1
|
Zhou G, Zhou Q, Li R, Sheng S, Gao Q, Zhou D, Bai L, Geng Z, Hu Y, Zhang H, Chen X, Wang J, Jing Y, Xu K, Liu H, Su J. Synthetically Engineered Bacterial Extracellular Vesicles and IL-4-Encapsulated Hydrogels Sequentially Promote Osteoporotic Fracture Repair. ACS NANO 2025; 19:16064-16083. [PMID: 40237831 DOI: 10.1021/acsnano.5c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Osteoporosis (OP) is a systemic disease characterized by decreased bone density and quality, leading to fragile bones and osteoporotic fractures (OPF). Conventional treatments for OPF often exhibit limited therapeutic efficacy and significant side effects. Synthetic biology-based bacterial extracellular vesicles (BEVs) offer a safe and effective alternative for OPF treatment. Here, we constructed bioengineered BEVs loaded with pBMP-2-VEGF (BEVs-BP) and encapsulated them together with IL-4 in GelMA hydrogels to form IL-4/BEVs-BP@GelMA. Initially, IL-4 alleviated chronic inflammation by modulating immune cells, while BEVs-BP subsequently enhanced osteogenesis and vascularization by upregulating BMP-2 and VEGF expression. In vitro, IL-4/BEVs-BP@GelMA polarized M1 macrophages toward the M2 phenotype, enhanced osteogenesis, and increased angiogenesis. Moreover, BEVs-BP effectively promoted the maturation and mineralization of bone organoids in vivo. Finally, IL-4/BEVs-BP@GelMA successfully accelerated osteoporotic fracture repair in mice. In summary, we developed an easy-to-build and powerful bone repair biomaterial, IL-4/BEVs-BP@GelMA, which offers a therapeutic strategy for osteoporotic fracture management.
Collapse
Affiliation(s)
- Guangyin Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Qirong Zhou
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
2
|
Chandran M, Akesson KE, Javaid MK, Harvey N, Blank RD, Brandi ML, Chevalley T, Cinelli P, Cooper C, Lems W, Lyritis GP, Makras P, Paccou J, Pierroz DD, Sosa M, Thomas T, Silverman S. Impact of osteoporosis and osteoporosis medications on fracture healing: a narrative review. Osteoporos Int 2024; 35:1337-1358. [PMID: 38587674 PMCID: PMC11282157 DOI: 10.1007/s00198-024-07059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Antiresorptive medications do not negatively affect fracture healing in humans. Teriparatide may decrease time to fracture healing. Romosozumab has not shown a beneficial effect on human fracture healing. BACKGROUND Fracture healing is a complex process. Uncertainty exists over the influence of osteoporosis and the medications used to treat it on fracture healing. METHODS Narrative review authored by the members of the Fracture Working Group of the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF), on behalf of the IOF and the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT). RESULTS Fracture healing is a multistep process. Most fractures heal through a combination of intramembranous and endochondral ossification. Radiographic imaging is important for evaluating fracture healing and for detecting delayed or non-union. The presence of callus formation, bridging trabeculae, and a decrease in the size of the fracture line over time are indicative of healing. Imaging must be combined with clinical parameters and patient-reported outcomes. Animal data support a negative effect of osteoporosis on fracture healing; however, clinical data do not appear to corroborate with this. Evidence does not support a delay in the initiation of antiresorptive therapy following acute fragility fractures. There is no reason for suspension of osteoporosis medication at the time of fracture if the person is already on treatment. Teriparatide treatment may shorten fracture healing time at certain sites such as distal radius; however, it does not prevent non-union or influence union rate. The positive effect on fracture healing that romosozumab has demonstrated in animals has not been observed in humans. CONCLUSION Overall, there appears to be no deleterious effect of osteoporosis medications on fracture healing. The benefit of treating osteoporosis and the urgent necessity to mitigate imminent refracture risk after a fracture should be given prime consideration. It is imperative that new radiological and biological markers of fracture healing be identified. It is also important to synthesize clinical and basic science methodologies to assess fracture healing, so that a convergence of the two frameworks can be achieved.
Collapse
Affiliation(s)
- M Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, DUKE NUS Medical School, Singapore, Singapore.
| | - K E Akesson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - M K Javaid
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - N Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - R D Blank
- Garvan Institute of Medical Research, Medical College of Wisconsin, Darlinghurst, NSW, Australia
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - M L Brandi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Largo Palagi 1, Florence, Italy
| | - T Chevalley
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - P Cinelli
- Department of Trauma Surgery, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - C Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - W Lems
- Department of Rheumatology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - G P Lyritis
- Hellenic Osteoporosis Foundation, Athens, Greece
| | - P Makras
- Department of Medical Research, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - J Paccou
- Department of Rheumatology, MABlab ULR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| | - D D Pierroz
- International Osteoporosis Foundation, Nyon, Switzerland
| | - M Sosa
- University of Las Palmas de Gran Canaria, Investigation Group on Osteoporosis and Mineral Metabolism, Canary Islands, Spain
| | - T Thomas
- Department of Rheumatology, North Hospital, CHU Saint-Etienne and INSERM U1059, University of Lyon-University Jean Monnet, Saint‑Etienne, France
| | - S Silverman
- Cedars-Sinai Medical Center and Geffen School of Medicine UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Okuyama K, Inage K, Kim G, Mukaihata T, Tajiri I, Shiga Y, Inoue M, Eguchi Y, Suzuki-Narita M, Otagiri T, Tsuchiya R, Hishiya T, Arai T, Toshi N, Tokeshi S, Tashiro S, Ohyama S, Suzuki N, Furuya T, Maki S, Nakamura J, Hagiwara S, Kawarai Y, Aoki Y, Kotani T, Koda M, Takahashi H, Akazawa T, Ohtori S, Orita S. Bone union-promoting effect of romosozumab in an ovariectomized rat posterolateral lumbar fusion model. J Orthop Res 2024; 42:1831-1840. [PMID: 38567415 DOI: 10.1002/jor.25834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
Spinal fixation surgery has been increasingly performed in patients with osteoporosis. Romosozumab, a drug that was introduced in Japan recently, is known to possibly promote bone healing. However, few studies have reported the therapeutic effects of romosozumab in clinical practice in Japan. Therefore, here, we investigated the effects of romosozumab dosage on bone fusion promotion using an ovariectomized rat spinal fusion model. Eight-week-old female Sprague-Dawley rats were matched by body weight and divided into three groups: 1.0 romosozumab (R) group (Evenity®, 25 mg/kg), 1/10R group (Evenity®, 2.5 mg/kg), and control (C) group (saline). Subcutaneous injections were administered twice a week for 8 weeks postoperatively. Computed tomography scans were performed every 2 weeks from the time of surgery till 8 weeks postoperatively. The mean fusion rates in terms of volume were significantly higher in the R groups [1/10R, 1.0R] than in the C group from 4 weeks postoperatively. The rate of increase was significantly higher in the 1.0R group from 4 weeks postoperatively and in the 1/10R group from 6 weeks postoperatively, than in the C group. The proportion of trabecular bone area was approximately 1.5 times higher in the R groups than in the C group. No significant differences were observed between the R groups. Our results suggest that romosozumab stimulates bone growth at the graft site, and similar effects were achieved at 1/10 of the standard dosage.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Geundong Kim
- Department of Orthopaedic Surgery, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Tomohito Mukaihata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ikuko Tajiri
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Inoue
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yawara Eguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyako Suzuki-Narita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuma Otagiri
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryuto Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahisa Hishiya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahito Arai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriyasu Toshi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Soichiro Tokeshi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Susumu Tashiro
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuhei Ohyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noritaka Suzuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeo Furuya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Maki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeo Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuuya Kawarai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuchika Aoki
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Masao Koda
- Department of Orthopedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Takahashi
- Department of Orthopedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Tsutomu Akazawa
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki City, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Ling S, Xu T, Sun J, Yan C, Lv B, Wang H, Zhao H, Huang K. Expression of lncRNA MALAT1 through miR-144-3p in Osteoporotic Tibial Fracture Rats and Its Effect on Osteogenic Differentiation of BMSC under Traction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2590055. [PMID: 35836824 PMCID: PMC9276476 DOI: 10.1155/2022/2590055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/28/2022] [Indexed: 12/31/2022]
Abstract
Objective To investigate the expression of lncRNA MALAT1 and miR-144-3p in osteoporotic (OP) tibial fracture rats and analyze their targeting relationship and effects on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSC) under traction. Methods The OP tibial fracture model was established, and the rats were divided into a sham group and a model group. The tibial tissue of these rats was taken. BMSC of cultured rats with good growth was purchased and grouped according to the presence or absence of transfection of si-MALAT1 and miR-144-3p-mimic. The expression of MALAT1 and miR-144-3p in each group was detected. The bioinformatics website and double luciferase were used to predict the targeting relationship between MALAT1 and miR-144-3p and to detect the expression of genes related to bone differentiation (collagen I, osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP)) of each component, and ALP staining and AR staining were used to detect the formation of BMSC calcium nodules. Results The levels of ALP and TRAP in the model group were higher than that in the sham group (P < 0.05). qRT-PCR results showed that the relative expression level of MALAT1 in the model group was higher than that in the sham group, and the relative expression level of miR-144-3p was lower than that in the sham group (P < 0.05). MALAT1 has a targeting relationship with miR-144-3p. qRT-PCR results showed that the relative expression level of MALAT1 in the tension-MSC group was higher than the MSC group, and the relative expression level of miR-144-3p was lower than the MSC group (P < 0.05). The expressions of collagen I, OCN, OPN, and ALP proteins in the si-MALAT1 group were higher than those of the si-NC group (P < 0.05). The results of ALP staining showed that BMSCs of the si-MALAT1 group had stronger osteogenic differentiation capacity and higher ALP activity than those of the si-NC group. The results of AR staining showed that compared with the si-NC group, the mineralization degree of cells in the si-MALAT1 group was higher, the number of calcium nodules was more, and the cells were more deeply stained. The expressions of collagen I, OCN, OPN, and ALP proteins in the miR-144-3p-mimic group were higher than the mimic-NC group (P < 0.05). ALP staining results showed that BMSCs in the miR-144-3p-mimic group had strong osteogenic differentiation capacity and high ALP activity compared with the mimic-NC group. The results of AR staining showed that, compared with the mimic-NC group, the mineralization degree of cells in the miR-144-3p-mimic group was higher, the number of calcium nodules was more and the cells were more deeply stained. Conclusion In the OP rat model with the tibial fracture, the expression of MALAT1 is upregulated and that of miR-144-3p is downregulated. MALAT1 has a targeting relationship with miR-144-3p, and downregulation of MALAT1 and upregulation of miR-144-3p can promote the osteogenic differentiation of BMSC under traction.
Collapse
Affiliation(s)
- Shiyong Ling
- Department of Orthopedic Surgery, Zhabei Central Hospital, Jing'an, Shanghai 200070, China
| | - Tao Xu
- Department of Orthopedic Surgery, No. 906 Hospital of the People's Liberation Army, Ningbo, Zhejiang 315040, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chen Yan
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Bo Lv
- Department of Orthopedic Surgery, Zhabei Central Hospital, Jing'an, Shanghai 200070, China
| | - Hua Wang
- Department of Orthopedic Surgery, Zhabei Central Hospital, Jing'an, Shanghai 200070, China
| | - Hong Zhao
- Department of Orthopedic Surgery, No. 906 Hospital of the People's Liberation Army, Ningbo, Zhejiang 315040, China
| | - Kai Huang
- Department of Orthopedic Surgery, Zhabei Central Hospital, Jing'an, Shanghai 200070, China
| |
Collapse
|
5
|
Ibrahim N'I, Mohd Noor H'I, Shuid AN, Mohamad S, Abdul Malik MM, Jayusman PA, Shuid AN, Naina Mohamed I. Osteoprotective Effects in Postmenopausal Osteoporosis Rat Model: Oral Tocotrienol vs. Intraosseous Injection of Tocotrienol-Poly Lactic-Co-Glycolic Acid Combination. Front Pharmacol 2021; 12:706747. [PMID: 34867320 PMCID: PMC8637158 DOI: 10.3389/fphar.2021.706747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis, the most common bone disease, is associated with compromised bone strength and increased risk of fracture. Previous studies have shown that oxidative stress contributes to the progression of osteoporosis. Specifically, for postmenopausal osteoporosis, the reduction in estrogen levels leads to increased oxidative stress in bone remodeling. Tocotrienol, a member of vitamin E that exhibits antioxidant activities, has shown potential as an agent for the treatment of osteoporosis. Most studies on the osteoprotective effects of tocotrienols had used the oral form of tocotrienols, despite their low bioavailability due the lack of transfer proteins and high metabolism in the liver. Several bone studies have utilized tocotrienol combined with a nanocarrier to produce a controlled release of tocotrienol particles into the system. However, the potential of delivering tocotrienol-nanocarrier combination through the intraosseous route has never been explored. In this study, tocotrienol was combined with a nanocarrier, poly lactic-co-glycolic acid (PLGA), and injected intraosseously into the bones of ovariectomized rats to produce targeted and controlled delivery of tocotrienol into the bone microenvironment. This new form of tocotrienol delivery was compared with the conventional oral delivery in terms of their effects on bone parameters. Forty Sprague-Dawley rats were divided into five groups. The first group was sham operated, while other groups were ovariectomized (OVX). Following 2 months, the right tibiae of all the rats were drilled at the metaphysis region to provide access for intraosseous injection. The estrogen group (OVX + ESTO) and tocotrienol group (OVX + TTO) were given daily oral gavages of Premarin (64.5 mg/kg) and annatto-tocotrienol (60 mg/kg), respectively. The locally administered tocotrienol group (OVX + TTL) was given a single intraosseous injection of tocotrienol-PLGA combination. After 8 weeks of treatment, both OVX + TTO and OVX + TTL groups have significantly lower bone markers and higher bone mineral content than the OVX group. In terms of bone microarchitecture, both groups demonstrated significantly higher trabecular separation and connectivity density than the OVX group (p < 0.05). Both groups also showed improvement in bone strength by the significantly higher stress, strain, stiffness, and Young's modulus parameters. In conclusion, daily oral tocotrienol and one-time intraosseous injection of tocotrienol-PLGA combination were equally effective in offering protection against ovariectomy-induced bone changes.
Collapse
Affiliation(s)
- Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Hasnul 'Iffah Mohd Noor
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ahmad Naqib Shuid
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Sharlina Mohamad
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Mohd Maaruf Abdul Malik
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Malaysia
| | - Putri Ayu Jayusman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Batoon L, Millard SM, Raggatt LJ, Wu AC, Kaur S, Sun LWH, Williams K, Sandrock C, Ng PY, Irvine KM, Bartnikowski M, Glatt V, Pavlos NJ, Pettit AR. Osteal macrophages support osteoclast-mediated resorption and contribute to bone pathology in a postmenopausal osteoporosis mouse model. J Bone Miner Res 2021; 36:2214-2228. [PMID: 34278602 DOI: 10.1002/jbmr.4413] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Osteal macrophages (osteomacs) support osteoblast function and promote bone anabolism, but their contribution to osteoporosis has not been explored. Although mouse ovariectomy (OVX) models have been repeatedly used, variation in strain, experimental design and assessment modalities have contributed to no single model being confirmed as comprehensively replicating the full gamut of osteoporosis pathological manifestations. We validated an OVX model in adult C3H/HeJ mice and demonstrated that it presents with human postmenopausal osteoporosis features with reduced bone volume in axial and appendicular bone and bone loss in both trabecular and cortical bone including increased cortical porosity. Bone loss was associated with increased osteoclasts on trabecular and endocortical bone and decreased osteoblasts on trabecular bone. Importantly, this OVX model was characterized by delayed fracture healing. Using this validated model, we demonstrated that osteomacs are increased post-OVX on both trabecular and endocortical bone. Dual F4/80 (pan-macrophage marker) and tartrate-resistant acid phosphatase (TRAP) staining revealed osteomacs frequently located near TRAP+ osteoclasts and contained TRAP+ intracellular vesicles. Using an in vivo inducible macrophage depletion model that does not simultaneously deplete osteoclasts, we observed that osteomac loss was associated with elevated extracellular TRAP in bone marrow interstitium and increased serum TRAP. Using in vitro high-resolution confocal imaging of mixed osteoclast-macrophage cultures on bone substrate, we observed macrophages juxtaposed to osteoclast basolateral functional secretory domains scavenging degraded bone byproducts. These data demonstrate a role for osteomacs in supporting osteoclastic bone resorption through phagocytosis and sequestration of resorption byproducts. Overall, our data expose a novel role for osteomacs in supporting osteoclast function and provide the first evidence of their involvement in osteoporosis pathogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lena Batoon
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Susan M Millard
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Liza J Raggatt
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Andy C Wu
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Lucas W H Sun
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Kyle Williams
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Cheyenne Sandrock
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Pei Ying Ng
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Katharine M Irvine
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Michal Bartnikowski
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vaida Glatt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,Orthopaedic Surgery Department, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Nathan J Pavlos
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
7
|
Study on the Mechanism of Qigu Capsule in Upregulating NF- κB/HIF-1 α Pathway to Improve the Quality of Bone Callus in Mice at Different Stages of Osteoporotic Fracture Healing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9943692. [PMID: 34557256 PMCID: PMC8455191 DOI: 10.1155/2021/9943692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/14/2021] [Indexed: 12/24/2022]
Abstract
Objective The present study intends to investigate the effects and underlying molecular mechanism of Qigu Capsule (QG) on fracture healing in mice with osteoporosis. Methods Ten-week-old female C57BL/6 mice were ovariectomized and three weeks later were evaluated for successful modeling. Then, all mice were prepared into models of transverse fracture in the right middle femoral shaft. Mice were treated daily using a gavage with normal saline (the NS group), Qigu Capsule (the QG group), or alendronate (the ALN group) postoperatively. Fracture callus tissues were collected and analyzed by X-ray, micro-CT, western blot (WB), and transmission electron microscope (TEM) on postoperation Day 14 (POD14), POD28, and POD42. Results (1) X-ray results showed that on POD14, the QG group had the fracture healing score significantly higher than the NS and ALN groups, and on POD28, it had the fracture healing score higher than the NS group, suggesting that QG could promote fracture healing. (2) Micro-CT results showed that on POD14, the QG group had tissue bone density (TMD) significantly higher than the NS and ALN groups, and on POD28 and POD42, it had bone volume fraction, trabecular number, and TMD significantly higher than the NS group. (3) WB results showed that, compared with the NS group, the QG group had significantly increased expression of nuclear factor kappa-B (NF-κB), hypoxia-inducible factor-1α (HIF-1α), bone alkaline phosphatase (BALP), runt-related transcription factor 2 (Runx2), bone Gla protein (BGP) and collagen Iα1 (COLIα1) on POD14, significantly increased expression of NF-κB, HIF-1α, BALP and COLIα1 on POD28, and significantly increased expression of NF-κB, HIF-1α, and Runx2 on POD42. (4) TEM scanning results showed that, compared with the NS and ALN groups, the QG group had significantly increased numbers of autophagic vacuoles (AVs) in osteocytes on POD14, POD28, and POD42. Conclusion QG could accelerate osteoporotic fracture healing by promoting bone formation and osteocyte autophagy, possibly through upregulating the NF-κB/HIF-1α signaling pathway.
Collapse
|
8
|
Safarova (Yantsen) Y, Olzhayev F, Umbayev B, Tsoy A, Hortelano G, Tokay T, Murata H, Russell A, Askarova S. Mesenchymal Stem Cells Coated with Synthetic Bone-Targeting Polymers Enhance Osteoporotic Bone Fracture Regeneration. Bioengineering (Basel) 2020; 7:bioengineering7040125. [PMID: 33053753 PMCID: PMC7711537 DOI: 10.3390/bioengineering7040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a progressive skeletal disease characterized by reduced bone density leading to bone fragility and an elevated risk of bone fractures. In osteoporotic conditions, decrease in bone density happens due to the augmented osteoclastic activity and the reduced number of osteoblast progenitor cells (mesenchymal stem cells, MSCs). We investigated a new method of cell therapy with membrane-engineered MSCs to restore the osteoblast progenitor pool and to inhibit osteoclastic activity in the fractured osteoporotic bones. The primary active sites of the polymer are the N-hydroxysuccinimide and bisphosphonate groups that allow the polymer to covalently bind to the MSCs' plasma membrane, target hydroxyapatite molecules on the bone surface and inhibit osteolysis. The therapeutic utility of the membrane-engineered MSCs was investigated in female rats with induced estrogen-dependent osteoporosis and ulnar fractures. The analysis of the bone density dynamics showed a 27.4% and 21.5% increase in bone density at 4 and 24 weeks after the osteotomy of the ulna in animals that received four transplantations of polymer-modified MSCs. The results of the intravital observations were confirmed by the post-mortem analysis of histological slices of the fracture zones. Therefore, this combined approach that involves polymer and cell transplantation shows promise and warrants further bio-safety and clinical exploration.
Collapse
Affiliation(s)
- Yuliya Safarova (Yantsen)
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.S.(Y.)); (F.O.); (B.U.); (A.T.)
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Farkhad Olzhayev
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.S.(Y.)); (F.O.); (B.U.); (A.T.)
| | - Bauyrzhan Umbayev
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.S.(Y.)); (F.O.); (B.U.); (A.T.)
| | - Andrey Tsoy
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.S.(Y.)); (F.O.); (B.U.); (A.T.)
| | - Gonzalo Hortelano
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (G.H.); (T.T.)
| | - Tursonjan Tokay
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (G.H.); (T.T.)
| | - Hironobu Murata
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (H.M.); (A.R.)
| | - Alan Russell
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (H.M.); (A.R.)
| | - Sholpan Askarova
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.S.(Y.)); (F.O.); (B.U.); (A.T.)
- Correspondence: ; Tel.: +7-7172-706514
| |
Collapse
|
9
|
Kauffmann P, Rau A, Seidlová-Wuttke D, Jarry H, Schminke B, Matthes S, Wiese KG. Effect of dihydrotestosterone, 17-β-estrogen, genistein and equol on remodeling and morphology of bone in osteoporotic male rats during bone healing. Bone Rep 2020; 13:100300. [PMID: 32802919 PMCID: PMC7419585 DOI: 10.1016/j.bonr.2020.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
Introduction The aim of this study was to investigate the effect of dihydrotestosterone (DHT), 17-β-estrogen (E2), genistein (GEN) and equol (EQ) on bone remodeling and bone morphology during healing of osteoporotic male rat tibiae. Materials and methods 180 Sprague-Dawley male rats were divided in 5 groups of 36 animals. After orchidectomy (ORX) and development of osteoporosis, trepanation of the tibia was performed. Until the time of trepanation all groups received soya free food (SF), then food change occurred and treatment started. At day 95, 102 and 151, samples were taken and histomorphometry was performed to analyze changes in bone structure under treatment. At day 33 and 70 all animals received calcein respective alizarin for polychrome bone labeling. Results The cortical bone was particularly affected. Treatment with DHT and E2 led to a significant long-term expansion of the thickness of the diaphyseal cortical bone, while the phytoestrogens EQ and GEN only had a positive short-term effect in this area. Only E2 preserved the trabecular bone for a limited time. In all groups, periosteal and endosteal bone areas showed the highest bone formation activity. The osteoporotic male injured bone shows a shift in mineral apposition rate (MAR) from periosteal to endosteal bone in the SF, DHT and E2 groups but not in the GEN and EQ phytohormones groups. An MAR decrease in trabecular bone formation was observed at day 70 in all groups except the E2 group. Conclusion We conclude from our results that healing of cortical bone defects in a rat model of male osteoporosis are mainly influenced by the estrogen pathway. Nevertheless, effects via purely androgenic mechanisms can also be demonstrated. The role of a phytohormone therapy is only marginal and if only useful for a short-term supportive approach. The role of the periosteal to endosteal shift during male osteoporotic bone healing needs to be further examined. The estrogen pathway is leading in the healing osteoporotic male rat bone. Osteoporotic rat bone has the highest apposition rate in the periosteal area. Healing increases periosteal, endosteal and decreases trabecular bone formation. The highest apposition rate shifts from periosteal to endosteal bone during healing. Testosterone as a drug could harness positive estrogenic and androgenic effects.
Collapse
Affiliation(s)
- Philipp Kauffmann
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, Georg-August-University Goettingen, Robert-Koch-Str. 40, D-37099 Goettingen, Germany
| | - Anna Rau
- Department of Department of Anesthesiology, University Medical Center Goettingen, Georg-August-University Goettingen, Robert-Koch-Str. 40, D-37099 Goettingen, Germany
| | - Dana Seidlová-Wuttke
- Department of Endocrinology, University Medical Center Goettingen, Georg-August-University Goettingen, Robert-Koch-Str. 40, D-37099 Goettingen, Germany
| | - Hubertus Jarry
- Department of Endocrinology, University Medical Center Goettingen, Georg-August-University Goettingen, Robert-Koch-Str. 40, D-37099 Goettingen, Germany
| | - Boris Schminke
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, Georg-August-University Goettingen, Robert-Koch-Str. 40, D-37099 Goettingen, Germany
| | - Swantje Matthes
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, Georg-August-University Goettingen, Robert-Koch-Str. 40, D-37099 Goettingen, Germany
| | - Karl Günter Wiese
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, Georg-August-University Goettingen, Robert-Koch-Str. 40, D-37099 Goettingen, Germany
| |
Collapse
|
10
|
Osteoprotective Activity and Metabolite Fingerprint via UPLC/MS and GC/MS of Lepidium sativum in Ovariectomized Rats. Nutrients 2020; 12:nu12072075. [PMID: 32668691 PMCID: PMC7400896 DOI: 10.3390/nu12072075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022] Open
Abstract
Lepidium sativum seeds are used traditionally to accelerate healing of bone fracture in addition to its culinary uses. This study aimed to characterize the osteoprotective effect of L. sativum in an ovariectomized rat model at two dose levels (50 and 100 mg/kg) using 17β-estradiol as a positive reference standard. Moreover, a complete metabolite profile of L. sativum via UHPLC/PDA/ESI-MS, as well as headspace solid-phase microextraction (SPME)-GC/MS is presented. Results revealed that L. sativum extract exhibited significant anti-osteoporotic actions as evidenced by mitigating the decrease in relative bone weight concurrent with improved longitudinal and perpendicular femur compression strength. Further, the extract enhanced the serum bone formation biomarkers lactate dehydrogenase (LDH) activity and osteocalcin levels. The extract also inhibited exhaustion of superoxide dismutase (SOD) as well as glutathione peroxidase (GPx) activities and accumulation of lipid peroxides in bone tissues. This is in addition to ameliorating the rise in the markers of bone resorption carboxyterminal telopeptide, type I (CTXI) and tartrate-resistant acid phosphatase (TRAP) and modulating receptor activator of nuclear factor kappa-Β ligand (RANKL)/ osteoprotegerin (OPG) expression. Metabolite characterization suggests that glucosinolates, lignans, coumarins, phenolic acids, and alkaloids mediate these anti-osteoporotic effects in a synergistic manner.
Collapse
|
11
|
Polo TOB, Silva WPP, Momesso GAC, Lima-Neto TJ, Barbosa S, Cordeiro JM, Hassumi JS, da Cruz NC, Okamoto R, Barão VAR, Faverani LP. Plasma Electrolytic Oxidation as a Feasible Surface Treatment for Biomedical Applications: an in vivo study. Sci Rep 2020; 10:10000. [PMID: 32561767 PMCID: PMC7305204 DOI: 10.1038/s41598-020-65289-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/28/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES In this in vivo animal study, we evaluated the effect of plasma electrolytic oxidation (PEO) coating on the topographic and biological parameters of implants installed in rats with induced osteoporosis and low-quality bones. MATERIALS AND METHODS In total 44 Wistar rats (Rattus novergicus), 6 months old, were submitted to ovariectomy (OXV group) and dummy surgery (SHAM group). After 90 days, the ELISA test was performed and the ovariectomy effectiveness was confirmed. In each tibial metaphysis, an implant with PEO coating containing Ca2+ and P5+ molecules were installed, and the other tibia received an implant with SLA acid etching and blasting (AC) (control surface). After 42 days, 16 rats from each group were euthanized, their tibias were removed for histological and immunohistochemical analysis (OPG, RANKL, OC and TRAP), as well as reverse torque biomechanics. Data were submitted to One-way ANOVA or Kruskal-Wallis tests, followed by a Tukey post-test; P < 0.05. Histological analyses showed higher bone neoformation values among the members of the PEO group, SHAM and OVX groups. Immunohistochemical analysis demonstrated equilibrium in all groups when comparing surfaces for TRAP, OC and RANKL (P > 0.05), whereas OPG showed higher PEO labeling in the OVX group (P < 0.05). Biomechanical analysis showed higher reverse torque values (N.cm) for PEO, irrespective of whether they were OVX or SHAM groups (P < 0.05). CONCLUSION The results indicated that the PEO texturing method favored bone formation and showed higher bone maturation levels during later periods in osteoporotic rats.
Collapse
Affiliation(s)
- Tárik Ocon Braga Polo
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - William Phillip Pereira Silva
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Gustavo Antonio Correa Momesso
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Tiburtino José Lima-Neto
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Stéfany Barbosa
- Undergradutate student, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Jairo Matozinho Cordeiro
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av Limeira, 901, Piracicaba, São Paulo, CEP13414-903, Brazil.,Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Sao Paulo, Brazil
| | - Jaqueline Suemi Hassumi
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Nilson Cristino da Cruz
- Technological Plasma Laboratory (LaPTec), Experimental Campus of Sorocaba, Sao Paulo State University-Unesp, Sorocaba, Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Valentim A R Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av Limeira, 901, Piracicaba, São Paulo, CEP13414-903, Brazil.,Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Sao Paulo, Brazil
| | - Leonardo P Faverani
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil.
| |
Collapse
|
12
|
Liang Y, Li W, Li X, Nan J. Involvement of PI3K/Akt/β-catenin signaling in schisandrin B-mitigated bone deterioration in an experimental rat model of estrogen deficiency. Arch Med Sci 2020; 19:1520-1529. [PMID: 37732059 PMCID: PMC10507775 DOI: 10.5114/aoms.2020.92873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/02/2019] [Indexed: 09/22/2023] Open
Abstract
Introduction Schisandrin B (SchB) has been reported to perform a wide range of biological functions, including antioxidant activity, anti-inflammatory activity and stimulation of osteoblast proliferation. However, the function and mechanism of SchB in ovariectomy (OVX)-induced osteoporosis are still unknown. The present study was designed to investigate the anti-osteoporotic activity of SchB in an experimental rat model of estrogen deficiency, which is usually used to mimic human postmenopausal osteoporosis (PMO). Material and methods OVX rats were orally treated with low (10 mg/kg) or high (50 mg/kg) doses of SchB for 8 weeks. Bone metabolism-related markers were measured by ELISA. The levels of protein expression were determined by western blotting analysis. Hematoxylin and eosin (H&E) and safranin O staining were performed to analyze trabecular bone and cartilage degeneration. Tartrate-resistant acid phosphatase (TRAP) staining was used to evaluate osteoclast differentiation. Results SchB administration markedly increased serum Ca levels and bone Ca content and decreased urinary calcium excretion in OVX-operated rats. In addition, high-dosage SchB treatment blocked osteoclastogenesis and improved trabecular bone and cartilage degeneration in the tibia of OVX-operated rats. Furthermore, high-dosage SchB treatment dramatically elevated the protein expression of phospho-PI3K, phospho-Akt and β-catenin in OVX-operated rats. Conclusions SchB exerted anti-osteoporotic activity in OVX-operated rats by accelerating the phosphorylation of PI3K and Akt, subsequently upregulating the expression of β-catenin.
Collapse
Affiliation(s)
- Yimin Liang
- Department of Orthopedics, The First People’s Hospital of Taizhou, Taizhou, China
| | - Wei Li
- The Second Clinical School of North Sichuan Medical College, Nanchong, China
| | - Xiang Li
- Department of Orthopedics, The First People’s Hospital of Taizhou, Taizhou, China
| | - Jun Nan
- Department of Spine Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| |
Collapse
|
13
|
Bone mesenchymal stem cell therapy for ovariectomized osteoporotic rats: a systematic review and meta-analysis. BMC Musculoskelet Disord 2019; 20:556. [PMID: 31747888 PMCID: PMC6868739 DOI: 10.1186/s12891-019-2851-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Previous studies have found that bone mesenchymal stem cells (BMSCs) were capable of self-replication, multi-differentiation, and regeneration. The aim of this study was to carry out a systematic review and meta-analysis of the efficacy of BMSC therapy for ovariectomized rats. Methods The PubMed, Embase, Web of Science, China National Knowledge Infrastructure, VIP, and Chinese Sinomed databases were searched systematically from their initiation date to October 5, 2018. Two researchers independently screened the literatures, which used the bone mineral density (BMD), total bone volume by total tissue volume (BV/TV) (%), and trabecular thickness/spacing (Tb/Sp) as the outcome measures. Results Five eligible studies were selected. In the BMSC treatment groups, the BMD values and normalized BV/TV values remarkably increased. In addition, in the BMSCs plus other treatment groups, the BMD and Tb/Sp values significantly increased. Conclusion This study showed that BMSCs could accelerate callus maturity, ossification and restore mechanical properties of bones in osteoporotic fractures.
Collapse
|
14
|
Tao ZS, Wu XJ, Zhou WS, Wu XJ, Liao W, Yang M, Xu HG, Yang L. Local administration of aspirin with β-tricalcium phosphate/poly-lactic-co-glycolic acid (β-TCP/PLGA) could enhance osteoporotic bone regeneration. J Bone Miner Metab 2019; 37:1026-1035. [PMID: 31076895 DOI: 10.1007/s00774-019-01008-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Composite materials β-tricalcium phosphate (β-TCP) and poly-lactic-co-glycolic acid (PLGA) have achieved stable bone regeneration without cell transplantation in previous studies. Recent research shows that aspirin (ASP) has great potential in promoting bone regeneration. The objective of the present study was to incorporate PLGA into β-TCP combined with a lower single-dose local administration of ASP to enhance its in vivo biodegradation and bone tissue growth. After the creation of a rodent critical-sized femoral metaphyseal bone defect, PLGA -modified β-TCP (TP) was prepared by mixing sieved granules of β-TCP and PLGA (50:50, v/v) for medical use, then TP with dripped 50 µg/0.1 ml and 100 µg/0.1 ml aspirin solution was implanted into the defect of OVX rats until death at 8 weeks. The defected area in distal femurs of rats was harvested for evaluation by histology, micro-CT, biomechanics and real time RT-PCR. The results of our study show that a single-dose local administration of ASP combined with the local usage of TP can increase the healing of defects in OVX rats. Single-dose local administration of aspirin can improve the transcription of genes involved in the regulation of bone formation and vascularization in the defect area, and inhibits osteoclast activity. Furthermore, treatments with a higher single-dose local administration of ASP and TP showed a stronger effect on accelerating the local bone formation than while using a lower dose of ASP. The results from our study demonstrate that the combination of a single-dose local administration of ASP and β-TCP/PLGA had an additive effect on local bone formation in osteoporosis rats, and bone regeneration by PLGA/β-TCP/ASP occured in a dose-dependent manner.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Xing-Jing Wu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Wan-Shu Zhou
- Department of Geriatrics, The Second Affiliated Hospital of Wannan Medical College, No. 123, Kangfu Road, Wuhu, 241000, Anhui, People's Republic of China
| | - Xin-Ju Wu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Wei Liao
- Department of Orthopedics, Children's Hospital of Nanjing Medical University, No. 8, Jiangdong South Road, Jianye District, Nanjing, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Hong-Guang Xu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
- Department of Spinal Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Lei Yang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| |
Collapse
|
15
|
Chen MQ, Luan JJ. HMGB1 promotes bone fracture healing through activation of ERK signaling pathway in a rat tibial fracture model. Kaohsiung J Med Sci 2019; 35:550-558. [PMID: 31162822 DOI: 10.1002/kjm2.12095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/12/2019] [Indexed: 01/04/2023] Open
Abstract
This work was to investigate potential roles of HMGB1-mediated ERK pathway in the healing process of bone fracture. Rat tibial fracture models were established and divided into control (rats with normal saline), HMGB1 (rats with HMGB1), and HMGB1+ PD98059 groups (rats with HMGB1 and 1 mg/kg of ERK1/2 inhibitor PD98059) with 30 rats per each. The healing of rats' fracture was observed by X-ray films, the morphological changes of bone fractures by HE staining, the callus formation by micro-CT and biomechanical test, and the expression of osteogenesis-related genes, HMGB1 and ERK-related proteins by qRT-PCR and Western blot. Rats in the HMGB1 group was increased in X-ray scores, peak torque, torsional stiffness, and the bone volume fraction (bone volume/total volume, BV/TV); meanwhile, those rats presented elevations in osteogenesis-related genes and HMGB1 expressions, as well as p-ERK/ERK ratio. However, rats in the HMGB1+ PD98059 group was significantly reduced in X-ray score, peak torque, torsional stiffness, and BV/TV, as well as the expression of osteogenesis-related genes and the ratio of p-ERK/ERK, as compared to those from HMGB1 group. HMGB1 could promote the expressions of osteogenesis-related genes and accelerate the healing process of fracture via activation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Ming-Qi Chen
- Department of Traumatic Orthopedics, YanTaiShan Hospital, YanTai City, Shandong, China
| | - Jing-Jie Luan
- Department of Traumatic Orthopedics, YanTaiShan Hospital, YanTai City, Shandong, China
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Substantial advances have been made in understanding the biological basis of fracture healing. Yet, it is unclear whether the presence of osteoporosis or prior or current osteoporosis therapy influences the healing process or is associated with impaired healing. This review discusses the normal process of fracture healing and the role of osteoporosis and patient-specific factors in relation to fracture repair. RECENT FINDINGS The definitive association of osteoporosis to impaired fracture healing remains inconclusive because of limited evidence addressing this point. eStudies testing anabolic agents in preclinical models of ovariectomized animals with induced fractures have produced mostly positive findings showing enhanced fracture repair. Prospective human clinical trials, although few in number and limited in design and to testing only one anabolic agent, have similarly yielded modestly favorable results. Interest is high for exploring currently available osteoporosis therapies for efficacy in fracture repair. Definitive data supporting their efficacy are essential in achieving approval for this indication.
Collapse
Affiliation(s)
- Cheng Cheng
- Endocrine Research Unit, Department of Medicine, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, Room 369, San Francisco, CA, 94158, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, USA
| | - Dolores Shoback
- Endocrine Research Unit, Department of Medicine, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, Room 369, San Francisco, CA, 94158, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, USA.
| |
Collapse
|
17
|
Randall DR, Nativ-Zeltzer N, Cates DJ, Tinling SP, Belafsky PC. Decreased intramuscular calcium hydroxyapatite implant resorption in a murine model of osteoporosis. Laryngoscope 2018; 128:2576-2580. [PMID: 30194683 DOI: 10.1002/lary.27348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/21/2018] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Calcium hydroxyapatite (CaHA) is a common material for vocal fold injection augmentation. Durability is variable, and factors involved in implant longevity are not understood. Animal models of osteoporosis show decreased bone density and increased mineral liberation, suggesting CaHA retention may be altered in these conditions. STUDY DESIGN Prospective murine investigation. METHODS Fourteen skeletally mature, 10-month-old female Sprague-Dewley rats were treated by one of three interventions: oophorectomy, laparotomy without oophorectomy (sham), or monthly risedronate injection (90 μg/kg, subcutaneous). CaHA was implanted into the right lateral thigh muscle in all animals at the time of procedure or first risedronate injection. After 17 weeks, all rats were sacrificed, and the residual CaHA isolated from excised lateral thigh muscle through incubation in a 900 °C calcinator for 9 hours. RESULTS Mean CaHA mass remaining in the oophorectomy group was 65.9 (standard deviation ± 16.1) mg, compared to 44.4 ± 10.0 mg CaHA in the risedronate group and 48.6 ± 7.5 mg in the sham group. One-way analysis of variance found a statistically significant difference between the oophorectomy and risedronate groups but not between the sham and other groups, F(2,11) = 4.404, P = 0.039. CONCLUSION Persistent estrogen deficiency in a murine model of osteoporosis demonstrated decreased rate of CaHA resorption. This suggests that hormone alterations associated with osteoporosis may alter the longevity of CaHA implant resorption through an uncertain mechanism. LEVEL OF EVIDENCE NA. Laryngoscope, 2576-2580, 2018.
Collapse
Affiliation(s)
- Derrick R Randall
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis, Sacramento, CA, U.S.A
- the Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Nogah Nativ-Zeltzer
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis, Sacramento, CA, U.S.A
| | - Daniel J Cates
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis, Sacramento, CA, U.S.A
| | - Steve P Tinling
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis, Sacramento, CA, U.S.A
| | - Peter C Belafsky
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis, Sacramento, CA, U.S.A
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This review examines recent literature regarding the clinical management of fragility fractures, provides insight into new practice patterns, and discusses controversies in current management. RECENT FINDINGS There are declining rates of osteoporosis management following initial fragility fracture. Management of osteoporotic fractures via a multidisciplinary team reduces secondary fracture incidence and improves overall osteoporotic care. Anabolic agents (abaloparatide and teriparatide) are effective adjuvants to fracture repair, and have shown positive results in cases of re-fracture in spite of medical management (i.e., bisphosphonates). For AO 31-A1 and A2 intertrochanteric hip fractures (non-reverse obliquity), no clinical advantage of intramedullary fixation over the sliding hip screw (SHS) has been proven; SHS is more cost-effective. As fragility fracture incidence continues to rise, orthopedic surgeons must play a more central role in the care of osteoporotic patients. Initiation of pharmacologic intervention is key to preventing subsequent fragility fractures, and may play a supportive role in initial fracture healing. While the media bombards patients with complications of medical therapy (atypical femur fractures, osteonecrosis of jaw, myocardial infarction), providers need to understand and communicate the low incidence of these complications compared with consequences of not initiating medical therapy.
Collapse
Affiliation(s)
- Adam Z Khan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard D Rames
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna N Miller
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Comparative metabolites profiles of osthole in normal and osteoporosis rats using liquid chromatography quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2018; 154:460-467. [DOI: 10.1016/j.jpba.2018.03.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/15/2022]
|
20
|
Whole bone testing in small animals: systematic characterization of the mechanical properties of different rodent bones available for rat fracture models. Eur J Med Res 2018; 23:8. [PMID: 29444703 PMCID: PMC5813325 DOI: 10.1186/s40001-018-0307-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/07/2018] [Indexed: 01/15/2023] Open
Abstract
Objectives Rat fracture models are extensively used to characterize normal and pathological bone healing. Despite, systematic research on inter- and intra-individual differences of common rat bones examined is surprisingly not available. Thus, we studied the biomechanical behaviour and radiological characteristics of the humerus, the tibia and the femur of the male Wistar rat—all of which are potentially available in the experimental situation—to identify useful or detrimental biomechanical properties of each bone and to facilitate sample size calculations. Methods 40 paired femura, tibiae and humeri of male Wistar rats (10–38 weeks, weight between 240 and 720 g) were analysed by DXA, pQCT scan and three-point-bending. Bearing and loading bars of the biomechanical setup were adapted percentually to the bone’s length. Subgroups of light (skeletal immature) rats under 400 g (N = 11, 22 specimens of each bone) and heavy (mature) rats over 400 g (N = 9, 18 specimens of each bone) were formed and evaluated separately. Results Radiologically, neither significant differences between left and right bones, nor a specific side preference was evident. Mean side differences of the BMC were relatively small (1–3% measured by DXA and 2.5–5% by pQCT). Over all, bone mineral content (BMC) assessed by DXA and pQCT (TOT CNT, CORT CNT) showed high correlations between each other (BMC vs. TOT and CORT CNT: R2 = 0.94–0.99). The load–displacement diagram showed a typical, reproducible curve for each type of bone. Tibiae were the longest bones (mean 41.8 ± 4.12 mm) followed by femurs (mean 38.9 ± 4.12 mm) and humeri (mean 29.88 ± 3.33 mm). Failure loads and stiffness ranged from 175.4 ± 45.23 N / 315.6 ± 63.00 N/mm for the femurs, 124.6 ± 41.13 N / 260.5 ± 59.97 N/mm for the humeri to 117.1 ± 33.94 N / 143.8 ± 36.99 N/mm for the tibiae. Smallest interindividual differences were observed in failure loads of the femurs (CV% 8.6) and tibiae (CV% 10.7) of heavy animals, light animals showed good consistency in failure loads of the humeri (CV% 7.7). Most consistent results of both sides (left vs. right) in failure loads were provided by the femurs of light animals (mean difference 4.0 ± 2.8%); concerning stiffness, humeri of heavy animals were most consistent (mean difference of 6.2 ± 5%). In general, the failure loads showed strong correlations to the BMC (R2 = 0.85–0.88) whereas stiffness correlated only moderate, except for the humerus (BMC vs. stiffness: R2 = 0.79). Discussion Altogether, the rat’s femur of mature specimens showed the most accurate and consistent radiological and biomechanical results. In synopsis with the common experimental use enabling comparison among different studies, this bone offers ideal biomechanical conditions for three point bending experiments. This can be explained by the combination of a superior aspect ratio and a round and long, straight morphology, which satisfies the beam criteria more than other bones tested. Electronic supplementary material The online version of this article (10.1186/s40001-018-0307-z) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Okubo R, Sanada LS, Castania VA, Louzada MJQ, de Paula FJA, Maffulli N, Shimano AC. Jumping exercise preserves bone mineral density and mechanical properties in osteopenic ovariectomized rats even following established osteopenia. Osteoporos Int 2017; 28:1461-1471. [PMID: 28124728 DOI: 10.1007/s00198-017-3905-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
Abstract
UNLABELLED The effects of jump training on bone structure before and after ovariectomy-induced osteopenia in rats were investigated. Jumping exercise induced favorable changes in bone mineral density, bone mechanical properties, and bone formation/resorption markers. This exercise is effective to prevent bone loss after ovariectomy even when osteopenia is already established. INTRODUCTION The present study investigated the effects of jump training on bone structure before and after ovariectomy-induced osteopenia in 80 10-week-old Wistar rats. METHODS Forty rats (prevention program) were randomly allocated to one of four equal groups (n = 10): sham-operated sedentary (SHAM-SEDp), ovariectomized (OVX) sedentary (OVX-SEDp), sham-operated exercised (SHAM-EXp), and OVX exercised (OVX-EXp). SHAM-EXp and OVX-EXp animals began training 3 days after surgery. Another 40 rats (treatment program) were randomly allocated into another four groups (n = 10): sham-operated sedentary (SHAM-SEDt), OVX sedentary (OVX-SEDt), sham-operated exercised (SHAM-EXt), and OVX exercised (OVX-EXt). SHAM-EXt and OVX-EXt animals began training 60 days after surgery. The rats in the exercised groups jumped 20 times/day, 5 days/week, to a height of 40 cm for 12 weeks. At the end of the experimental period, serum osteocalcin, follicle-stimulating hormone (FSH) dosage, dual X-ray absorptiometry (DXA), histomorphometry, and biomechanical tests were analyzed. RESULTS The OVX groups showed higher values of FSH and body weight (p < 0.05). DXA showed that jump training significantly increased bone mineral density of the femur and fifth lumbar vertebra (p < 0.05). The stiffness of the left femur and fifth lumbar vertebra in the exercised groups was greater than that of the sedentary groups (p < 0.05). Ovariectomy induced significant difference in bone volume (BV/TV, percent), trabecular separation (Tb.Sp, micrometer), and trabecular number (Tb.N, per millimeter) (p < 0.05) compared to sham operation. Jump training in the OVX group induced significant differences in BV/TV, Tb.Sp, and Tb.N and decreased osteoblast number per bone perimeter (p < 0.05) compared with OVX nontraining, in the prevention groups. Osteocalcin dosage showed higher values in the exercised groups (p < 0.05). CONCLUSIONS Jumping exercise induced favorable changes in bone mineral density, bone mechanical properties, and bone formation/resorption markers. Jump training is effective to prevent bone loss after ovariectomy even when osteopenia is already established.
Collapse
Affiliation(s)
- R Okubo
- Department of Physiotherapy, Santa Catarina State University, Florianópolis, Santa Catarina, Brazil.
| | - L S Sanada
- Department of Physiotherapy, Santa Catarina State University, Florianópolis, Santa Catarina, Brazil
| | - V A Castania
- Department of Biomechanics, Medicine and Rehabilitation of Locomotor Apparatus, School of Medicine of Ribeirao Preto, University of Sao Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, Brazil
| | - M J Q Louzada
- Department of Animal Support, Production and Health, School of Veterinary Medicine, Sao Paulo State University, Araçatuba, São Paulo, Brazil
| | - F J A de Paula
- Department of Internal Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - N Maffulli
- Faculty of Medicine and Surgery, Department of Musculoskeletal Disorders, University of Salerno, Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, London, England, E1 4DG, UK
| | - A C Shimano
- Department of Biomechanics, Medicine and Rehabilitation of Locomotor Apparatus, School of Medicine of Ribeirao Preto, University of Sao Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
22
|
Duman IG, Davul S, Gokce H, Gonenci R, Özden R, Uruc V. Effects of Gaseous Ozone Treatment on Bone Regeneration in Femoral Defect Model in Rats. J HARD TISSUE BIOL 2017. [DOI: 10.2485/jhtb.26.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ibrahim Gokhan Duman
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| | - Serkan Davul
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| | - Hasan Gokce
- Department of Pathology, Ýnönü University, Medical Faculty
| | | | - Raif Özden
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| | - Vedat Uruc
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| |
Collapse
|