1
|
Attia MF, Marasco RN, Kwain S, Foxx C, Whitehead DC, Kabanov A, Lee YZ. Toward the clinical translation of safe intravenous long circulating ILNEs contrast agent for CT imaging. Theranostics 2025; 15:4550-4565. [PMID: 40225570 PMCID: PMC11984398 DOI: 10.7150/thno.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Rationale: X-ray computed tomography (CT) is crucial in precision medicine for diagnostic and therapeutic guidance. However, current small molecule CT contrast agents pose risks such as nephrotoxicity, short blood circulation time, limited scan durations, potential thyroid impact, and immune responses. These challenges necessitate the development of kidney-safe nanoparticle (NP)-based contrast agents (CAs). Methods: We developed safe intravenous blood pool NP-based CT CAs at a clinical-equivalent dose of 300 mgI/kg, suitable for vascular and hepatic imaging. Our iodinated lipid nanoemulsions (ILNEs) were optimized for shelf-life stability, osmolarity, and viscosity for excellent injectability. The ILNEs were designed to offer high contrast and were tested for minimal protein interaction, prolonged blood circulation, and hepatic clearance. In vitro studies, along with tests in mice and porcine models, were conducted to confirm safety, cytocompatibility, and absence of tissue damage. Results: The ILNEs demonstrated high x-ray attenuation, improved contrast enhancement, extended stability, and batch-to-batch consistency. They exhibited minimal protein interaction, prolonged blood residency of about 4 h, and hepatic clearance within three days, avoiding nephrotoxicity. Blood and thyroid-stimulating hormone (TSH) analyses, along with kidney and liver function tests, confirmed the safety of ILNEs. Conclusion: Our ILNEs offer a promising alternative to current CT contrast agents, with improved safety and efficacy profiles. The results support further toxicity evaluations for clinical translation, highlighting the potential of ILNEs in vascular and hepatic imaging without the associated risks of nephrotoxicity.
Collapse
Affiliation(s)
- Mohamed F. Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ryan N. Marasco
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Samuel Kwain
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Charity Foxx
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | - Alexander Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Yueh Z. Lee
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
2
|
Heimer MM, Sun Y, Grosu S, Cyran CC, Bonitatibus PJ, Okwelogu N, Bales BC, Meyer DE, Yeh BM. Novel intravascular tantalum oxide-based contrast agent achieves improved vascular contrast enhancement and conspicuity compared to Iopamidol in an animal multiphase CT protocol. Eur Radiol Exp 2024; 8:108. [PMID: 39365418 PMCID: PMC11452362 DOI: 10.1186/s41747-024-00509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND To assess thoracic vascular computed tomography (CT) contrast enhancement of a novel intravenous tantalum oxide nanoparticle contrast agent (carboxybetaine zwitterionic tantalum oxide, TaCZ) compared to a conventional iodinated contrast agent (Iopamidol) in a rabbit multiphase protocol. METHODS Five rabbits were scanned inside a human-torso-sized encasement on a clinical CT system at various scan delays after intravenous injection of 540 mg element (Ta or I) per kg of bodyweight of TaCZ or Iopamidol. Net contrast enhancement of various arteries and veins, as well as image noise, were measured. Randomized scan series were reviewed by three independent readers on a clinical workstation and assessed for vascular conspicuity and image artifacts on 5-point Likert scales. RESULTS Overall, net vascular contrast enhancement achieved with TaCZ was superior to Iopamidol (p ≤ 0.036 with the exception of the inferior vena cava at 6 s (p = 0.131). Vascular contrast enhancement achieved with TaCZ at delays of 6 s, 40 s, and 75 s was superior to optimum achieved Iopamidol contrast enhancement at 6 s (p ≤ 0.036. Vascular conspicuity was higher for TaCZ in 269 of 300 (89.7%) arterial and 269 of 300 (89.7%) venous vessel assessments, respectively (p ≤ 0.005), with substantial inter-reader reliability (κ = 0.61; p < 0.001) and strong positive monotonic correlation between conspicuity scores and contrast enhancement measurements (ρ = 0.828; p < 0.001). CONCLUSION TaCZ provides absolute and relative contrast advantages compared to Iopamidol for improved visualization of thoracic arteries and veins in a multiphase CT protocol. RELEVANCE STATEMENT The tantalum-oxide nanoparticle is an experimental intravenous CT contrast agent with superior cardiovascular and venous contrast capacity per injected elemental mass in an animal model, providing improved maximum contrast enhancement and prolonged contrast conspicuity. Further translational research on promising high-Z and nanoparticle contrast agents is warranted. KEY POINTS There have been no major advancements in intravenous CT contrast agents over decades. Iodinated CT contrast agents require optimal timing for angiography and phlebography. Tantalum-oxide demonstrated increased CT attenuation per elemental mass compared to Iopamidol. Nanoparticle contrast agent design facilitates prolonged vascular conspicuity.
Collapse
Affiliation(s)
- Maurice M Heimer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Yuxin Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Sergio Grosu
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Nikki Okwelogu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Brian C Bales
- GE HealthCare Technology & Innovation Center, Niskayuna, NY, USA
| | - Dan E Meyer
- GE HealthCare Technology & Innovation Center, Niskayuna, NY, USA
| | - Benjamin M Yeh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| |
Collapse
|
3
|
Attia MF, Marasco RN, Kwain S, Foxx C, Whitehead DC, Kabanov A, Lee YZ. Toward the Clinical Translation of Safe Intravenous Long Circulating Iodinated Lipid Nanoemulsion Contrast Agents for CT Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610138. [PMID: 39257794 PMCID: PMC11383978 DOI: 10.1101/2024.08.28.610138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Current clinical small molecule x-ray CT agents are effective but pose risks such as nephrotoxicity, short blood circulation time, limiting scan durations, potential thyroid impact, and immune responses. These challenges drive the development of kidney-safe x-ray nanoparticle (NP)-based contrast agents (CAs), though translation to clinical practice is hindered by chemical complexities and potential toxicity. We have engineered an intravenous, injectable, and safe blood pool NP-based CT CAs at a clinical-equivalent dose of ∼300 mgI/kg (∼2 mL/kg), ideal for vascular and hepatic imaging which are limited by clinical agents. Our iodinated lipid nanodroplet emulsions (ILNEs) contrast agent offers high x-ray attenuation thus improved contrast enhancement, extended stability, and exceptional batch-to-batch consistency. It also boasts a straightforward and scalable manufacturing process with minimal protein interaction, prolonged blood residency (∼4h), and hepatic clearance within 3 days, avoiding nephrotoxicity. Studies in vitro, in mice, and 16.6kg porcine animal model studies confirm its safety, cytocompatibility, and absence of tissue damage. Blood, and thyroid-stimulating hormone (TSH) analyses, and kidney and liver function tests, also support further toxicity evaluations for clinical translation.
Collapse
|
4
|
Fu N, Li A, Zhang J, Zhang P, Zhang H, Yang S, Zhang J. Liposome-camouflaged iodinated mesoporous silica nanoparticles with high loading capacity, high hemodynamic stability, high biocompatibility and high radiopacity. Int J Pharm 2024; 650:123700. [PMID: 38086493 DOI: 10.1016/j.ijpharm.2023.123700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Due to their low osmolality and high tolerability, the highly water-soluble nonionic iodinated contrast agents, such as Ioversol (IV), are widely used as clinical agents for CT imaging. However, their clinical applications still are severely limited by the rapid renal excretion, serious adverse effects especially contrast-induced nephropathy and inefficient targetability. Various nanocarriers have demonstrated tremendous potential for achieving high imaging efficiency and low side effects. However, few nanoparticulate contrast agents can simultaneously integrate the desirable functions for imaging, including high loading capacity of iodine, high structure stability for systemic circulation, high biocompatibility and high radiopacity. Herein, we designed and prepared a kind of new radiopaque liposome-camouflaged iodinated mesoporous silica nanoparticles (OIV-MSNs@Liposomes) as contrast agents in CT imaging. Their composition, structure, morphology, biocompatibility and physicochemical properties as well as in vitro radiopacity were investigated in detail. The results indicated that OIV-MSNs@Liposomes can integrate their individual advantages of liposomes and MSNs, thus exhibiting great potential for use in the CT imaging. Considering the simple preparation process and readily available starting materials as well as enhanced biosafety and high performance in X-ray attenuation, the strategy reported here offers a versatile route to efficiently deliver highly water-soluble nonionic iodinated contrast agents for enhanced CT imaging, which are unattainable by traditional means.
Collapse
Affiliation(s)
- Naikuan Fu
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Ao Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jing Zhang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Peng Zhang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Hong Zhang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Shicheng Yang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Lindemann MC, Glänzer L, Roeth AA, Schmitz-Rode T, Slabu I. Towards Realistic 3D Models of Tumor Vascular Networks. Cancers (Basel) 2023; 15:5352. [PMID: 38001612 PMCID: PMC10670125 DOI: 10.3390/cancers15225352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
For reliable in silico or in vitro investigations in, for example, biosensing and drug delivery applications, accurate models of tumor vascular networks down to the capillary size are essential. Compared to images acquired with conventional medical imaging techniques, digitalized histological tumor slices have a higher resolution, enabling the delineation of capillaries. Volume rendering procedures can then be used to generate a 3D model. However, the preparation of such slices leads to misalignments in relative slice orientation between consecutive slices. Thus, image registration algorithms are necessary to re-align the slices. Here, we present an algorithm for the registration and reconstruction of a vascular network from histologic slices applied to 169 tumor slices. The registration includes two steps. First, consecutive images are incrementally pre-aligned using feature- and area-based transformations. Second, using the previous transformations, parallel registration for all images is enabled. Combining intensity- and color-based thresholds along with heuristic analysis, vascular structures are segmented. A 3D interpolation technique is used for volume rendering. This results in a 3D vascular network with approximately 400-450 vessels with diameters down to 25-30 µm. A delineation of vessel structures with close distance was limited in areas of high structural density. Improvement can be achieved by using images with higher resolution and or machine learning techniques.
Collapse
Affiliation(s)
- Max C. Lindemann
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany (L.G.); (T.S.-R.)
| | - Lukas Glänzer
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany (L.G.); (T.S.-R.)
| | - Anjali A. Roeth
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
- Department of Surgery, Maastricht University, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany (L.G.); (T.S.-R.)
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany (L.G.); (T.S.-R.)
| |
Collapse
|
6
|
Ochi T, Nishiofuku H, Kure T, Saito N, Taiji R, Marugami N, Tanaka T, Sakai H. Development of liposomal contrast agent with high iodine concentration and minimal effect on renal function. Biochem Biophys Rep 2023; 34:101473. [PMID: 37180756 PMCID: PMC10172707 DOI: 10.1016/j.bbrep.2023.101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose The use of contrast media is essential to achieve high accuracy in diagnostic imaging. Iodine contrast media, one of these contrast media, has nephrotoxicity as a side effect. Therefore, the development of iodine contrast media that can reduce nephrotoxicity is expected. Since liposomes are generally adjustable in size (100-300 nm) and are not filtered by the renal glomerulus, we hypothesized that iodine contrast media could be encapsulated in liposomes and administered to avoid the nephrotoxicity of iodine contrast media. The aim of this study is to develop an iomeprol-containing liposome (IPL) agent with high iodine concentration and to investigate the effect of intravenous administration of IPL on renal function in a rat model with chronic kidney injury. Materials and methods IPLs were prepared by encapsulating an iomeprol (400mgI/mL) solution in liposomes by a kneading method using a rotation-revolution mixer. Radiodensities of iomeprol and IPL were measured. IPL or iopamidol at normal dose (0.74 g I/kg) or high dose (3.7 g I/kg) was administered to healthy and 5/6-nephrectomized rats (n = 3-6). Serum creatinine (sCr) and histopathological change of tubular epithelial cells were evaluated after injection. Results The iodine concentration of IPL was 220.7 mgI/mL, equivalent to 55.2% of the iodine concentration of iomeprol. The CT values of IPL was 4731.6 ± 53.2 HU, 59.04% that of iomeprol. The ratios of change in sCr in 5/6-nephrectomized rats that received high-dose iopamidol were 0.73, which were significantly higher than that in 5/6-nephrectomized rats that received high-dose IPL (-0.03) (p = 0.006). Change in foamy degeneration of tubular epithelial cells was confirmed in 5/6-nephrectomized rats that received high-dose iopamidol than that in the sham control group and healthy rats that received normal dose iopamiron (p = 0.016, p = 0.032, respectively). Foamy degeneration of tubular epitherial cells was rarely observed in the IPL injection group. Conclusions We developed new liposomal contrast agents that have high iodine concentration and minimal effect on renal function.
Collapse
Affiliation(s)
- Tomoko Ochi
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Kashihara, Japan
| | - Hideyuki Nishiofuku
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Kashihara, Japan
- Corresponding author. Shijocho 840, Kashihara, Nara, Japan.
| | - Tomoko Kure
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| | - Natsuhiko Saito
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Kashihara, Japan
| | - Ryosuke Taiji
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Kashihara, Japan
| | - Nagaaki Marugami
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Kashihara, Japan
| | - Toshihiro Tanaka
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Kashihara, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| |
Collapse
|
7
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Sapino S, Chindamo G, Chirio D, Morel S, Peira E, Vercelli C, Gallarate M. Nanocarriers in Veterinary Medicine: A Challenge for Improving Osteosarcoma Conventional Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4501. [PMID: 36558354 PMCID: PMC9785518 DOI: 10.3390/nano12244501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
In recent years, several nanocarrier-based drug delivery systems, such as polymeric nanoparticles, solid lipid nanoparticles, metallic nanoparticles, liposomes, and others, have been explored to target and treat a wide variety of diseases. Their employment has brought many benefits, not only to human medicine but also to veterinary medicine, albeit at a slower rate. Soon, the use of nanocarriers could revolutionize the animal health sector, and many veterinary therapies will be more effective as a result. The purpose of this review is to offer an overview of the main applications of nanocarriers in the veterinary field, from supplements for animal health and reproduction to nanovaccines and nanotherapies. Among the major pathologies that can affect animals, special attention is given to canine osteosarcoma (OSA): a comparison with human OSA is provided and the main treatment options are reviewed emphasizing the benefits that nanocarriers could bring in the treatment of this widespread disease.
Collapse
Affiliation(s)
- Simona Sapino
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Giulia Chindamo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Daniela Chirio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Silvia Morel
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale A. Avogadro, 28100 Novara, Italy
| | - Elena Peira
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Cristina Vercelli
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, 10095 Grugliasco, Italy
| | - Marina Gallarate
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| |
Collapse
|
9
|
Attia MF, Akasov R, Elbaz NM, Owens TC, Curtis EC, Panda S, Santos-Oliveira R, Alexis F, Kievit FM, Whitehead DC. Radiopaque Iodosilane-Coated Lipid Hybrid Nanoparticle Contrast Agent for Dual-Modality Ultrasound and X-ray Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54389-54400. [PMID: 36449986 DOI: 10.1021/acsami.2c09104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here, we report the synthesis of robust hybrid iodinated silica-lipid nanoemulsions (HSLNEs) for use as a contrast agent for ultrasound and X-ray applications. We engineered iodinated silica nanoparticles (SNPs), lipid nanoemulsions, and a series of HSLNEs by a low-energy spontaneous nanoemulsification process. The formation of a silica shell requires sonication to hydrolyze and polymerize/condensate the iodomethyltrimethoxysilane at the oil/water interface of the nanoemulsion droplets. The resulting nanoemulsions (NEs) exhibited a homogeneous spherical morphology under transmission electron microscopy. The particles had diameters ranging from 20 to 120 nm with both negative and positive surface charges in the absence and presence of cetyltrimethylammonium bromide (CTAB), respectively. Unlike CTAB-coated nanoformulations, the CTAB-free NEs showed excellent biocompatibility in murine RAW macrophages and human U87-MG cell lines in vitro. The maximum tolerated dose assessment was evaluated to verify their safety profiles in vivo. In vitro X-ray and ultrasound imaging and in vivo computed tomography were used to monitor both iodinated SNPs and HSLNEs, validating their significant contrast-enhancing properties and suggesting their potential as dual-modality clinical agents in the future.
Collapse
Affiliation(s)
- Mohamed F Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Roman Akasov
- Federal Scientific Research Centre "Crystallography and Photonics" of RAS, 59 Leninsky Avenue, Moscow119333, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, Moscow119991, Russia
| | - Nancy M Elbaz
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina27599, United States
| | - Tyler C Owens
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Evan C Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68583-0900, United States
| | - Soham Panda
- Department of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Argonauta Nuclear Reactor Center, Rio de Janeiro21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro23070-200, Brazil
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito170901, Ecuador
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68583-0900, United States
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| |
Collapse
|
10
|
Vincenti S, Villa A, Crescenti D, Crippa E, Brunialti E, Shojaei-Ghahrizjani F, Rizzi N, Rebecchi M, Dei Cas M, Del Sole A, Paroni R, Mazzaferro V, Ciana P. Increased Sensitivity of Computed Tomography Scan for Neoplastic Tissues Using the Extracellular Vesicle Formulation of the Contrast Agent Iohexol. Pharmaceutics 2022; 14:2766. [PMID: 36559260 PMCID: PMC9786056 DOI: 10.3390/pharmaceutics14122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Computed tomography (CT) is a diagnostic medical imaging modality commonly used to detect disease and injury. Contrast agents containing iodine, such as iohexol, are frequently used in CT examinations to more clearly differentiate anatomic structures and to detect and characterize abnormalities, including tumors. However, these contrast agents do not have a specific tropism for cancer cells, so the ability to detect tumors is severely limited by the degree of vascularization of the tumor itself. Identifying delivery systems allowing enrichment of contrast agents at the tumor site would increase the sensitivity of detection of tumors and metastases, potentially in organs that are normally inaccessible to contrast agents, such as the CNS. Recent work from our laboratory has identified cancer patient-derived extracellular vesicles (PDEVs) as effective delivery vehicles for targeting diagnostic drugs to patients' tumors. Based on this premise, we explored the possibility of introducing iohexol into PDEVs for targeted delivery to neoplastic tissue. Here, we provide preclinical proof-of-principle for the tumor-targeting ability of iohexol-loaded PDEVs, which resulted in an impressive accumulation of the contrast agent selectively into the neoplastic tissue, significantly improving the ability of the contrast agent to delineate tumor boundaries.
Collapse
Affiliation(s)
- Simona Vincenti
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Alessandro Villa
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Daniela Crescenti
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Elisabetta Crippa
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Electra Brunialti
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | | | - Nicoletta Rizzi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Monica Rebecchi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Angelo Del Sole
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Vincenzo Mazzaferro
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS Foundation (INT), 20133 Milan, Italy
| | - Paolo Ciana
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
11
|
Mukherjee A, Bisht B, Dutta S, Paul MK. Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy. Acta Pharmacol Sin 2022; 43:2759-2776. [PMID: 35379933 PMCID: PMC9622806 DOI: 10.1038/s41401-022-00902-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Abstract
Three major approaches of cancer therapy can be enunciated as delivery of biotherapeutics, tumor image analysis, and immunotherapy. Liposomes, artificial fat bubbles, are long known for their capacity to encapsulate a diverse range of bioactive molecules and release the payload in a sustained, stimuli-responsive manner. They have already been widely explored as a delivery vehicle for therapeutic drugs as well as imaging agents. They are also extensively being used in cancer immunotherapy. On the other hand, exosomes are naturally occurring nanosized extracellular vesicles that serve an important role in cell-cell communication. Importantly, the exosomes also have proven their capability to carry an array of active pharmaceuticals and diagnostic molecules to the tumor cells. Exosomes, being enriched with tumor antigens, have numerous immunomodulatory effects. Much to our intrigue, in recent times, efforts have been directed toward developing smart, bioengineered, exosome-liposome hybrid nanovesicles, which are augmented by the benefits of both vesicular systems. This review attempts to summarize the contemporary developments in the use of exosome and liposome toward cancer diagnosis, therapy, as a vehicle for drug delivery, diagnostic carrier for tumor imaging, and cancer immunotherapy. We shall also briefly reflect upon the recent advancements of the exosome-liposome hybrids in cancer therapy. Finally, we put forward future directions for the use of exosome/liposome and/or hybrid nanocarriers for accurate diagnosis and personalized therapies for cancers.
Collapse
Affiliation(s)
| | - Bharti Bisht
- Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, 700156, India
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Zhang J, Liu W, Zhang P, Song Y, Ye Z, Fu H, Yang S, Qin Q, Guo Z, Zhang J. Polymers for Improved Delivery of Iodinated Contrast Agents. ACS Biomater Sci Eng 2021; 8:32-53. [PMID: 34851607 DOI: 10.1021/acsbiomaterials.1c01082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
X-ray computed tomography (CT), as one of the most widely used noninvasive imaging modalities, can provide three-dimensional anatomic details with high resolution, which plays a key role in disease diagnosis and treatment assessment. However, although they are the most prevalent and FDA-approved contrast agents, iodinated water-soluble molecules still face some challenges in clinical applications, such as fast clearance, serious adverse effects, nonspecific distribution, and low sensitivity. Because of their high biocompatibility, tunable designability, controllable biodegradation, facile synthesis, and modification capability, the polymers have demonstrated great potential for efficient delivery of iodinated contrast agents (ICAs). Herein, we comprehensively summarized the applications of multifunctional polymeric materials for ICA delivery in terms of increasing circulation time, decreasing nephrotoxicity, and improving the specificity and sensitivity of ICAs for CT imaging. We mainly focused on various iodinated polymers from the aspects of preparation, functionalization, and application in medical diagnosis. Future perspectives for achieving better imaging and clinical translation are also discussed to motivate new technologies and solutions.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Weiming Liu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China.,Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Yanqiu Song
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Zhanpeng Ye
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Han Fu
- Graduate School of Tianjin Medical University, Tianjin 300070, China
| | - Shicheng Yang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Qin Qin
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Zhigang Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
13
|
Zhang P, Ma X, Guo R, Ye Z, Fu H, Fu N, Guo Z, Zhang J, Zhang J. Organic Nanoplatforms for Iodinated Contrast Media in CT Imaging. Molecules 2021; 26:7063. [PMID: 34885645 PMCID: PMC8658861 DOI: 10.3390/molecules26237063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
X-ray computed tomography (CT) imaging can produce three-dimensional and high-resolution anatomical images without invasion, which is extremely useful for disease diagnosis in the clinic. However, its applications are still severely limited by the intrinsic drawbacks of contrast media (mainly iodinated water-soluble molecules), such as rapid clearance, serious toxicity, inefficient targetability and poor sensitivity. Due to their high biocompatibility, flexibility in preparation and modification and simplicity for drug loading, organic nanoparticles (NPs), including liposomes, nanoemulsions, micelles, polymersomes, dendrimers, polymer conjugates and polymeric particles, have demonstrated tremendous potential for use in the efficient delivery of iodinated contrast media (ICMs). Herein, we comprehensively summarized the strategies and applications of organic NPs, especially polymer-based NPs, for the delivery of ICMs in CT imaging. We mainly focused on the use of polymeric nanoplatforms to prolong circulation time, reduce toxicity and enhance the targetability of ICMs. The emergence of some new technologies, such as theragnostic NPs and multimodal imaging and their clinical translations, are also discussed.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Xinyu Ma
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Ruiwei Guo
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Zhanpeng Ye
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Han Fu
- Graduate School, Tianjin Medical University, Tianjin 300070, China;
| | - Naikuan Fu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Zhigang Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Jianhua Zhang
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| | - Jing Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| |
Collapse
|
14
|
Clark D, Badea C. Advances in micro-CT imaging of small animals. Phys Med 2021; 88:175-192. [PMID: 34284331 PMCID: PMC8447222 DOI: 10.1016/j.ejmp.2021.07.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Micron-scale computed tomography (micro-CT) imaging is a ubiquitous, cost-effective, and non-invasive three-dimensional imaging modality. We review recent developments and applications of micro-CT for preclinical research. METHODS Based on a comprehensive review of recent micro-CT literature, we summarize features of state-of-the-art hardware and ongoing challenges and promising research directions in the field. RESULTS Representative features of commercially available micro-CT scanners and some new applications for both in vivo and ex vivo imaging are described. New advancements include spectral scanning using dual-energy micro-CT based on energy-integrating detectors or a new generation of photon-counting x-ray detectors (PCDs). Beyond two-material discrimination, PCDs enable quantitative differentiation of intrinsic tissues from one or more extrinsic contrast agents. When these extrinsic contrast agents are incorporated into a nanoparticle platform (e.g. liposomes), novel micro-CT imaging applications are possible such as combined therapy and diagnostic imaging in the field of cancer theranostics. Another major area of research in micro-CT is in x-ray phase contrast (XPC) imaging. XPC imaging opens CT to many new imaging applications because phase changes are more sensitive to density variations in soft tissues than standard absorption imaging. We further review the impact of deep learning on micro-CT. We feature several recent works which have successfully applied deep learning to micro-CT data, and we outline several challenges specific to micro-CT. CONCLUSIONS All of these advancements establish micro-CT imaging at the forefront of preclinical research, able to provide anatomical, functional, and even molecular information while serving as a testbench for translational research.
Collapse
Affiliation(s)
- D.P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 27710
| | - C.T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
15
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
16
|
Nicolson F, Ali A, Kircher MF, Pal S. DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001669. [PMID: 33304747 PMCID: PMC7709992 DOI: 10.1002/advs.202001669] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/27/2020] [Indexed: 05/12/2023]
Abstract
In the last two decades, DNA has attracted significant attention toward the development of materials at the nanoscale for emerging applications due to the unparalleled versatility and programmability of DNA building blocks. DNA-based artificial nanomaterials can be broadly classified into two categories: DNA nanostructures (DNA-NSs) and DNA-functionalized nanoparticles (DNA-NPs). More importantly, their use in nanotheranostics, a field that combines diagnostics with therapy via drug or gene delivery in an all-in-one platform, has been applied extensively in recent years to provide personalized cancer treatments. Conveniently, the ease of attachment of both imaging and therapeutic moieties to DNA-NSs or DNA-NPs enables high biostability, biocompatibility, and drug loading capabilities, and as a consequence, has markedly catalyzed the rapid growth of this field. This review aims to provide an overview of the recent progress of DNA-NSs and DNA-NPs as theranostic agents, the use of DNA-NSs and DNA-NPs as gene and drug delivery platforms, and a perspective on their clinical translation in the realm of oncology.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | - Akbar Ali
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| | - Moritz F. Kircher
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
- Department of RadiologyBrigham and Women's Hospital & Harvard Medical SchoolBostonMA02215USA
| | - Suchetan Pal
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| |
Collapse
|
17
|
Carvalho SG, Araujo VHS, Dos Santos AM, Duarte JL, Silvestre ALP, Fonseca-Santos B, Villanova JCO, Gremião MPD, Chorilli M. Advances and challenges in nanocarriers and nanomedicines for veterinary application. Int J Pharm 2020; 580:119214. [PMID: 32165220 DOI: 10.1016/j.ijpharm.2020.119214] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 03/07/2020] [Indexed: 01/16/2023]
Abstract
To ensure success in the development and manufacturing of nanomedicines requires forces of an interdisciplinary team that combines medicine, engineering, chemistry, biology, material and pharmaceutical areas. Numerous researches in nanotechnology applied to human health are available in the literature. Althought, the lack of nanotechnology-based pharmaceuticals products for use exclusively in veterinary pharmacotherapy creates a potential area for the development of innovative products, as these animal health studies are still scarce when compared to studies in human pharmacotherapy. Nano-dosage forms can ensure safer and more effective pharmacotherapy for animals and can more be safer for the consumers of livestock products, once they can offer higher selectivity and smaller toxicity associated with lower doses of the drugs. In addition, the development and production of nanomedicines may consolidate the presence of pharmaceutical laboratories in the global market and can generate greater profit in a competitive business environment. To contribute to this scenario, this article provides a review of the main nanocarriers used in nanomedicines for veterinary use, with emphasis on liposomes, nanoemulsions, micelles, lipid nanoparticles, polymeric nanoparticles, mesoporous silica nanoparticles, metallic nanoparticles and dendrimers, and the state of the art of application of these nanocarriers in drug delivery systems to animal use. Finnaly, the major challenges involved in research, scale-up studies, large-scale manufacture, analytical methods for quality assessment, and regulatory aspects of nanomedicines were discussed.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Aline Martins Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Jonatas Lobato Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, SP, Brazil
| | - Janaina Cecília Oliveira Villanova
- Laboratory of Pharmaceutical Production, Departament of Pharmacy and Nutrition - Federal University of Espirito Santo (UFES), 29500-000 Alegre, ES, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| |
Collapse
|
18
|
Vail DM, LeBlanc AK, Jeraj R. Advanced Cancer Imaging Applied in the Comparative Setting. Front Oncol 2020; 10:84. [PMID: 32117739 PMCID: PMC7019008 DOI: 10.3389/fonc.2020.00084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/16/2020] [Indexed: 11/13/2022] Open
Abstract
The potential for companion (pet) species with spontaneously arising tumors to act as surrogates for preclinical development of advanced cancer imaging technologies has become more apparent in the last decade. The utility of the companion model specifically centers around issues related to body size (including spatial target/normal anatomic characteristics), physical size and spatial distribution of metastasis, tumor heterogeneity, the presence of an intact syngeneic immune system and a syngeneic tumor microenvironment shaped by the natural evolution of the cancer. Companion species size allows the use of similar equipment, hardware setup, software, and scan protocols which provide the opportunity for standardization and harmonization of imaging operating procedures and quality assurance across imaging protocols, imaging hardware, and the imaged species. Murine models generally do not replicate the size and spatial distribution of human metastatic cancer and these factors strongly influence image resolution and dosimetry. The following review will discuss several aspects of comparative cancer imaging in more detail while providing several illustrative examples of investigational approaches performed or currently under exploration at our institutions. Topics addressed include a discussion on interested consortia; image quality assurance and harmonization; image-based biomarker development and validation; contrast agent and radionuclide tracer development; advanced imaging to assess and predict response to cytotoxic and immunomodulatory anticancer agents; imaging of the tumor microenvironment; development of novel theranostic approaches; cell trafficking assessment via non-invasive imaging; and intraoperative imaging to inform surgical oncology decision making. Taken in totality, these comparative opportunities predict that safety, diagnostic and efficacy data generated in companion species with naturally developing and progressing cancers would better recapitulate the human cancer condition than that of artificial models in small rodent systems and ultimately accelerate the integration of novel imaging technologies into clinical practice. It is our hope that the examples presented should serve to provide those involved in cancer investigations who are unfamiliar with available comparative methodologies an understanding of the potential utility of this approach.
Collapse
Affiliation(s)
- David M Vail
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Robert Jeraj
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
19
|
Gao C, Zhang Y, Zhang Y, Li S, Yang X, Chen Y, Fu J, Wang Y, Yang X. cRGD-modified and disulfide bond-crosslinked polymer nanoparticles based on iopamidol as a tumor-targeted CT contrast agent. Polym Chem 2020. [DOI: 10.1039/c9py01418g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The disulfide bond-crosslinked polymer nanoparticles based on iopamidol were prepared and then surface-modified with cRGD peptide through the linkages of PEG to acquire a CT contrast agent for breast cancer-targeted imaging.
Collapse
Affiliation(s)
- Chunhui Gao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Yinghua Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Yan Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Shaoyong Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xinlin Yang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University
- Tianjin 300071
- China
| | - Yan Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Jingwei Fu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Yinsong Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xiaoying Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| |
Collapse
|
20
|
Chen Z, Li Y, Airan R, Han Z, Xu J, Chan KWY, Xu Y, Bulte JWM, van Zijl PCM, McMahon MT, Zhou S, Liu G. CT and CEST MRI bimodal imaging of the intratumoral distribution of iodinated liposomes. Quant Imaging Med Surg 2019; 9:1579-1591. [PMID: 31667143 DOI: 10.21037/qims.2019.06.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background To develop liposomes loaded with iodinated agents as nanosized CT/MRI bimodal contrast agents for monitoring liposome-mediated drug delivery. Methods Rhodamine-labeled iodixanol (VisipaqueTM)-loaded liposomes (IX-lipo) were prepared and tested for their properties as a diamagnetic CEST contrast agent in vitro. Mice bearing subcutaneous CT26 colon tumors were injected i.v. with 1 g/kg (535 mg iodine/kg) IX-lipo, and in vivo CT and CEST MR images were acquired on day 3. CT and CEST MR images were also acquired for tumor-bearing mice co-injected with IX-lipo and tumor necrosis factor (TNF-α). Results In addition to CT contrast, IX-lipo exhibited a strong CEST contrast similar to its non-liposomal form, with a detectability of ~2 nM per liposome. Both CT imaging and CEST MRI showed that i.v. injection of IX-lipo resulted in a rim enhancement of CT26 tumors with a heterogeneous central distribution. In contrast, co-injection of TNF-α caused a significantly augmented CT/MRI contrast in the tumor center. The intratumoral biodistribution of IX-lipo correlated well to the rhodamine patterns observed with fluorescence microscopy. Conclusions We have developed a CT/MRI bimodal imaging approach for monitoring the delivery and biodistribution of liposomes by loading them with the clinically approved X-ray/CT contrast agent iodixanol. Our approach may be easily adapted for other-FDA approved iodinated agents and thus has great translational potential.
Collapse
Affiliation(s)
- Zelong Chen
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuguo Li
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Raag Airan
- Department of Radiology, Stanford University Medical Center, Stanford, CA, USA
| | - Zheng Han
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Tao S, Rajendran K, McCollough CH, Leng S. Feasibility of multi-contrast imaging on dual-source photon counting detector (PCD) CT: An initial phantom study. Med Phys 2019; 46:4105-4115. [PMID: 31215659 DOI: 10.1002/mp.13668] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Photon-counting-detector-computed tomography (PCD-CT) allows separation of multiple, simultaneously imaged contrast agents, such as iodine (I), gadolinium (Gd), and bismuth (Bi). However, PCDs suffer from several technical limitations such as charge sharing, K-edge escape, and pulse pile-up, which compromise spectral separation of multi-energy data and degrade multi-contrast imaging performance. The purpose of this work was to determine the performance of a dual-source (DS) PCD-CT relative to a single-source (SS) PCD-CT for the separation of simultaneously imaged I, Gd, and Bi contrast agents. METHODS Phantom experiments were performed using a research whole-body PCD-CT and head/abdomen-sized phantoms containing vials of different I, Gd, Bi concentrations. To emulate a DS-PCD-CT, the phantoms were scanned twice on the SS-PCD-CT using different tube potentials for each scan. A tube potential of 80 kV (energy thresholds = 25/50 keV) was used for low-energy tube, while the high-energy tube used Sn140 kV (Sn indicates tin filter) and thresholds of 25/90 keV. The same phantoms were scanned also on the SS-PCD-CT using the chess acquisition mode. In chess mode, the 4 × 4 subpixels within a macro detector pixel are split into two sets based on a chess-board pattern. With each subpixel set having two energy thresholds, chess mode allows four energy-bin data sets, which permits simultaneous multi-contrast imaging. Because of this design, only 50% area of each detector pixel is configured to receive photons of a pre-defined threshold, leading to 50% dose utilization efficiency. To compensate for this dose inefficiency, the radiation dose for this scan was doubled compared to DS-PCD-CT. A 140 kV tube potential and thresholds = 25/50/75/90 keV were used. These settings were determined based on the K-edges of Gd, and Bi, and were found to yield good differentiation of I/Gd/Bi based on phantom experiments and other literature. The energy-bin images obtained from each scan (scan pair) were used to generate I-, Gd-, Bi-specific image via material decomposition. Root-mean-square-error (RMSE) between the known and measured concentrations was calculated for each scenario. A 20-cm water cylinder phantom was scanned on both systems, which was used for evaluating the magnitude of noise, and noise power spectra (NPS) of I/Gd/Bi-specific images. RESULTS Phantom results showed that DS-PCD-CT reduced noise in material-specific images for both head and body phantoms compared to SS-PCD-CT. The noise level of SS-PCD was reduced from 2.55 to 0.90 mg/mL (I), 1.97 to 0.78 mg/mL (Gd), and 0.85 to 0.74 mg/mL (Bi) using DS-PCD. NPS analysis showed that the noise texture of images acquired on both systems is similar. For the body phantom, the RMSE for SS-PCD-CT was reduced relative to DS-PCD-CT from 10.52 to 2.76 mg/mL (I), 7.90 to 2.01 mg/mL (Gd), and 1.91 to 1.16 mg/mL (Bi). A similar trend was observed for the head phantom: RMSE reduced from 2.59 (SS-PCD) to 0.72 (DS-PCD) mg/mL (I), 2.02 to 0.58 mg/mL (Gd), and 0.85 to 0.57 mg/mL (Bi). CONCLUSION We demonstrate the feasibility of performing simultaneous imaging of I, Gd, and Bi materials on DS-PCD-CT. Under the condition without cross scattering, DS-PCD reduced the RMSE for quantification of material concentration in relative to a SS-PCD-CT system using chess mode.
Collapse
Affiliation(s)
- Shengzhen Tao
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Leng S, Bruesewitz M, Tao S, Rajendran K, Halaweish AF, Campeau NG, Fletcher JG, McCollough CH. Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology. Radiographics 2019; 39:729-743. [PMID: 31059394 PMCID: PMC6542627 DOI: 10.1148/rg.2019180115] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 01/01/2023]
Abstract
Photon-counting detector (PCD) CT is an emerging technology that has shown tremendous progress in the last decade. Various types of PCD CT systems have been developed to investigate the benefits of this technology, which include reduced electronic noise, increased contrast-to-noise ratio with iodinated contrast material and radiation dose efficiency, reduced beam-hardening and metal artifacts, extremely high spatial resolution (33 line pairs per centimeter), simultaneous multienergy data acquisition, and the ability to image with and differentiate among multiple CT contrast agents. PCD technology is described and compared with conventional CT detector technology. With the use of a whole-body research PCD CT system as an example, PCD technology and its use for in vivo high-spatial-resolution multienergy CT imaging is discussed. The potential clinical applications, diagnostic benefits, and challenges associated with this technology are then discussed, and examples with phantom, animal, and patient studies are provided. ©RSNA, 2019.
Collapse
Affiliation(s)
- Shuai Leng
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Michael Bruesewitz
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Shengzhen Tao
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Kishore Rajendran
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Ahmed F. Halaweish
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Norbert G. Campeau
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Joel G. Fletcher
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Cynthia H. McCollough
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| |
Collapse
|
23
|
Xia Y, Xu C, Zhang X, Ning P, Wang Z, Tian J, Chen X. Liposome-based probes for molecular imaging: from basic research to the bedside. NANOSCALE 2019; 11:5822-5838. [PMID: 30888379 DOI: 10.1039/c9nr00207c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Molecular imaging is very important in disease diagnosis and prognosis. Liposomes are excellent carriers for different types of molecular imaging probes. In this work, we summarize current developments in liposome-based probes used for molecular imaging and their applications in image-guided drug delivery and tumour surgery, including computed tomography (CT), ultrasound imaging (USI), magnetic resonance imaging (MRI), positron emission tomography (PET), fluorescence imaging (FLI) and photoacoustic imaging (PAI). We also summarized liposome-based multimodal imaging probes and new targeting strategies for liposomes. This work will offer guidance for the design of liposome-based imaging probes for future clinical applications.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Badea CT, Clark DP, Holbrook M, Srivastava M, Mowery Y, Ghaghada KB. Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors. Phys Med Biol 2019; 64:065007. [PMID: 30708357 PMCID: PMC6607440 DOI: 10.1088/1361-6560/ab03e2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advances in computed tomography (CT) hardware have propelled the development of novel CT contrast agents. In particular, the spectral capabilities of x-ray CT can facilitate simultaneous imaging of multiple contrast agents. This approach is particularly useful for functional imaging of solid tumors by simultaneous visualization of multiple targets or architectural features that govern cancer development and progression. Nanoparticles are a promising platform for contrast agent development. While several novel imaging moieties based on high atomic number elements are being explored, iodine (I) and gadolinium (Gd) are particularly attractive because of their existing approval for clinical use. In this work, we investigate the in vivo discrimination of I and Gd nanoparticle contrast agents using both dual energy micro-CT with energy integrating detectors (DE-EID) and photon counting detector (PCD)-based spectral micro-CT. Simulations and phantom experiments were performed using varying concentrations of I and Gd to determine the imaging performance with optimized acquisition parameters. Quantitative spectral micro-CT imaging using liposomal-iodine (Lip-I) and liposomal-Gd (Lip-Gd) nanoparticle contrast agents was performed in sarcoma bearing mice for anatomical and functional imaging of tumor vasculature. Iterative reconstruction provided high sensitivity to detect and discriminate relatively low I and Gd concentrations. According to the Rose criterion applied to the experimental results, the detectability limits for I and Gd were approximately 2.5 mg ml-1 for both DE-EID CT and PCD micro-CT, even if the radiation dose was approximately 3.8 times lower with PCD micro-CT. The material concentration maps confirmed expected biodistributions of contrast agents in the blood, liver, spleen and kidneys. The PCD provided lower background signal and better simultaneous visualization of tumor vasculature and intratumoral distribution patterns of nanoparticle contrast agent compared to DE-EID decompositions. Preclinical spectral CT systems such as this could be useful for functional characterization of solid tumors, simultaneous quantitative imaging of multiple targets and for identifying clinically-relevant applications that benefit from the use of spectral imaging. Additionally, it could aid in the development nanoparticles that show promise in the developing field of cancer theranostics (therapy and diagnostics) by measuring vascular tumor biomarkers such as fractional blood volume and the delivery of liposomal chemotherapeutics.
Collapse
Affiliation(s)
- C T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University, Durham, NC 27710, United States of America.,http://civm.duhs.duke.edu/.,Author to whom any correspondence should be addressed
| | - D P Clark
- Department of Radiology, Center for In Vivo Microscopy, Duke University, Durham, NC 27710, United States of America
| | - M Holbrook
- Department of Radiology, Center for In Vivo Microscopy, Duke University, Durham, NC 27710, United States of America
| | - M Srivastava
- Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX 77030, United States of America
| | - Y Mowery
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States of America
| | - K B Ghaghada
- Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX 77030, United States of America
| |
Collapse
|
25
|
Hainfeld JF, Ridwan SM, Stanishevskiy Y, Smilowitz NR, Davis J, Smilowitz HM. Small, Long Blood Half-Life Iodine Nanoparticle for Vascular and Tumor Imaging. Sci Rep 2018; 8:13803. [PMID: 30218059 PMCID: PMC6138673 DOI: 10.1038/s41598-018-31940-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022] Open
Abstract
Standard clinical X-ray contrast agents are small iodine-containing molecules that are rapidly cleared by the kidneys and provide robust imaging for only a few seconds, thereby limiting more extensive vascular and tissue biodistribution imaging as well as optimal tumor uptake. They are also not generally useful for preclinical microCT imaging where longer scan times are required for high resolution image acquisition. We here describe a new iodine nanoparticle contrast agent that has a unique combination of properties: 20 nm hydrodynamic diameter, covalent PEG coating, 40 hour blood half-life, 50% liver clearance after six months, accumulation in tumors, and well-tolerated to at least 4 g iodine/kg body weight after intravenous administration in mice. These characteristics are unique among the other iodine nanoparticles that have been previously reported and provide extended-time high contrast vascular imaging and tumor loading. As such, it is useful for preclinical MicroCT animal studies. Potential human applications might include X-ray radiation dose enhancement for cancer therapy and vascular imaging for life-threatening situations where high levels of contrast are needed for extended periods of time.
Collapse
Affiliation(s)
- James F Hainfeld
- Nanoprobes, Inc., 95 Horseblock Rd. Unit 1, Yaphank, NY, 11980, USA.
| | - Sharif M Ridwan
- University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Ave., Farmington, CT, 06030, USA
| | | | - Nathaniel R Smilowitz
- New York University School of Medicine, Division of Cardiology, Department of Medicine 550 First Avenue, HCC-14 Catheterization Laboratory New York, New York, NY, 10016, USA
| | - James Davis
- Stony Brook University Hospital, Hospital Level 2, Rm 755, Stony Brook, NY, 11794-8691, USA
| | - Henry M Smilowitz
- University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Ave., Farmington, CT, 06030, USA
| |
Collapse
|
26
|
Saeedi M, Vahidi O, Goodarzi V, Saeb MR, Izadi L, Mozafari M. A new prospect in magnetic nanoparticle-based cancer therapy: Taking credit from mathematical tissue-mimicking phantom brain models. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:2405-2414. [PMID: 28764975 DOI: 10.1016/j.nano.2017.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/05/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022]
Abstract
Distribution patterns/performance of magnetic nanoparticles (MNPs) was visualized by computer simulation and experimental validation on agarose gel tissue-mimicking phantom (AGTMP) models. The geometry of a complex three-dimensional mathematical phantom model of a cancer tumor was examined by tomography imaging. The capability of mathematical model to predict distribution patterns/performance in AGTMP model was captured. The temperature profile vs. hyperthermia duration was obtained by solving bio-heat equations for four different MNPs distribution patterns and correlated with cell death rate. The outcomes indicated that bio-heat model was able to predict temperature profile throughout the tissue model with a reasonable precision, to be applied for complex tissue geometries. The simulation results on the cancer tumor model shed light on the effectiveness of the studied parameters.
Collapse
Affiliation(s)
- Mostafa Saeedi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Omid Vahidi
- School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Leila Izadi
- School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
27
|
Kim J, Chhour P, Hsu J, Litt HI, Ferrari VA, Popovtzer R, Cormode DP. Use of Nanoparticle Contrast Agents for Cell Tracking with Computed Tomography. Bioconjug Chem 2017; 28:1581-1597. [PMID: 28485976 PMCID: PMC5481820 DOI: 10.1021/acs.bioconjchem.7b00194] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Efforts
to develop novel cell-based therapies originated with the
first bone marrow transplant on a leukemia patient in 1956. Preclinical
and clinical examples of cell-based treatment strategies have shown
promising results across many disciplines in medicine, with recent
advances in immune cell therapies for cancer producing remarkable
response rates, even in patients with multiple treatment failures.
However, cell-based therapies suffer from inconsistent outcomes, motivating
the search for tools that allow monitoring of cell delivery and behavior
in vivo. Noninvasive cell imaging techniques, also known as cell tracking,
have been developed to address this issue. These tools can allow real-time,
quantitative, and long-term monitoring of transplanted cells in the
recipient, providing insight on cell migration, distribution, viability,
differentiation, and fate, all of which play crucial roles in treatment
efficacy. Understanding these parameters allows the optimization of
cell choice, delivery route, and dosage for therapy and advances cell-based
therapy for specific clinical uses. To date, most cell tracking work
has centered on imaging modalities such as MRI, radionuclide imaging,
and optical imaging. However, X-ray computed tomography (CT) is an
emerging method for cell tracking that has several strengths such
as high spatial and temporal resolution, and excellent quantitative
capabilities. The advantages of CT for cell tracking are enhanced
by its wide availability and cost effectiveness, allowing CT to become
one of the most popular clinical imaging modalities and a key asset
in disease diagnosis. In this review, we will discuss recent advances
in cell tracking methods using X-ray CT in various applications, in
addition to predictions on how the field will progress.
Collapse
Affiliation(s)
| | | | | | | | | | - Rachela Popovtzer
- Department of Engineering, Bar-Ilan University , Ramat Gan, 5290002, Israel
| | | |
Collapse
|
28
|
Meng B, Cong W, Xi Y, De Man B, Yang J, Wang G. Model and reconstruction of a K-edge contrast agent distribution with an X-ray photon-counting detector. OPTICS EXPRESS 2017; 25:9378-9392. [PMID: 28437900 PMCID: PMC5462072 DOI: 10.1364/oe.25.009378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Contrast-enhanced computed tomography (CECT) helps enhance the visibility for tumor imaging. When a high-Z contrast agent interacts with X-rays across its K-edge, X-ray photoelectric absorption would experience a sudden increment, resulting in a significant difference of the X-ray transmission intensity between the left and right energy windows of the K-edge. Using photon-counting detectors, the X-ray intensity data in the left and right windows of the K-edge can be measured simultaneously. The differential information of the two kinds of intensity data reflects the contrast-agent concentration distribution. K-edge differences between various matters allow opportunities for the identification of contrast agents in biomedical applications. In this paper, a general radon transform is established to link the contrast-agent concentration to X-ray intensity measurement data. An iterative algorithm is proposed to reconstruct a contrast-agent distribution and tissue attenuation background simultaneously. Comprehensive numerical simulations are performed to demonstrate the merits of the proposed method over the existing K-edge imaging methods. Our results show that the proposed method accurately quantifies a distribution of a contrast agent, optimizing the contrast-to-noise ratio at a high dose efficiency.
Collapse
Affiliation(s)
- Bo Meng
- Beijing Institute of Technology, Beijing 100081,
China
- Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180,
USA
| | - Wenxiang Cong
- Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180,
USA
| | - Yan Xi
- Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180,
USA
| | | | - Jian Yang
- Beijing Institute of Technology, Beijing 100081,
China
| | - Ge Wang
- Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180,
USA
| |
Collapse
|
29
|
Ghaghada KB, Starosolski ZA, Lakoma A, Kaffes C, Agarwal S, Athreya KK, Shohet J, Kim E, Annapragada A. Heterogeneous Uptake of Nanoparticles in Mouse Models of Pediatric High-Risk Neuroblastoma. PLoS One 2016; 11:e0165877. [PMID: 27861510 PMCID: PMC5115667 DOI: 10.1371/journal.pone.0165877] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022] Open
Abstract
Liposomal chemotherapeutics are exemplified by DOXIL® are commonly used in adult cancers. While these agents exhibit improved safety profile compared to their free drug counterparts, their treatment response rates have been ~ 20%, often attributed to the heterogeneous intratumoral uptake and distribution of liposomal nanoparticles. Non-invasive and quantitative monitoring of the uptake and distribution of liposomal nanoparticles in solid tumors could allow for patient stratification and personalized cancer nanomedicine. In this study, the variability of liposomal nanoparticle intratumoral distribution and uptake in orthotopic models of pediatric neuroblastoma was investigated using a liposomal nanoprobe visualized by high-resolution computed tomography (CT). Two human neuroblastoma cell lines (NGP: a MYCN-amplified line, and SH-SY5Y a MYCN non-amplified line) were implanted in the renal capsule of nude mice to establish the model. Intratumoral nanoparticle uptake was measured at tumor ages 1, 2, 3 and 4 weeks post implantation. The locations of uptake within the tumor were mapped in the 3-dimensional reconstructed images. Total uptake was measured by integration of the x-ray absorption signal over the intratumoral uptake locations. Both tumor models showed significant variation in nanoparticle uptake as the tumors aged. Observation of the uptake patterns suggested that the nanoparticle uptake was dominated by vascular leak at the surface/periphery of the tumor, and localized, heterogeneous vascular leak in the interior of the tumor. Slow growing SH-SY5Y tumors demonstrated uptake that correlated directly with the tumor volume. Faster growing NGP tumor uptake did not correlate with any tumor geometric parameters, including tumor volume, tumor surface area, and R30 and R50, measures of uptake localized to the interior of the tumor. However, uptake for both SH-SY5Y and NGP tumors correlated almost perfectly with the leak volume, as measured by CT. These results suggest that the uptake of nanoparticles is heterogeneous and not governed by tumor geometry. An imaging nanoprobe remains the best measure of nanoparticle uptake in these tumor models.
Collapse
Affiliation(s)
- Ketan B. Ghaghada
- Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Zbigniew A. Starosolski
- Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Anna Lakoma
- Michael E. DeBakey, Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Caterina Kaffes
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Saurabh Agarwal
- Department of Pediatrics, Section of Hematology-Oncology and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Khannan K. Athreya
- University of Texas Medical School at Houston, The University of Texas Health Sciences Center at Houston, Houston, Texas, United States of America
| | - Jason Shohet
- Department of Pediatrics, Section of Hematology-Oncology and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Eugene Kim
- Michael E. DeBakey, Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ananth Annapragada
- Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
- Texas Children's Cancer Center, Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|