Sox21 was induced by Shh in dental epithelial cells Sox21 deficiency in dental epithelium caused differentiation into hair cells Sox21 deficiency did not cause differentiation into mature ameloblasts Anapc10 induced by Sox21 bound to Fzr1 and regulated EMT via Skp2
Collapse
Affiliation(s)
- Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
| | - Frederic Michon
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; Institute for Neurosciences of Montpellier, Inserm U1051, University of Montpellier, 34295 Montpellier, France
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hiroyuki Inuzuka
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoko Yamaguchi
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Emiko Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Makiko Arakaki
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Masaki Ishikawa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Irma Thesleff
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
18
|
Doolan BJ, Gomaa NS, Fawzy MM, Dogheim NN, Liu L, Mellerio JE, Onoufriadis A, McGrath JA. Ectodermal dysplasia-skin fragility syndrome: Two new cases and review of this desmosomal genodermatosis. Exp Dermatol 2020; 29:520-530. [PMID: 32248567 DOI: 10.1111/exd.14096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Desmosomes are intercellular cadherin-mediated adhesion complexes that anchor intermediate filaments to the cell membrane and are required for strong adhesion for tissues under mechanical stress. One specific component of desmosomes is plakophilin 1 (PKP1), which is mainly expressed in the spinous layer of the epidermis. Loss-of-function autosomal recessive mutations in PKP1 result in ectodermal dysplasia-skin fragility (EDSF) syndrome, the initial inherited Mendelian disorder of desmosomes first reported in 1997. METHODS To investigate two new cases of EDSF syndrome and to perform a literature review of pathogenic PKP1 mutations from 1997 to 2019. RESULTS Sanger sequencing of PKP1 identified two new homozygous frameshift mutations: c.409_410insAC (p.Thr137Thrfs*61) and c.1213delA (p.Arg411Glufs*22). Comprehensive analyses were performed for the 18 cases with confirmed bi-allelic PKP1 gene mutations, but not for one mosaic case or 6 additional cases that lacked gene mutation studies. All pathogenic germline mutations were loss-of-function (splice site, frameshift, nonsense) with mutations in the intron 1 consensus acceptor splice site (c.203-1>A or G>T) representing recurrent findings. Skin fragility and nail involvement were present in all affected individuals (18/18), with most cases showing palmoplantar keratoderma (16/18), alopecia/hypotrichosis (16/18) and perioral fissuring/cheilitis (12/15; not commented on in 3 cases). Further observations in some individuals included pruritus, failure to thrive with low height/weight centiles, follicular hyperkeratosis, hypohidrosis, walking difficulties, dysplastic dentition and recurrent chest infections. CONCLUSION These data expand the molecular basis of EDSF syndrome and help define the spectrum of both the prototypic and variable manifestations of this desmosomal genodermatosis.
Collapse
Affiliation(s)
- Brent J Doolan
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Nesrin S Gomaa
- Dermatology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed M Fawzy
- Dermatology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Noha N Dogheim
- Dermatology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Lu Liu
- Viapath, Guy's Hospital, London, UK
| | - Jemima E Mellerio
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| |
Collapse
|
19
|
Lu X, Yang J, Zhao S, Liu S. Advances of Wnt signalling pathway in dental development and potential clinical application. Organogenesis 2019; 15:101-110. [PMID: 31482738 DOI: 10.1080/15476278.2019.1656996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Wnt signalling pathway is widely studied in many processes of biological development, like embryogenesis, tissue homeostasis and wound repair. It is universally known that Wnt signalling pathway plays an important role in tooth development. Here, we summarized the function of Wnt signalling pathway during tooth initiation, crown morphogenesis, root formation, and discussed the therapeutic potential of Wnt modulators.
Collapse
Affiliation(s)
- Xi Lu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Jun Yang
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shangfeng Liu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| |
Collapse
|
20
|
Haase D, Cui T, Yang L, Ma Y, Liu H, Theis B, Petersen I, Chen Y. Plakophilin 1 is methylated and has a tumor suppressive activity in human lung cancer. Exp Mol Pathol 2019; 108:73-79. [DOI: 10.1016/j.yexmp.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
|
21
|
Han X, Yoshizaki K, Miyazaki K, Arai C, Funada K, Yuta T, Tian T, Chiba Y, Saito K, Iwamoto T, Yamada A, Takahashi I, Fukumoto S. The transcription factor NKX2-3 mediates p21 expression and ectodysplasin-A signaling in the enamel knot for cusp formation in tooth development. J Biol Chem 2018; 293:14572-14584. [PMID: 30089653 DOI: 10.1074/jbc.ra118.003373] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/31/2018] [Indexed: 01/02/2023] Open
Abstract
Tooth morphogenesis is initiated by reciprocal interactions between the ectoderm and neural crest-derived mesenchyme. During tooth development, tooth cusps are regulated by precise control of proliferation of cell clusters, termed enamel knots, that are present among dental epithelial cells. The interaction of ectodysplasin-A (EDA) with its receptor, EDAR, plays a critical role in cusp formation by these enamel knots, and mutations of these genes is a cause of ectodermal dysplasia. It has also been reported that deficiency in Nkx2-3, encoding a member of the NK2 homeobox family of transcription factors, leads to cusp absence in affected teeth. However, the molecular role of NKX2-3 in tooth morphogenesis is not clearly understood. Using gene microarray analysis in mouse embryos, we found that Nkx2-3 is highly expressed during tooth development and increased during the tooth morphogenesis, especially during cusp formation. We also demonstrate that NKX2-3 is a target molecule of EDA and critical for expression of the cell cycle regulator p21 in the enamel knot. Moreover, NKX2-3 activated the bone morphogenetic protein (BMP) signaling pathway by up-regulating expression levels of Bmp2 and Bmpr2 in dental epithelium and decreased the expression of the dental epithelial stem cell marker SRY box 2 (SOX2). Together, our results indicate that EDA/NKX2-3 signaling is essential for enamel knot formation during tooth morphogenesis in mice.
Collapse
Affiliation(s)
- Xue Han
- From the Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582
| | - Keigo Yoshizaki
- From the Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582,
| | - Kanako Miyazaki
- From the Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582
| | - Chieko Arai
- From the Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582
| | - Keita Funada
- From the Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582
| | - Tomomi Yuta
- From the Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582
| | - Tian Tian
- From the Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582
| | - Yuta Chiba
- the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, and
| | - Kan Saito
- the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, and
| | - Tsutomu Iwamoto
- the Department of Pediatric Dentistry, Tokushima University Hospital, Tokushima 770-0042, Japan
| | - Aya Yamada
- the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, and
| | - Ichiro Takahashi
- From the Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582
| | - Satoshi Fukumoto
- the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, and
| |
Collapse
|
22
|
Ohshima H. Oral biosciences: The annual review 2017. J Oral Biosci 2018. [DOI: 10.1016/j.job.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Niell N, Larriba MJ, Ferrer‐Mayorga G, Sánchez‐Pérez I, Cantero R, Real FX, del Peso L, Muñoz A, González‐Sancho JM. The human PKP2/plakophilin-2 gene is induced by Wnt/β-catenin in normal and colon cancer-associated fibroblasts. Int J Cancer 2018; 142:792-804. [PMID: 29044515 PMCID: PMC5765413 DOI: 10.1002/ijc.31104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Colorectal cancer results from the malignant transformation of colonic epithelial cells. Stromal fibroblasts are the main component of the tumour microenvironment, and play an important role in the progression of this and other neoplasias. Wnt/β-catenin signalling is essential for colon homeostasis, but aberrant, constitutive activation of this pathway is a hallmark of colorectal cancer. Here we present the first transcriptomic study on the effect of a Wnt factor on human colonic myofibroblasts. Wnt3A regulates the expression of 1,136 genes, of which 662 are upregulated and 474 are downregulated in CCD-18Co cells. A set of genes encoding inhibitors of the Wnt/β-catenin pathway stand out among those induced by Wnt3A, which suggests that there is a feedback inhibitory mechanism. We also show that the PKP2 gene encoding the desmosomal protein Plakophilin-2 is a novel direct transcriptional target of Wnt/β-catenin in normal and colon cancer-associated fibroblasts. PKP2 is induced by β-catenin/TCF through three binding sites in the gene promoter and one additional binding site located in an enhancer 20 kb upstream from the transcription start site. Moreover, Plakophilin-2 antagonizes Wnt/β-catenin transcriptional activity in HEK-293T cells, which suggests that it may act as an intracellular inhibitor of the Wnt/β-catenin pathway. Our results demonstrate that stromal fibroblasts respond to canonical Wnt signalling and that Plakophilin-2 plays a role in the feedback control of this effect suggesting that the response to Wnt factors in the stroma may modulate Wnt activity in the tumour cells.
Collapse
Affiliation(s)
- Núria Niell
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Departamento de BioquímicaFacultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Instituto de Salud Carlos IIICIBER de Cáncer (CIBERONC)MadridSpain
| | - Gemma Ferrer‐Mayorga
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Instituto de Salud Carlos IIICIBER de Cáncer (CIBERONC)MadridSpain
- Fundación de Investigación HM HospitalesMadridE‐28015Spain
| | - Isabel Sánchez‐Pérez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Departamento de BioquímicaFacultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Unidad asociada de Biomedicina UCLM‐CSICMadridSpain
- Instituto de Salud Carlos IIICIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - Ramón Cantero
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Department of Surgery, La Paz University HospitalColorectal UnitMadridE‐28046Spain
| | - Francisco X. Real
- Instituto de Salud Carlos IIICIBER de Cáncer (CIBERONC)MadridSpain
- Cancer Cell Biology Programme, Spanish National Cancer Research CentreEpithelial Carcinogenesis GroupMadridE‐28029Spain
- Departament de Ciències Experimentals i de la SalutUniversitat Pompeu FabraBarcelonaE‐08003Spain
| | - Luis del Peso
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Departamento de BioquímicaFacultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Instituto de Salud Carlos IIICIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Instituto de Salud Carlos IIICIBER de Cáncer (CIBERONC)MadridSpain
| | - José Manuel González‐Sancho
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Departamento de BioquímicaFacultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Salud Carlos IIICIBER de Cáncer (CIBERONC)MadridSpain
| |
Collapse
|
24
|
Nishikawa S. Cytoskeleton, intercellular junctions, planar cell polarity, and cell movement in amelogenesis. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Nephronectin plays critical roles in Sox2 expression and proliferation in dental epithelial stem cells via EGF-like repeat domains. Sci Rep 2017; 7:45181. [PMID: 28345658 PMCID: PMC5366923 DOI: 10.1038/srep45181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/17/2017] [Indexed: 12/31/2022] Open
Abstract
Tooth development is initiated by epithelial-mesenchymal interactions via basement membrane (BM) and growth factors. In the present study, we found that nephronectin (Npnt), a component of the BM, is highly expressed in the developing tooth. Npnt localizes in the BM on the buccal side of the tooth germ and shows an expression pattern opposite that of the dental epithelial stem cell marker Sox2. To identify the roles of Npnt during tooth development, we performed knockdown and overexpression experiments using ex vivo organ and dental epithelial cell cultures. Our findings showed that loss of Npnt induced ectopic Sox2-positive cells and reduced tooth germ size. Over expression of Npnt showed increased proliferation, whereas the number of Sox2-positive cells was decreased in dental epithelial cells. Npnt contains 5 EGF-like repeat domains, as well as an RGD sequence and MAM domain. We found that the EGF-like repeats are critical for Sox2 expression and cell proliferation. Furthermore, Npnt activated the EGF receptor (EGFR) via the EGF-like repeat domains and induced the PI3K-Akt signaling pathway. Our results indicate that Npnt plays a critical scaffold role in dental epithelial stem cell differentiation and proliferation, and regulates Sox2 expression during tooth development.
Collapse
|