1
|
Zhou Y, Jiang Y. Current Advances in Genetic Testing for Spinal Muscular Atrophy. Curr Genomics 2023; 24:273-286. [PMID: 38235355 PMCID: PMC10790334 DOI: 10.2174/0113892029273388231023072050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 01/19/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most common genetic disorders worldwide, and genetic testing plays a key role in its diagnosis and prevention. The last decade has seen a continuous flow of new methods for SMA genetic testing that, along with traditional approaches, have affected clinical practice patterns to some degree. Targeting different application scenarios and selecting the appropriate technique for genetic testing have become priorities for optimizing the clinical pathway for SMA. In this review, we summarize the latest technological innovations in genetic testing for SMA, including MassArray®, digital PCR (dPCR), next-generation sequencing (NGS), and third-generation sequencing (TGS). Implementation recommendations for rationally choosing different technical strategies in the tertiary prevention of SMA are also explored.
Collapse
Affiliation(s)
- Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, P.R. China
- Biobank, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yu Jiang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, P.R. China
- Biobank, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
2
|
Tan P, Li D, Chang L, Shi J, Han Y, Zhang R, Li J. Evaluation of noninvasive prenatal screening for copy number variations among screening laboratories. Clin Biochem 2023; 118:110617. [PMID: 37507082 DOI: 10.1016/j.clinbiochem.2023.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVE To evaluate the current situation of expanded noninvasive prenatal screening (NIPS) for copy number variations (CNVs) in laboratories in China, the National Center of Clinical Laboratories conducted an externalqualityassessment (EQA) program. METHODS The EQA panel consisted of 12 artificial samples associated with different syndromes, which were mixed with maternal plasma collected from pregnant women and enzyme-digested cell-free DNA (cfDNA) from cell lines with different fetal fractions (FFs) ranging from 5% to 15%. The panel was validated by next-generation sequencing and distributed to laboratories, along with questionnaires and case scenarios. RESULTS Sixty-nine laboratories participated in the EQA program, and 91.30% (63/69) of laboratories correctly identified all samples. A total of 7.25% (5/69) of the laboratories reported false-negative results, and 2.90% (2/69) of the laboratories reported unexpected CNVs. The correct rates of the 22q11.2 deletion syndrome, Cri-du-chat syndrome, 1p36 deletion syndrome and Angelman/Prader-Willi syndrome samples were 97.46%, 98.55%, 100%, and 100%, respectively. With the increase in the FF, deletion size, and read depth, the detection rate increased. For results reports, only five laboratories reported FF values, one laboratory reported the CNV classification type, and none reported sensitivity, specificity, positive predictive values, and negative predictive values. CONCLUSION The detection capabilities of NIPS for CNVs still need to be improved and standardized, and FF, deletion size, and read depth are factors that affect the detection rate.
Collapse
Affiliation(s)
- Ping Tan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, P. R. China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China
| | - Dandan Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, P. R. China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China
| | - Lu Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, P. R. China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China
| | - Jiping Shi
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| | - Yanxi Han
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, P. R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, P. R. China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, P. R. China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.
| |
Collapse
|
3
|
Prior-de Castro C, Gómez-González C, Rodríguez-López R, Macher HC. Prenatal genetic diagnosis of monogenic diseases. ADVANCES IN LABORATORY MEDICINE 2023; 4:28-51. [PMID: 37359899 PMCID: PMC10197187 DOI: 10.1515/almed-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/04/2023] [Indexed: 06/28/2023]
Abstract
Prenatal genetic diagnosis of monogenic diseases is a process involving the use of a variety of molecular techniques for the molecular characterization of a potential monogenic disease in the fetus during pregnancy. Prenatal genetic diagnosis can be performed through invasive and non-invasive methods. A distinction must be made between "NIPD" (non-invasive prenatal diagnosis), which is considered to be diagnostic, from "NIPT" (non-invasive prenatal test), which is a screening test that requires subsequent confirmation by invasive methods. The different techniques currently available aim at detecting either, previously characterized pathogenic mutations in the family, the risk haplotype associated with the familial mutation, or potential pathogenic mutation(s) in a gene associated with a diagnostic suspicion. An overview is provided of relevant aspects of prenatal genetic diagnosis of monogenic diseases. The objective of this paper is to describe the main molecular techniques currently available and used in clinical practice. A description is provided of the indications, limitations and analytical recommendations regarding these techniques, and the standards governing genetic counseling. Continuous rapid advances in the clinical applications of genomics have provided increased access to comprehensive molecular characterization. Laboratories are struggling to keep in pace with technology developments.
Collapse
Affiliation(s)
| | | | - Raquel Rodríguez-López
- Laboratorio de Genética, Servicio Análisis Clínicos, Consorcio Hospital General Universitario, Valencia, Spain
| | - Hada C. Macher
- Departamento de Bioquímica Clínica, Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS, Universidad de Sevilla, Sevilla, Spain
| | - on behalf of the Prenatal Diagnosis Commission and the Genetics Commission of the Spanish Society of Laboratory Medicine
- Servicio de Genética, Hospital Universitario La Paz, Madrid, Spain
- Laboratorio de Genética, Servicio Análisis Clínicos, Consorcio Hospital General Universitario, Valencia, Spain
- Departamento de Bioquímica Clínica, Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Hanson B, Paternoster B, Povarnitsyn N, Scotchman E, Chitty L, Chandler N. Non-invasive prenatal diagnosis (NIPD): current and emerging technologies. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:3-26. [PMID: 39698301 PMCID: PMC11648410 DOI: 10.20517/evcna.2022.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 12/20/2024]
Abstract
Prenatal testing is important for the early detection and diagnosis of rare genetic conditions with life-changing implications for the patient and their family. Gaining access to the fetal genotype can be achieved using gold-standard invasive sampling methods, such as amniocentesis and chorionic villus sampling, but these carry a small risk of miscarriage. Non-invasive prenatal diagnosis (NIPD) for select rare monogenic conditions has been in clinical service in England since 2012 and has revolutionised the field of prenatal diagnostics by reducing the number of women undergoing invasive sampling procedures. Fetal-derived genomic material is present in a highly fragmented form amongst the maternal cell-free DNA (cfDNA) in circulation, with sequence coverage across the entire fetal genome. Cell-free fetal DNA (cffDNA) is the foundation for NIPD, and several technologies have been clinically implemented for the detection of paternally inherited and de novo pathogenic variants. Conversely, a low abundance of cffDNA within a high background of maternal cfDNA makes assigning maternally inherited variants to the fetal fraction a significantly more challenging task. Research is ongoing to expand available tests for maternal inheritance to include a broader range of monogenic conditions, as well as to uncover novel diagnostic avenues. This review covers the scope of technologies currently clinically available for NIPD of monogenic conditions and those still in the research pipeline towards implementation in the future.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Ben Paternoster
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Nikita Povarnitsyn
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Lyn Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| |
Collapse
|
5
|
Shaw J, Scotchman E, Paternoster B, Ramos M, Nesbitt S, Sheppard S, Snowsill T, Chitty LS, Chandler N. Non-invasive fetal genotyping for maternal alleles with droplet digital PCR: A comparative study of analytical approaches. Prenat Diagn 2023; 43:477-488. [PMID: 36760169 DOI: 10.1002/pd.6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVES To develop a flexible droplet digital PCR (ddPCR) workflow to perform non-invasive prenatal diagnosis via relative mutation dosage (RMD) for maternal pathogenic variants with a range of inheritance patterns, and to compare the accuracy of multiple analytical approaches. METHODS Cell free DNA (cfDNA) was tested from 124 archived maternal plasma samples: 88 cases for sickle cell disease and 36 for rare Mendelian conditions. Three analytical methods were compared: sequential probability ratio testing (SPRT), Bayesian and z-score analyses. RESULTS The SPRT, Bayesian and z-score analyses performed similarly well with correct prediction rates of 96%, 97% and 98%, respectively. However, there were high rates of inconclusive results for each cohort, particularly for z-score analysis which was 31% overall. Two samples were incorrectly classified by all three analytical methods; a false negative result predicted for a fetus affected with sickle cell disease and a false positive result predicting the presence of an X-linked IDS variant in an unaffected fetus. CONCLUSIONS ddPCR can be applied to RMD for diverse conditions and inheritance patterns, but all methods carry a small risk of erroneous results. Further evaluation is required both to reduce the rate of inconclusive results and explore discordant results in more detail.
Collapse
Affiliation(s)
- Joe Shaw
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Ben Paternoster
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Maureen Ramos
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Sarah Nesbitt
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Sophie Sheppard
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | | | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK.,Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Tan Y, Jian H, Zhang R, Wang J, Zhou C, Xiao Y, Liang W, Wang L. Applying amplification refractory mutation system technique to detecting cell-free fetal DNA for single-gene disorders purpose. Front Genet 2023; 14:1071406. [PMID: 37113995 PMCID: PMC10128035 DOI: 10.3389/fgene.2023.1071406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Non-invasive prenatal diagnosis for single-gene disorders (NIPD) is still in development and deserves further study. The advent of next-generation sequencing technology significantly improved the detection of multiple mutations for non-invasive prenatal diagnosis for single-gene disorder purposes. However, bespoke amplicon-based NGS assays are costly. In this study, we developed a new strategy for non-invasive prenatal screening for single-gene disorders based on a capillary electrophoresis (CE) platform using an amplification refractory mutation system (ARMS)-PCR technique. Allele-specific primers for several disease-correlated mutations were designed, and subsequently, sensitivity and specificity assays were conducted. Assays on simulated two-person DNA mixtures showed that three primers targeting the mutant allele could detect minor DNA components in 1:500 mixtures. All primers showed positive results at 0.01 ng of the template DNA. Cell-free fetal DNA was extracted from a pregnant woman's peripheral blood for the detection of paternally inherited mutations. Our results showed that one primer successfully amplified the mutant allele of fetal DNA in maternal plasma, which was confirmed by genotyping the genomic DNA extracted from amniotic fluid. This study suggested that the ARMS-PCR technique, a fast and cost-effective method, might be a promising method used to target de novo or paternally inherited pathogenic mutations in maternal plasma.
Collapse
Affiliation(s)
- Yu Tan
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Hui Jian
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ranran Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jing Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Cong Zhou
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yuanyuan Xiao
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Weibo Liang, ; Li Wang,
| | - Li Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- *Correspondence: Weibo Liang, ; Li Wang,
| |
Collapse
|
7
|
Hanson B, Scotchman E, Chitty LS, Chandler NJ. Non-invasive prenatal diagnosis (NIPD): how analysis of cell-free DNA in maternal plasma has changed prenatal diagnosis for monogenic disorders. Clin Sci (Lond) 2022; 136:1615-1629. [PMID: 36383187 PMCID: PMC9670272 DOI: 10.1042/cs20210380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023]
Abstract
Cell-free fetal DNA (cffDNA) is released into the maternal circulation from trophoblastic cells during pregnancy, is detectable from 4 weeks and is representative of the entire fetal genome. The presence of this cffDNA in the maternal bloodstream has enabled clinical implementation of non-invasive prenatal diagnosis (NIPD) for monogenic disorders. Detection of paternally inherited and de novo mutations is relatively straightforward, and several methods have been developed for clinical use, including quantitative polymerase chain reaction (qPCR), and PCR followed by restriction enzyme digest (PCR-RED) or next-generation sequencing (NGS). A greater challenge has been in the detection of maternally inherited variants owing to the high background of maternal cell-free DNA (cfDNA). Molecular counting techniques have been developed to measure subtle changes in allele frequency. For instance, relative haplotype dosage analysis (RHDO), which uses single nucleotide polymorphisms (SNPs) for phasing of high- and low-risk alleles, is clinically available for several monogenic disorders. A major drawback is that RHDO requires samples from both parents and an affected or unaffected proband, therefore alternative methods, such as proband-free RHDO and relative mutation dosage (RMD), are being investigated. cffDNA was thought to exist only as short fragments (<500 bp); however, long-read sequencing technologies have recently revealed a range of sizes up to ∼23 kb. cffDNA also carries a specific placental epigenetic mark, and so fragmentomics and epigenetics are of interest for targeted enrichment of cffDNA. Cell-based NIPD approaches are also currently under investigation as a means to obtain a pure source of intact fetal genomic DNA.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| | - Lyn S. Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, U.K
| | - Natalie J. Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| |
Collapse
|
8
|
Xie T, Luo Y, Wang P, Wu L, Cui X, Sun B, Li G. Controlled Rehydration of Dried Reagents for Robust Multiplex Digital PCR. Anal Chem 2022; 94:13223-13232. [DOI: 10.1021/acs.analchem.2c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tengbao Xie
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yu Luo
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Ping Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471000, China
| | - Lei Wu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xu Cui
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Bangyong Sun
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Gang Li
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
9
|
Shekhawat DS, Sharma C, Singh K, Singh P, Bhardwaj A, Patwa P. Critical appraisal of droplet digital polymerase chain reaction application for noninvasive prenatal testing. Congenit Anom (Kyoto) 2022; 62:188-197. [PMID: 35662261 DOI: 10.1111/cga.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
Maternal-fetal medicine (FM) is currently a highly demanding branch and is gaining importance as increasing number of genetic disorders rise in incidence. Prenatal testing helps to detect such abnormalities that could affect the health status of the developing fetus like birth defects or genetic disorders. Considering the rising trend of genetic disorders, there is a need for a highly sensitive way of noninvasive prenatal testing (NIPT) that may reduce the incidence of unnecessary invasive procedures and iatrogenic fetal loss. The concept of NIPT for screening of genetic disorders is continuously evolving over the last two decades and multiple techniques have come up to utilize this in the field of FM. The crucial factor which decides the accuracy of NIPS is cell free fetal DNA (cffDNA) that is present in extremely low fraction (10%-15%) in the maternal plasma. Among the available methods, the next generation sequencing (NGS) is considered as the gold standard. However, the higher cost diminishes its utility in low-resource settings. Droplet digital Polymerase chain reaction (ddPCR), a type of digital PCR is a novel technique that is frugal, equally sensitive, less labor intensive, less time-consuming and plain algorithm dependent method for detecting cffDNA fraction. Considering these impressive attributes of ddPCR, we decided to critically review the existing literature on ddPCR for NIPT whilst highlighting the clinical utility, challenges and its advantages over NGS.
Collapse
Affiliation(s)
| | - Charu Sharma
- Department of Obstetrics & Gynecology, AIIMS, Jodhpur, India
| | | | - Pratibha Singh
- Department of Obstetrics & Gynecology, AIIMS, Jodhpur, India
| | - Abhishek Bhardwaj
- Department of Dermatology, Venereology and Leprology, AIIMS, Jodhpur, India
| | - Payal Patwa
- Department of Obstetrics & Gynecology, AIIMS, Jodhpur, India
| |
Collapse
|
10
|
Li YQ, Tan GJ, Zhou YQ. Digital PCR and its applications in noninvasive prenatal testing. Brief Funct Genomics 2022; 21:376-386. [PMID: 35923115 DOI: 10.1093/bfgp/elac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
In the past decade, digital PCR (dPCR), as a new nucleic acid absolute quantification technology, has been widely used in clinical research. dPCR does not rely on the standard curve and has a higher tolerance to inhibitors. Therefore, it is more accurate than quantitative real-time PCR (qPCR) for the absolute quantification of target sequences. In this article, we aim to review the application of dPCR in noninvasive prenatal testing (NIPT). We focused on the progress of dPCR in screening and identifying fetal chromosome aneuploidies and monogenic mutations. We introduced some common strategies for dPCR in NIPT and analyzed the advantages and disadvantages of different methods. In addition, we compared dPCR with qPCR and next-generation sequencing, respectively, and described their superiority and shortcomings in clinical applications. Finally, we envisaged what the future of dPCR might be in NIPT. Although dPCR can provide reproducible results with improved accuracy due to the digital detection system, it is essential to combine the merits of dPCR and other molecular techniques to achieve more effective and accurate prenatal diagnostic strategies.
Collapse
Affiliation(s)
- Yue-Qi Li
- Clinical Laboratory & Zhuhai Institute of Medical Genetics, Zhuhai Centre for Maternity and Child Healthcare & Zhuhai Women and Children's Hospital, Zhuhai City, Guangdong Province, China
| | - Gong-Jun Tan
- Clinical Laboratory & Zhuhai Institute of Medical Genetics, Zhuhai Centre for Maternity and Child Healthcare & Zhuhai Women and Children's Hospital, Zhuhai City, Guangdong Province, China
| | - Yu-Qiu Zhou
- Clinical Laboratory & Zhuhai Institute of Medical Genetics, Zhuhai Centre for Maternity and Child Healthcare & Zhuhai Women and Children's Hospital, Zhuhai City, Guangdong Province, China
| |
Collapse
|
11
|
Afzal M, Naeem MA, Ahmed S, Amin N, Rahim A, Munawar M, Ishaq M, Rathore A, Maria K. Noninvasive prenatal testing of beta-thalassemia for common Pakistani mutations: a comparative study using cell-free fetal DNA from maternal plasma and chorionic villus sampling. Hematology 2022; 27:353-359. [PMID: 35287566 DOI: 10.1080/16078454.2022.2045052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The discovery of circulating cell-free fetal DNA (cff-DNA) in maternal plasma has inspired the noninvasive prenatal testing (NIPT) approaches for various genetic fetal screening including rhesus D typing, sex determination, aneuploidies, and single-gene disorders. OBJECTIVE Noninvasive determination of paternally inherited beta-thalassemia mutations in maternal total cell-free DNA (cf-DNA) by using allele-specific amplification refractory mutation system (ARMS) real-time PCR (RT-PCR) in concordance with the conventional invasive method. METHODS An observational study was conducted at the Armed Forces Institute of Blood Transfusion in collaboration with the genetics resource center from March 2021 to August 2021. A total number of 26 couples were selected having a history of previously affected children with beta-thalassemia. A routine chorionic villus sampling (CVS) invasive procedure was carried out, and the mutation analysis was done using conventional PCR. To assess NIPT, a total cf-DNA was also extracted from maternal plasma and analyzed using allele-specific ARMS RT-PCR. RESULTS Based on conventional PCR testing, 13 of 26 couples were found having beta-thalassemia carriers with homozygous mutation, and 13 couples were carriers with heterozygous mutations. Further to assess NIPT, the cf-DNA of 13 pregnant females among the couples with different mutational patterns was analyzed by allele-specific ARMS RT-PCR to detect paternally inherited mutations. In comparison with conventional PCR, 11 cases (84.6%) were matched successfully, while two cases (15.4%) had no concordance with conventional invasive prenatal testing (IPT). CONCLUSION NIPT using maternal cf-DNA by allele-specific ARMS RT-PCR can be feasible to screen paternal inherited mutant alleles to rule out pregnant women from invasive procedures where the test would be negative for paternal inheritance. However, a low amount of fetal DNA in maternal plasma is a limiting factor and required further improvement to enrich fetal cf-DNA for complete concordance with conventional IPT.
Collapse
Affiliation(s)
- Muhammad Afzal
- Biochemistry, Riphah International University Islamabad, Rawalpindi, Pakistan
| | | | - Suhaib Ahmed
- Biochemistry, Riphah International University Islamabad, Rawalpindi, Pakistan
| | - Nayyar Amin
- Hematology, Armed Forces Institute of Transfusion, Rawalpindi, Pakistan
| | - Amena Rahim
- Biochemistry, Riphah International University Islamabad, Rawalpindi, Pakistan
| | - Manazza Munawar
- Biochemistry, Riphah International University Islamabad, Rawalpindi, Pakistan
| | - Mansoor Ishaq
- Hematology, Armed Forces Institute of Transfusion, Rawalpindi, Pakistan
| | - Ali Rathore
- Hematology, Armed Forces Institute of Transfusion, Rawalpindi, Pakistan
| | - K Maria
- Hematology, Armed Forces Institute of Transfusion, Rawalpindi, Pakistan
| |
Collapse
|
12
|
D’Aversa E, Breveglieri G, Boutou E, Balassopoulou A, Voskaridou E, Pellegatti P, Guerra G, Scapoli C, Gambari R, Borgatti M. Droplet Digital PCR for Non-Invasive Prenatal Detection of Fetal Single-Gene Point Mutations in Maternal Plasma. Int J Mol Sci 2022; 23:ijms23052819. [PMID: 35269962 PMCID: PMC8911123 DOI: 10.3390/ijms23052819] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Non-invasive prenatal testing (NIPT) is based on the detection and characterization of circulating cell-free fetal DNA (ccffDNA) in maternal plasma and aims to identify genetic abnormalities. At present, commercial NIPT kits can detect only aneuploidies, small deletions and insertions and some paternally inherited single-gene point mutations causing genetic diseases, but not maternally inherited ones. In this work, we have developed two NIPT assays, based on the innovative and sensitive droplet digital PCR (ddPCR) technology, to identify the two most common β thalassemia mutations in the Mediterranean area (β+IVSI-110 and β039), maternally and/or paternally inherited, by fetal genotyping. The assays were optimized in terms of amplification efficiency and hybridization specificity, using mixtures of two genomic DNAs with different genotypes and percentages to simulate fetal and maternal circulating cell-free DNA (ccfDNA) at various gestational weeks. The two ddPCR assays were then applied to determine the fetal genotype from 52 maternal plasma samples at different gestational ages. The diagnostic outcomes were confirmed for all the samples by DNA sequencing. In the case of mutations inherited from the mother or from both parents, a precise dosage of normal and mutated alleles was required to determine the fetal genotype. In particular, we identified two diagnostic ranges for allelic ratio values statistically distinct and not overlapping, allowing correct fetal genotype determinations for almost all the analyzed samples. In conclusion, we have developed a simple and sensitive diagnostic tool, based on ddPCR, for the NIPT of β+IVSI-110 and β039 mutations paternally and, for the first time, maternally inherited, a tool, which may be applied to other single point mutations causing monogenic diseases.
Collapse
Affiliation(s)
- Elisabetta D’Aversa
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.D.); (G.B.); (C.S.); (R.G.)
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.D.); (G.B.); (C.S.); (R.G.)
| | - Effrossyni Boutou
- Molecular Genetics Laboratory, Thalassemia and Hemoglobinopathies Center, Laiko General Hospital, 11526 Athens, Greece; (E.B.); (A.B.)
| | - Angeliki Balassopoulou
- Molecular Genetics Laboratory, Thalassemia and Hemoglobinopathies Center, Laiko General Hospital, 11526 Athens, Greece; (E.B.); (A.B.)
| | - Ersi Voskaridou
- Thalassemia and Hemoglobinopathies Center, Laiko General Hospital, 11526 Athens, Greece;
| | - Patrizia Pellegatti
- Operative Unit of Laboratory Analysis, University Hospital S. Anna, 44121 Ferrara, Italy; (P.P.); (G.G.)
| | - Giovanni Guerra
- Operative Unit of Laboratory Analysis, University Hospital S. Anna, 44121 Ferrara, Italy; (P.P.); (G.G.)
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.D.); (G.B.); (C.S.); (R.G.)
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.D.); (G.B.); (C.S.); (R.G.)
- Thal-LAB, Research Laboratory “Elio Zago” on the Pharmacologic and Pharmacogenomic Therapy of Thalassemia, University of Ferrara, 44121 Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.D.); (G.B.); (C.S.); (R.G.)
- Biotechnology Center, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-974441
| |
Collapse
|
13
|
Zhong LPW, Chiu RWK. The Next Frontier in Noninvasive Prenatal Diagnostics: Cell-Free Fetal DNA Analysis for Monogenic Disease Assessment. Annu Rev Genomics Hum Genet 2022; 23:413-425. [PMID: 35316613 DOI: 10.1146/annurev-genom-110821-113411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the widespread clinical adoption of noninvasive screening for fetal chromosomal aneuploidies based on cell-free DNA analysis from maternal plasma, more researchers are turning their attention to noninvasive prenatal assessment for single-gene disorders. The development of a spectrum of approaches to analyze cell-free DNA in maternal circulation, including relative mutation dosage, relative haplotype dosage, and size-based methods, has expanded the scope of noninvasive prenatal testing to sex-linked and autosomal recessive disorders. Cell-free fetal DNA analysis for several of the more prevalent single-gene disorders has recently been introduced into clinical service. This article reviews the analytical approaches currently available and discusses the extent of the clinical implementation of noninvasive prenatal testing for single-gene disorders. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lilian Pok Wa Zhong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; ,
| | - Rossa W K Chiu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; ,
| |
Collapse
|
14
|
|
15
|
Wang CY, Tang YA, Lee IW, Chang FM, Chien CW, Pan HA, Sun HS. Development and validation of an expanded targeted sequencing panel for non-invasive prenatal diagnosis of sporadic skeletal dysplasia. BMC Med Genomics 2021; 14:212. [PMID: 34789231 PMCID: PMC8600686 DOI: 10.1186/s12920-021-01063-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
Background Skeletal dysplasia (SD) is one of the most common inherited neonatal disorders worldwide, where the recurrent pathogenic mutations in the FGFR2, FGFR3, COL1A1, COL1A2 and COL2A1 genes are frequently reported in both non-lethal and lethal SD. The traditional prenatal diagnosis of SD using ultrasonography suffers from lower accuracy and performed at latter gestational stage. Therefore, it remains in desperate need of precise and accurate prenatal diagnosis of SD in early pregnancy. With the advancements of next-generation sequencing (NGS) technology and bioinformatics analysis, it is feasible to develop a NGS-based assay to detect genetic defects in association with SD in the early pregnancy. Methods An ampliseq-based targeted sequencing panel was designed to cover 87 recurrent hotspots reported in 11 common dominant SD and run on both Ion Proton and NextSeq550 instruments. Thirty-six cell-free and 23 genomic DNAs were used for assay developed. Spike-in DNA prepared from standard sample harboring known mutation and normal sample were also employed to validate the established SD workflow. Overall performances of coverage, uniformity, and on-target rate, and the detecting limitations on percentage of fetal fraction and read depth were evaluated. Results The established targeted-seq workflow enables a single-tube multiplex PCR for library construction and shows high amplification efficiency and robust reproducibility on both Ion Proton and NextSeq550 platforms. The workflow reaches 100% coverage and both uniformity and on-target rate are > 96%, indicating a high quality assay. Using spike-in DNA with different percentage of known FGFR3 mutation (c.1138 G > A), the targeted-seq workflow demonstrated the ability to detect low-frequency variant of 2.5% accurately. Finally, we obtained 100% sensitivity and 100% specificity in detecting target mutations using established SD panel. Conclusions An expanded panel for rapid and cost-effective genetic detection of SD has been developed. The established targeted-seq workflow shows high accuracy to detect both germline and low-frequency variants. In addition, the workflow is flexible to be conducted in the majority of the NGS instruments and ready for routine clinical application. Taken together, we believe the established panel provides a promising diagnostic or therapeutic strategy for prenatal genetic testing of SD in routine clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01063-1.
Collapse
Affiliation(s)
- Ching-Yuan Wang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan.,Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | - Yen-An Tang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan.,Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | - I-Wen Lee
- FMC Fetal Medicine Center, Tainan, Taiwan
| | | | - Chun-Wei Chien
- Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | | | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan. .,Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Yang L, Wu Y, Hu Z, Zhang H, Pu D, Yan H, Zhang S, Jiang H, Liu Q, Yuan Y, Zhang Y, Chen F, Lu Y, Pan S, Lin L, Gao Y. Simultaneous detection of fetal aneuploidy, de novo FGFR3 mutations and paternally derived β-thalassemia by a novel method of noninvasive prenatal testing. Prenat Diagn 2021; 41:440-448. [PMID: 33340121 PMCID: PMC8048498 DOI: 10.1002/pd.5879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The aim is to develop a novel noninvasive prenatal testing (NIPT) method that simultaneously performs fetal aneuploidy screening and the detection of de novo and paternally derived mutations. METHODS A total of 68 pregnancies, including 26 normal pregnancies, 7 cases with fetal aneuploidies, 7 cases with fetal achondroplasia or thanatophoric dysplasia, 18 cases with fetal skeletal abnormalities, and 10 cases with β-thalassemia high risk were recruited. Plasma cell-free DNA was amplified by Targeted And Genome-wide simultaneous sequencing (TAGs-seq) to generate around 99% of total reads covering the whole-genome region and around 1% covering the target genes. The reads on the whole-genome region were analyzed for fetal aneuploidy using a binary hypothesis T-score and the reads on target genes were analyzed for point mutations by calculating the minor allelic frequency of loci on FGFR3 and HBB. TAGs-seq results were compared with conventional NIPT and diagnostic results. RESULTS In each sample, TAGs-seq generated 44.7-54 million sequencing reads covering the whole-genome region of 0.1-3× and the target genes of >1000×depth. All cases of fetal aneuploidy and de novo mutations of achondroplasia/thanatophoric dysplasia were identified with high sensitivities and specificities except for one false-negative paternal mutation of β-thalassemia. CONCLUSIONS TAGs-seq is a novel NIPT method that combines the fetal aneuploidy screening and the detection of de novo FGFR3 mutations and paternal HBB mutations.
Collapse
Affiliation(s)
- Lin Yang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yujing Wu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Zhiyang Hu
- Department of Obstetrics, Shenzhen People's Hospital, The Second Clinical Medical School of Jinan University, Shenzhen, China
| | | | | | | | | | | | - Qiang Liu
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Yuying Yuan
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | | | | | - Yanping Lu
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Silin Pan
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Linhua Lin
- Department of Obstetrics, Shenzhen People's Hospital, The Second Clinical Medical School of Jinan University, Shenzhen, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China
| |
Collapse
|
17
|
Abstract
OBJECTIVES Phacomatoses are a group of neuro-oculo-cutaneous syndromes/ neurocutaneous disorders, involving structures arising from the embryonic ectoderm. Most of phacomatoses including the most common ones:, neurofibromatosis type I and type II (NF1, NF2) and tuberosclerosis complex (TSC), are autosomal dominant genetic disorders with full penetrance and variable expression. As no effective treatment exists, the only way to prevent the disease, is by prenatal genetic diagnosis (either chorionic villus sampling-CVS or amniocentesis-AC) and termination of pregnancy or performing preimplantation genetic testing (PGT). As the risk for an affected offspring is 50% in every pregnancy of an affected parent, prenatal, and preimplantation testing are of great importance. However, those procedures are associated with technical and ethical concerns. This chapter shortly reviews the common phacomatoses emphasizes their genetics and inheritance. We will review the common methods for prenatal and preimplantation diagnoses and discuss its use in common phacomatoses. CONCLUSION Phacomatoses are common autosomal dominant genetic conditions with variable expression. Ante-natal genetic diagnosis is an appropriate approach for family planning in individuals affected by phacomatosis or parents of an affected child.
Collapse
|
18
|
Shkedi-Rafid S, Horton R, Lucassen A. What is the meaning of a 'genomic result' in the context of pregnancy? Eur J Hum Genet 2020; 29:225-230. [PMID: 32929236 DOI: 10.1038/s41431-020-00722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/21/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022] Open
Abstract
Prenatal genetic testing and analysis in the past was usually only offered when a particular fetal phenotype was noted or suspected, meaning that filtering and interpretation of genetic variants identified could be anchored in attempts to explain an existing health concern. Advanced genomic testing is now increasingly used in "low-risk" pregnancies, producing information on genotype adrift of the phenotypic data that is necessary to give it meaning, thus increasing the difficulty in predicting whether and how particular genetic variants might affect future development and health. A challenge to healthcare scientists, clinicians, and parents therefore is deciding what qualities prenatal genotypic variation should have in order to be constructed as a 'result.' At the same time, such tests are often re requested in order to make binary decisions about whether to continue a pregnancy or not. As a range of professional organizations develop guidelines on the use of advanced genomic testing during pregnancy, we highlight the particular difficulties of discovering ambiguous findings such as variants with uncertain clinical significance, susceptibility loci for neurodevelopmental problems and susceptibility to adult-onset diseases. We aim to foster international discussions about how decisions around disclosure are made and how uncertainty is communicated.
Collapse
Affiliation(s)
- Shiri Shkedi-Rafid
- Genetics Department, Hadassah Medical Center, Jerusalem, Israel.,Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Horton
- Clinical Ethics and Law at Southampton (CELS), Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anneke Lucassen
- Clinical Ethics and Law at Southampton (CELS), Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
19
|
Rabinowitz T, Shomron N. Genome-wide noninvasive prenatal diagnosis of monogenic disorders: Current and future trends. Comput Struct Biotechnol J 2020; 18:2463-2470. [PMID: 33005308 PMCID: PMC7509788 DOI: 10.1016/j.csbj.2020.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 02/09/2023] Open
Abstract
Noninvasive prenatal diagnosis (NIPD) is a risk-free alternative to invasive methods for prenatal diagnosis, e.g. amniocentesis. NIPD is based on the presence of fetal DNA within the mother’s plasma cell-free DNA (cfDNA). Though currently available for various monogenic diseases through detection of point mutations, NIPD is limited to detecting one mutation or up to several genes simultaneously. Noninvasive prenatal whole exome/genome sequencing (WES/WGS) has demonstrated genome-wide detection of fetal point mutations in a few studies. However, Genome-wide NIPD of monogenic disorders currently has several challenges and limitations, mainly due to the small amounts of cfDNA and fetal-derived fragments, and the deep coverage required. Several approaches have been suggested for addressing these hurdles, based on various technologies and algorithms. The first relevant software tool, Hoobari, recently became available. Here we review the approaches proposed and the paths required to make genome-wide monogenic NIPD widely available in the clinic.
Collapse
Affiliation(s)
- Tom Rabinowitz
- Faculty of Medicine and Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Faculty of Medicine and Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
20
|
Kikas T, Inno R, Ratnik K, Rull K, Laan M. C-allele of rs4769613 Near FLT1 Represents a High-Confidence Placental Risk Factor for Preeclampsia. Hypertension 2020; 76:884-891. [PMID: 32755415 DOI: 10.1161/hypertensionaha.120.15346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The variant rs4769613 T/C within the enhancer element near FLT1, an acknowledged gene in preeclampsia, was previously identified as a risk factor for preeclampsia in the genome-wide association study (GWAS) targeting placental genotypes. We aimed to test the robustness of this association in 2 Estonian cohorts. Both placental sample sets HAPPY PREGNANCY (Development of novel non-invasive biomarkers for fertility and healthy pregnancy; preeclampsia, n=44 versus nonpreeclampsia, n=1724) and REPROMETA (REPROgrammed fetal and/or maternal METAbolism; 52/277) exhibited suggestive association between rs4769613[C] variant and preeclampsia (logistic regression adjusted for gestational age and fetal sex, nominal P<0.05). Meta-analysis across 2 samples (96/2001) replicated the genome-wide association study outcome (Bonferroni corrected P=4×10-3; odds ratio, 1.75 [95% CI, 1.23-2.49]). No association was detected with gestational diabetes mellitus, preterm birth, and newborn parameters. Also, neither maternal nor paternal rs4769613 genotypes predisposed to preeclampsia. The exact role of placental rs4769613 genotype in the preeclampsia pathogenesis is to be clarified as no effect was detected on maternal baseline serum sFlt-1 (soluble fms-related receptor tyrosine kinase 1) levels. However, when placental FLT1 gene expression and maternal serum sFlt-1 measurements were stratified by placental rs4769613 genotypes, significantly higher transcript and biomarker levels were detected in preeclampsia versus nonpreeclampsia cases in the CC- and CT- (Student t test, P≤0.02), but not in the TT-genotype subgroup. We suggest that rs4769613 represents a conditional expression Quantitative Trait Locus, whereby only the enhancer with the C-allele reacts to promote the FLT1 expression in unfavorable placental conditions. The study highlighted that the placental FLT1 rs4769613 C-allele is a preeclampsia-specific risk factor. It may contribute to early identification of high-risk women, for example, when genotyped in the cffDNA available in maternal blood plasma.
Collapse
Affiliation(s)
- Triin Kikas
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| | - Rain Inno
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| | - Kaspar Ratnik
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
- SYNLAB Estonia OÜ, Tallinn, Estonia (K. Ratnik)
| | - Kristiina Rull
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
- Department of Obstetrics and Gynaecology (K. Rull), University of Tartu, Tartu, Estonia
- Women's Clinic, Tartu University Hospital, Tartu, Estonia (K. Rull)
| | - Maris Laan
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| |
Collapse
|
21
|
Zaitsev SY, Bogolyubova NV, Zhang X, Brenig B. Biochemical parameters, dynamic tensiometry and circulating nucleic acids for cattle blood analysis: a review. PeerJ 2020; 8:e8997. [PMID: 32509445 PMCID: PMC7247529 DOI: 10.7717/peerj.8997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
The animal's blood is the most complicated and important biological liquid for veterinary medicine. In addition to standard methods that are always in use, recent technologies such as dynamic tensiometry (DT) of blood serum and PCR analysis of particular markers are in progress. The standard and modern biochemical tests are commonly used for general screening and, finally, complete diagnosis of animal health. Interpretation of major biochemical parameters is similar across animal species, but there are a few peculiarities in each case, especially well-known for cattle. The following directions are discussed here: hematological indicators; "total protein" and its fractions; some enzymes; major low-molecular metabolites (glucose, lipids, bilirubin, etc.); cations and anions. As example, the numerous correlations between DT data and biochemical parameters of cattle serum have been obtained and discussed. Changes in the cell-free nucleic acids (cfDNA) circulating in the blood have been studied and analyzed in a variety of conditions; for example, pregnancy, infectious and chronic diseases, and cancer. CfDNA can easily be detected using standard molecular biological techniques like DNA amplification and next-generation sequencing. The application of digital PCR even allows exact quantification of copy number variations which are for example important in prenatal diagnosis of chromosomal aberrations.
Collapse
Affiliation(s)
- Sergei Yu. Zaitsev
- Department of Physiology and Biochemistry of Farm Animals, Federal Science Center for Animal Husbandry Named After Academy Member L.K. Ernst, Podolsk, Moscow Region, Russian Federation
| | - Nadezhda V. Bogolyubova
- Department of Physiology and Biochemistry of Farm Animals, Federal Science Center for Animal Husbandry Named After Academy Member L.K. Ernst, Podolsk, Moscow Region, Russian Federation
| | - Xuying Zhang
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Li SY, Ding YQ, Si YL, Ye MJ, Xu CM, Qi XP. 5P Strategies for Management of Multiple Endocrine Neoplasia Type 2: A Paradigm of Precision Medicine. Front Endocrinol (Lausanne) 2020; 11:543246. [PMID: 33071967 PMCID: PMC7531599 DOI: 10.3389/fendo.2020.543246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple endocrine neoplasia type 2 (MEN2) is a neuroendocrine cancer syndrome characterized by medullary thyroid carcinoma, in combination or not with pheochromocytoma, hyperparathyroidism, and extra-endocrine features. MEN2 syndrome includes two clinically distinct forms subtyped as MEN2A and MEN2B. Nearly all MEN2 cases are caused by germline mutations of the RET proto-oncogene. In this review, we propose "5P" strategies for management of MEN2: prevention, prediction, personalization, psychological support, and participation, which could effectively improve clinical outcomes of patients. Based on RET mutations, MEN2 could be prevented through prenatal diagnosis or preimplantation genetic testing. Identification of pathogenic mutations in RET can enable early diagnosis of MEN2. Combining RET mutation testing with measurement of serum calcitonin, plasma or urinary metanephrine/normetanephrine, and serum parathyroid hormone levels could allow risk stratification and accurately prediction of MEN2 progression, thus facilitating implementation of personalized precision treatments to increase disease-free survival and overall survival. Furthermore, increased awareness of MEN2 is needed, which requires participation of physicians, patients, family members, and related organizations. Psychological support is also important for patients with MEN2 to promote comprehensive management of MEN2 symptoms. The "5P" strategies for management of MEN2 represent a typical clinical example of precision medicine. These strategies could effectively improve the health of MEN2 patient, and avoid adverse outcomes, including death and major morbidity, from MEN2.
Collapse
Affiliation(s)
- Shu-Yuan Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qiang Ding
- Department of Oncologic and Urologic Surgery, The 903rd PLA Hospital, Wenzhou Medical University, Hangzhou, China
| | - You-Liang Si
- Department of Oncologic and Urologic Surgery, The 903rd PLA Hospital, Wenzhou Medical University, Hangzhou, China
| | - Mu-Jin Ye
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Ming Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Ping Qi
- Department of Oncologic and Urologic Surgery, The 903rd PLA Hospital, Wenzhou Medical University, Hangzhou, China
- *Correspondence: Xiao-Ping Qi
| |
Collapse
|
23
|
Koumbaris G, Achilleos A, Nicolaou M, Loizides C, Tsangaras K, Kypri E, Mina P, Sismani C, Velissariou V, Christopoulou G, Constantoulakis P, Manolakos E, Papoulidis I, Stambouli D, Ioannides M, Patsalis P. Targeted capture enrichment followed by NGS: development and validation of a single comprehensive NIPT for chromosomal aneuploidies, microdeletion syndromes and monogenic diseases. Mol Cytogenet 2019; 12:48. [PMID: 31832098 PMCID: PMC6873497 DOI: 10.1186/s13039-019-0459-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Non-invasive prenatal testing (NIPT) has been widely adopted for the detection of fetal aneuploidies and microdeletion syndromes, nevertheless, limited clinical utilization has been reported for the non-invasive prenatal screening of monogenic diseases. In this study, we present the development and validation of a single comprehensive NIPT for prenatal screening of chromosomal aneuploidies, microdeletions and 50 autosomal recessive disorders associated with severe or moderate clinical phenotype. RESULTS We employed a targeted capture enrichment technology powered by custom TArget Capture Sequences (TACS) and multi-engine bioinformatics analysis pipeline to develop and validate a novel NIPT test. This test was validated using 2033 cell-fee DNA (cfDNA) samples from maternal plasma of pregnant women referred for NIPT and paternal genomic DNA. Additionally, 200 amniotic fluid and CVS samples were used for validation purposes. All NIPT samples were correctly classified exhibiting 100% sensitivity (CI 89.7-100%) and 100% specificity (CI 99.8-100%) for chromosomal aneuploidies and microdeletions. Furthermore, 613 targeted causative mutations, of which 87 were unique, corresponding to 21 monogenic diseases, were identified. For the validation of the assay for prenatal diagnosis purposes, all aneuploidies, microdeletions and point mutations were correctly detected in all 200 amniotic fluid and CVS samples. CONCLUSIONS We present a NIPT for aneuploidies, microdeletions, and monogenic disorders. To our knowledge this is the first time that such a comprehensive NIPT is available for clinical implementation.
Collapse
Affiliation(s)
- George Koumbaris
- NIPD Genetics Public Company Ltd, Neas Engomis 31, Nicosia, 2409 Cyprus
| | | | - Michalis Nicolaou
- NIPD Genetics Public Company Ltd, Neas Engomis 31, Nicosia, 2409 Cyprus
| | | | | | - Elena Kypri
- NIPD Genetics Public Company Ltd, Neas Engomis 31, Nicosia, 2409 Cyprus
| | - Petros Mina
- NIPD Genetics Public Company Ltd, Neas Engomis 31, Nicosia, 2409 Cyprus
| | - Carolina Sismani
- The Cyprus Institute of Neurology and Genetics, International Airport Avenue, 6, Ayios Dometios, Nicosia, 2370 Cyprus
- Cyprus School of Molecular Medicine, International Airport Avenue, 6, Ayios Dometios, Nicosia, 2370 Cyprus
| | - Voula Velissariou
- NIPD Genetics Public Company Ltd, Neas Engomis 31, Nicosia, 2409 Cyprus
- Cytogenetics and Molecular Genetics Department, Bioiatriki Healthcare Group, Athens, Greece
| | | | | | | | | | | | - Marios Ioannides
- NIPD Genetics Public Company Ltd, Neas Engomis 31, Nicosia, 2409 Cyprus
| | | |
Collapse
|
24
|
Suwannakhon N, Pangeson T, Seeratanachot T, Mahingsa K, Pingyod A, Bumrungpakdee W, Sanguansermsri T. Noninvasive prenatal screening test for compound heterozygous beta thalassemia using an amplification refractory mutation system real-time polymerase chain reaction technique. Hematol Rep 2019; 11:8124. [PMID: 31579144 PMCID: PMC6761473 DOI: 10.4081/hr.2019.8124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/05/2019] [Indexed: 11/23/2022] Open
Abstract
We propose using a modified amplification refractory mutation system real-time polymerase chain reaction (ARMS RTPCR) technique to exclude the invasive prenatal diagnosis for a non-paternally inherited beta thalassemia mutation in couples atrisk for having a baby with CHBT. The ARMS RT-PCR method was performed for 36 at-risk couples by using isolated fetal cell-free DNA from maternal plasma. The modified ARMS RT-PCR primers targeted one of the following paternally inherited beta thalassemia mutation: -28 A→G, CD17 A→T, CD 26 G→A, IVS1-1 G→T and CD 41-42 -CTTT. The method could be successfully employed for NIPST starting with the 7th week of gestation. The results showed that 19 pregnant women were negative for PIBTM (53%). After an on-track and on-time of one year, including postnatal thalassemia blood tests, none of the babies showed symptoms or signs of beta thalassemia disease. We concluded that the modified ARMS RT-PCR method was an accurate, cost-effective and feasible method for use as a NIPST for at-risk couples with the potential of having a baby with CHBT.
Collapse
|
25
|
Yan Y, Wang F, Zhang C, Jin X, Zhang Q, Feng X, Hao S, Gao H, Ma X. Evaluation of droplet digital PCR for non-invasive prenatal diagnosis of phenylketonuria. Anal Bioanal Chem 2019; 411:7115-7126. [PMID: 31485704 DOI: 10.1007/s00216-019-02087-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
This study was carried out to establish a non-invasive prenatal diagnosis method for phenylketonuria (PKU) based on droplet digital PCR (ddPCR) and to evaluate its accuracy by comparison with conventional invasive diagnostic methods. A total of 24 PKU pedigrees that required prenatal diagnosis were studied, in which the genetic mutations in the probands and parents were unambiguous. Prenatal diagnosis of sibling fetuses was performed using traditional invasive prenatal diagnostic methods as a standard. At the same time, cell-free DNA (cfDNA) was extracted from maternal plasma and the fetal genes contained within were typed and quantified using ddPCR method. Invasive prenatal diagnosis determined that 3 of the 24 fetuses were affected, 8 of them were normal, and 13 were heterozygous carriers of pathogenic mutations. Successful non-invasive prenatal diagnosis analysis of PAH gene mutations was performed for 8 of the families using ddPCR method. Non-invasive prenatal diagnosis results were consistent with the results of the invasive prenatal diagnoses and no false positive or false negative results were found. In conclusion, this study is the first to establish non-invasive prenatal diagnosis of PKU based on ddPCR. The method showed high sensitivity and specificity from cfDNA, indicating that ddPCR is a reliable non-invasive prenatal diagnosis tool for PKU diagnosis. Graphical abstract.
Collapse
Affiliation(s)
- Yousheng Yan
- National Research Institute for Family Planning, No. 12 Dahuisi Road, Haidian District, Beijing, 100081, China.,Graduate School of Peking Union Medical College, New Building 18, No. 9 Dongdan Santiao, Dongcheng District, Beijing, 100730, China.,Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, No. 143, Qili River North Street, Lanzhou, 730050, Gansu, China
| | - Fang Wang
- National Research Institute for Family Planning, No. 12 Dahuisi Road, Haidian District, Beijing, 100081, China.,Graduate School of Peking Union Medical College, New Building 18, No. 9 Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | - Chuan Zhang
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, No. 143, Qili River North Street, Lanzhou, 730050, Gansu, China
| | - Xiaohua Jin
- National Research Institute for Family Planning, No. 12 Dahuisi Road, Haidian District, Beijing, 100081, China.,Graduate School of Peking Union Medical College, New Building 18, No. 9 Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | - Qinhua Zhang
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, No. 143, Qili River North Street, Lanzhou, 730050, Gansu, China
| | - Xuan Feng
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, No. 143, Qili River North Street, Lanzhou, 730050, Gansu, China
| | - Shengju Hao
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, No. 143, Qili River North Street, Lanzhou, 730050, Gansu, China
| | - Huafang Gao
- National Research Institute for Family Planning, No. 12 Dahuisi Road, Haidian District, Beijing, 100081, China. .,Graduate School of Peking Union Medical College, New Building 18, No. 9 Dongdan Santiao, Dongcheng District, Beijing, 100730, China.
| | - Xu Ma
- National Research Institute for Family Planning, No. 12 Dahuisi Road, Haidian District, Beijing, 100081, China. .,Graduate School of Peking Union Medical College, New Building 18, No. 9 Dongdan Santiao, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
26
|
Breveglieri G, D'Aversa E, Finotti A, Borgatti M. Non-invasive Prenatal Testing Using Fetal DNA. Mol Diagn Ther 2019; 23:291-299. [PMID: 30712216 DOI: 10.1007/s40291-019-00385-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Non-invasive prenatal diagnosis (NIPD) is based on fetal DNA analysis starting from a simple peripheral blood sample, thus avoiding risks associated with conventional invasive techniques. During pregnancy, the fetal DNA increases to approximately 3-13% of the total circulating free DNA in maternal plasma. The very low amount of circulating cell-free fetal DNA (ccffDNA) in maternal plasma is a crucial issue, and requires specific and optimized techniques for ccffDNA purification from maternal plasma. In addition, highly sensitive detection approaches are required. In recent years, advanced ccffDNA investigation approaches have allowed the application of non-invasive prenatal testing (NIPT) to determine fetal sex, fetal rhesus D (RhD) genotyping, aneuploidies, micro-deletions and the detection of paternally inherited monogenic disorders. Finally, complex and innovative technologies such as digital polymerase chain reaction (dPCR) and next-generation sequencing (NGS) (exhibiting higher sensitivity and/or the capability to read the entire fetal genome from maternal plasma DNA) are expected to allow the detection, in the near future, of maternally inherited mutations that cause genetic diseases. The aim of this review is to introduce the principal ccffDNA characteristics and their applications as the basis of current and novel NIPT.
Collapse
Affiliation(s)
- Giulia Breveglieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.,Interuniversity Consortium for Biotechnologies (CIB), Trieste, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy. .,Biotechnology Center, University of Ferrara, Via Fossato di Mortara 64, 44121, Ferrara, Italy.
| |
Collapse
|
27
|
Yang X, Zhou Q, Zhou W, Zhong M, Guo X, Wang X, Fan X, Yan S, Li L, Lai Y, Wang Y, Huang J, Ye Y, Zeng H, Chuan J, Du Y, Ma C, Li P, Song Z, Xu X. A Cell-free DNA Barcode-Enabled Single-Molecule Test for Noninvasive Prenatal Diagnosis of Monogenic Disorders: Application to β-Thalassemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802332. [PMID: 31179213 PMCID: PMC6548944 DOI: 10.1002/advs.201802332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Indexed: 05/13/2023]
Abstract
Noninvasive prenatal testing of common aneuploidies has become routine over the past decade, but testing of monogenic disorders remains a challenge in clinical implementation. Most recent studies have inherent limitations, such as complicated procedures, a lack of versatility, and the need for prior knowledge of parental genotypes or haplotypes. To overcome these limitations, a robust and versatile next-generation sequencing-based cell-free DNA (cfDNA) allelic molecule counting system termed cfDNA barcode-enabled single-molecule test (cfBEST) is developed for the noninvasive prenatal diagnosis (NIPD) of monogenic disorders. The accuracy of cfBEST is found to be comparable to that of droplet digital polymerase chain reaction (ddPCR) in detecting low-abundance mutations in cfDNA. The analytical validity of cfBEST is evidenced by a β-thalassemia assay, in which a blind validation study of 143 at-risk pregnancies reveals a sensitivity of 99.19% and a specificity of 99.92% on allele detection. Because the validated cfBEST method can be used to detect maternal-fetal genotype combinations in cfDNA precisely and quantitatively, it holds the potential for the NIPD of human monogenic disorders.
Collapse
Affiliation(s)
- Xingkun Yang
- Department of Medical GeneticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic DiseasesGuangzhouGuangdong510515China
- Affiliated Foshan Maternity & Child Healthcare HospitalSouthern Medical UniversityFoshanGuangdong528000China
- Guangdong Key Laboratory of Biological ChipGuangzhouGuangdong510515China
| | - Qinghua Zhou
- The Center for Precision Medicine of First Affiliated HospitalBiomedical Translational Research InstituteSchool of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Hunan Research Center for Big Data Application in GenomicsGenetalks Inc.ChangshaHunan410152China
| | - Wanjun Zhou
- Department of Medical GeneticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic DiseasesGuangzhouGuangdong510515China
- Guangdong Key Laboratory of Biological ChipGuangzhouGuangdong510515China
| | - Mei Zhong
- Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xiaoling Guo
- Affiliated Foshan Maternity & Child Healthcare HospitalSouthern Medical UniversityFoshanGuangdong528000China
| | - Xiaofeng Wang
- Hunan Research Center for Big Data Application in GenomicsGenetalks Inc.ChangshaHunan410152China
| | - Xin Fan
- Guangxi Zhuang Autonomous Region Women and Children Care HospitalNanningGuangxi530000China
| | - Shanhuo Yan
- Qinzhou Maternity & Child Healthcare HospitalQinzhouGuangxi535000China
| | - Liyan Li
- Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yunli Lai
- Guangxi Zhuang Autonomous Region Women and Children Care HospitalNanningGuangxi530000China
| | - Yongli Wang
- Hunan Research Center for Big Data Application in GenomicsGenetalks Inc.ChangshaHunan410152China
| | - Jin Huang
- Department of Medical GeneticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic DiseasesGuangzhouGuangdong510515China
- Guangdong Key Laboratory of Biological ChipGuangzhouGuangdong510515China
| | - Yuhua Ye
- Department of Medical GeneticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic DiseasesGuangzhouGuangdong510515China
- Guangdong Key Laboratory of Biological ChipGuangzhouGuangdong510515China
| | - Huaping Zeng
- Hunan Research Center for Big Data Application in GenomicsGenetalks Inc.ChangshaHunan410152China
| | - Jun Chuan
- Hunan Research Center for Big Data Application in GenomicsGenetalks Inc.ChangshaHunan410152China
| | - Yuanping Du
- Hunan Research Center for Big Data Application in GenomicsGenetalks Inc.ChangshaHunan410152China
| | - Chouxian Ma
- Hunan Research Center for Big Data Application in GenomicsGenetalks Inc.ChangshaHunan410152China
| | - Peining Li
- Department of GeneticsYale UniversityNew HavenCT06520USA
| | - Zhuo Song
- Hunan Research Center for Big Data Application in GenomicsGenetalks Inc.ChangshaHunan410152China
| | - Xiangmin Xu
- Department of Medical GeneticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic DiseasesGuangzhouGuangdong510515China
- Guangdong Key Laboratory of Biological ChipGuangzhouGuangdong510515China
| |
Collapse
|
28
|
Mellis R, Chandler N, Chitty LS. Next-generation sequencing and the impact on prenatal diagnosis. Expert Rev Mol Diagn 2018; 18:689-699. [PMID: 29962246 DOI: 10.1080/14737159.2018.1493924] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The advent of affordable and rapid next-generation sequencing has been transformative for prenatal diagnosis. Sequencing of cell-free DNA in maternal plasma has enabled the development of not only a highly sensitive screening test for fetal aneuploidies, but now definitive noninvasive prenatal diagnosis for monogenic disorders at an early gestation. Sequencing of fetal exomes offers broad diagnostic capability for pregnancies with unexpected fetal anomalies, improving the yield and accuracy of diagnoses and allowing better counseling for parents. The challenge now is to translate these approaches into mainstream use in the clinic. Areas covered: Here, the authors review the current literature to describe the technologies available and how these have evolved. The opportunities and challenges at hand, including considerations for service delivery, counseling, and development of ethical guidelines, are discussed. Expert commentary: As technology continues to advance, future developments may be toward noninvasive fetal whole exome or whole genome sequencing and a universal method for noninvasive prenatal diagnosis without the need to sequence both parents or an affected proband. Expansion of cell-free fetal DNA analysis to include the transcriptome and the methylome is likely to yield clinical benefits for monitoring other pregnancy-related pathologies such as preeclampsia and intrauterine growth restriction.
Collapse
Affiliation(s)
- Rhiannon Mellis
- a Genetics and Genomic Medicine , Great Ormond Street NHS Foundation Trust , London , UK
| | - Natalie Chandler
- b North Thames NHS Regional Genetics Service , Great Ormond Street NHS Foundation Trust , London , UK
| | - Lyn S Chitty
- a Genetics and Genomic Medicine , Great Ormond Street NHS Foundation Trust , London , UK.,c Genetics and Genomic Medicine , UCL Great Ormond Street Institute of Child Health , London , UK
| |
Collapse
|
29
|
Bergougnoux A, Taulan-Cadars M, Claustres M, Raynal C. Current and future molecular approaches in the diagnosis of cystic fibrosis. Expert Rev Respir Med 2018; 12:415-426. [PMID: 29580110 DOI: 10.1080/17476348.2018.1457438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Cystic Fibrosis is among the first diseases to have general population genetic screening tests and one of the most common indications of prenatal and preimplantation genetic diagnosis for single gene disorders. During the past twenty years, thanks to the evolution of diagnostic techniques, our knowledge of CFTR genetics and pathophysiological mechanisms involved in cystic fibrosis has significantly improved. Areas covered: Sanger sequencing and quantitative methods greatly contributed to the identification of more than 2,000 sequence variations reported worldwide in the CFTR gene. We are now entering a new technological age with the generalization of high throughput approaches such as Next Generation Sequencing and Droplet Digital PCR technologies in diagnostics laboratories. These powerful technologies open up new perspectives for scanning the entire CFTR locus, exploring modifier factors that possibly influence the clinical evolution of patients, and for preimplantation and prenatal diagnosis. Expert commentary: Such breakthroughs would, however, require powerful bioinformatics tools and relevant functional tests of variants for analysis and interpretation of the resulting data. Ultimately, an optimal use of all those resources may improve patient care and therapeutic decision-making.
Collapse
Affiliation(s)
- Anne Bergougnoux
- a Laboratoire de Génétique Moléculaire , Centre Hospitalier Universitaire de Montpellier , Montpellier , France.,b EA 7402 , Université de Montpellier , Montpellier , France
| | | | | | - Caroline Raynal
- a Laboratoire de Génétique Moléculaire , Centre Hospitalier Universitaire de Montpellier , Montpellier , France
| |
Collapse
|
30
|
Beyond screening for chromosomal abnormalities: Advances in non-invasive diagnosis of single gene disorders and fetal exome sequencing. Semin Fetal Neonatal Med 2018; 23:94-101. [PMID: 29305293 DOI: 10.1016/j.siny.2017.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Emerging genomic technologies, largely based around next generation sequencing (NGS), are offering new promise for safer prenatal genetic diagnosis. These innovative approaches will improve screening for fetal aneuploidy, allow definitive non-invasive prenatal diagnosis (NIPD) of single gene disorders at an early gestational stage without the need for invasive testing, and improve our ability to detect monogenic disorders as the aetiology of fetal abnormalities. This presents clinicians and scientists with novel challenges as well as opportunities. In addition, the transformation of prenatal genetic testing arising from the introduction of whole genome, exome and targeted NGS produces unprecedented volumes of data requiring complex analysis and interpretation. Now translating these technologies to the clinic has become the goal of clinical genomics, transforming modern healthcare and personalized medicine. The achievement of this goal requires the most progressive technological tools for rapid high-throughput data generation at an affordable cost. Furthermore, as larger proportions of patients with genetic disease are identified we must be ready to offer appropriate genetic counselling to families and potential parents. In addition, the identification of novel treatment targets will continue to be explored, which is likely to introduce ethical considerations, particularly if genome editing techniques are included in these targeted treatments and transferred into mainstream personalized healthcare. Here we review the impact of NGS technology to analyse cell-free DNA (cfDNA) in maternal plasma to deliver NIPD for monogenic disorders and allow more comprehensive investigation of the abnormal fetus through the use of exome sequencing.
Collapse
|
31
|
Jenkins LA, Deans ZC, Lewis C, Allen S. Delivering an accredited non-invasive prenatal diagnosis service for monogenic disorders and recommendations for best practice. Prenat Diagn 2018; 38:44-51. [PMID: 29266293 DOI: 10.1002/pd.5197] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Lucy A. Jenkins
- North East Thames Regional Genetics Service; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| | - Zandra C. Deans
- UK NEQAS for Molecular Genetics, Department of Laboratory Medicine; Royal Infirmary of Edinburgh; Edinburgh UK
| | - Celine Lewis
- North East Thames Regional Genetics Service; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
- Genetics and Genomic Medicine; UCL Great Ormond Street Institute of Child Health; London UK
| | - Stephanie Allen
- West Midlands Regional Genetics Laboratory; Birmingham Women's NHS Foundation Trust; Birmingham UK
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Noninvasive prenatal diagnosis for single gene disorders is coming to fruition in its clinical utility. The presence of cell-free DNA in maternal plasma has been recognized for many years, and a number of applications have developed from this. Noninvasive prenatal diagnosis for single gene disorders has lagged behind due to complexities of technology development, lack of investment and the need for validation samples for rare disorders. RECENT FINDINGS Publications are emerging demonstrating a variety of technical approaches and feasibility of clinical application. Techniques for analysis of cell-free DNA including digital PCR, next-generation sequencing and relative haplotype dosage have been used most often for assay development. Analysis of circulating fetal cells in the maternal blood is still being investigated as a viable alternative and more recently transcervical trophoblast cells. Studies exploring ethical and social issues are generally positive but raise concerns around the routinization of prenatal testing. SUMMARY Further work is necessary to make testing available to all patients with a pregnancy at risk of a single gene disorder, and it remains to be seen if the development of more powerful technologies such as isolation and analysis of single cells will shift the emphasis of noninvasive prenatal diagnosis. As testing becomes possible for a wider range of conditions, more ethical questions will become relevant.
Collapse
|
33
|
Liu Z, Feng D, Gu D, Zheng R, Esperat C, Gao W. Differentially expressed haptoglobin as a potential biomarker for type 2 diabetic mellitus in Hispanic population. Biofactors 2017; 43:424-433. [PMID: 28218436 DOI: 10.1002/biof.1352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 01/01/2023]
Abstract
Glycosylated hemoglobin (HbA1c) measurement is currently a primary tool for diagnosis of type 2 diabetes mellitus (T2DM), especially for the assessment of chronic hyperglycemia. However, many studies reported the limitation of using HbA1c for T2DM diagnosis/prognosis, such as poor sensitivities, difficult standardization, and variable cut points across ethnic groups. Therefore, the aim of this study was to discover novel biomarkers associated with elevated HbA1c levels as complementary T2DM diagnostic tools. Two-dimensional difference gel electrophoresis combined with mass spectrometry were applied for protein profile analyses of two pooled serum samples collected from Hispanic T2DM subjects (n = 74) with HbA1c ≥7 and HbA1c< 7, respectively. Isoforms of haptoglobin (Hp) α1/α2 chains were significantly altered in pooled serum samples from T2DM subjects with HbA1c ≥7 compared to those with HbA1c< 7. Hp genotypes of 262 Hispanic subjects, including 109 T2DM and 153 nondiabetic controls, were further determined by PCRs and western blotting analysis. Meanwhile, a new droplet digital PCR method for Hp genotyping was also established. The distribution of Hp2 allele was higher in T2DM subjects compared to nondiabetic controls and the HbA1c levels of T2DM subjects carrying at least one Hp2 allele tended to be higher than T2DM subjects with Hp 1-1. In summary, our results indicate that differentially expressed serum Hp protein isoforms could be associated with HbA1c levels and subjects with Hp2 allele have a higher risk for the occurrence of T2DM in Hispanic population. © 2016 BioFactors, 43(3):424-433, 2017.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX
| | - Du Feng
- School of Nursing, University of Nevada, Las Vegas, NV
| | - Danshan Gu
- Huafang College, Xuzhou Medical University, Xuzhou, China
| | - Richard Zheng
- Department of Biology, Texas Tech University, Lubbock, TX
| | - Christina Esperat
- School of Nursing, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX
| |
Collapse
|
34
|
Cao L, Cui X, Hu J, Li Z, Choi JR, Yang Q, Lin M, Ying Hui L, Xu F. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosens Bioelectron 2017; 90:459-474. [PMID: 27818047 DOI: 10.1016/j.bios.2016.09.082] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/18/2022]
Abstract
Since the invention of polymerase chain reaction (PCR) in 1985, PCR has played a significant role in molecular diagnostics for genetic diseases, pathogens, oncogenes and forensic identification. In the past three decades, PCR has evolved from end-point PCR, through real-time PCR, to its current version, which is the absolute quantitive digital PCR (dPCR). In this review, we first discuss the principles of all key steps of dPCR, i.e., sample dispersion, amplification, and quantification, covering commercialized apparatuses and other devices still under lab development. We highlight the advantages and disadvantages of different technologies based on these steps, and discuss the emerging biomedical applications of dPCR. Finally, we provide a glimpse of the existing challenges and future perspectives for dPCR.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xingye Cui
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jie Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jane Ru Choi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Li Ying Hui
- Foundation of State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
35
|
Pecker LH, Schaefer BA, Luchtman-Jones L. Knowledge insufficient: the management of haemoglobin SC disease. Br J Haematol 2016; 176:515-526. [PMID: 27982424 DOI: 10.1111/bjh.14444] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although haemoglobin SC (HbSC) accounts for 30% of sickle cell disease (SCD) in the United States and United Kingdom, evidence-based guidelines for genotype specific management are lacking. The unique pathology of HbSC disease is complex, characterized by erythrocyte dehydration, intracellular sickling and increased blood viscosity. The evaluation and treatment of patients with HbSC is largely inferred from studies of SCD consisting mostly of haemoglobin SS (HbSS) patients. These studies are underpowered to allow definitive conclusions about HbSC. We review the pathophysiology of HbSC disease, including known and potential differences between HbSS and HbSC, and highlight knowledge gaps in HbSC disease management. Clinical and translational research is needed to develop targeted treatments and to validate management recommendations for efficacy, safety and impact on quality of life for people with HbSC.
Collapse
Affiliation(s)
- Lydia H Pecker
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Beverly A Schaefer
- Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lori Luchtman-Jones
- Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|