1
|
Santana PA, Forero JC, Guzmán F, Gaete S, Acosta F, Mercado LA, Álvarez CA. Detection and Localization of IL-8 and CXCR1 in Rainbow Trout Larvae in Response to Pseudomonas aeruginosa Lipopolysaccharide. Animals (Basel) 2024; 14:2878. [PMID: 39409827 PMCID: PMC11475925 DOI: 10.3390/ani14192878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The salmonid industry faces challenges due to the susceptibility of fish to opportunistic pathogens, particularly in early developmental stages. Understanding the immunological capacity during these stages is crucial for developing effective disease control strategies. IL-8R, a member of the G-protein-coupled receptor family, acts as a receptor for Interleukin 8 (IL-8). The binding of IL-8 to IL-8R plays a major role in the pathophysiology of a wide spectrum of inflammatory conditions. This study focused on the immune response capacity of rainbow trout (Oncorhynchus mykiss) larvae by analyzing IL-8/CXCR1 response to lipopolysaccharide (LPS) from Pseudomonas aeruginosa. Previous research demonstrated that LPS from P. aeruginosa acts as a potent immunostimulant in teleost, enhancing pro-inflammatory cytokines. The methodology included in silico analysis and the synthesis and characterization of an omCXCR1-derived epitope peptide, which was used to produce omCXCR1-specific anti98 serum in mice. The research revealed that rainbow trout larvae 19 days post-hatching (dph) exhibited pronounced immune responses post-stimulation with 1 µg/mL of LPS. This was evidenced by the upregulated protein expression of IL-8 and omCXCR1 in trout larvae 2 and 8 h after LPS challenge, as analyzed by ELISA and immunohistochemistry. Furthermore, fluorescence microscopy successfully revealed the colocalization of IL-8 and its receptor in cells from mucosal tissues after LPS challenge in larvae 19 dph. These findings underscore the efficacy of LPS immersion as a method to activate the innate immune system in trout larvae. Furthermore, we propose IL-8 and its receptor as molecular markers for evaluating immunostimulation in the early developmental stages of salmonids.
Collapse
Affiliation(s)
- Paula A. Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Juan C. Forero
- Laboratorio de Bioingeniería de Tejidos e Innovación Odontológica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile;
- Cátedra de Ciencias Básicas, Escuela de Odontología, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
| | - Sandra Gaete
- Laboratorio de Diagnóstico de COVID-19, Unidad de Detección y Análisis, Universidad de O’Higgins, Rancagua 2841959, Chile;
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Islas Canarias, 35214 Taliarte, Spain;
| | - Luis A. Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Claudio A. Álvarez
- Laboratorio de Cultivo de Peces, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
| |
Collapse
|
2
|
Kumar P, Schroder EA, Rajaram MVS, Harris EN, Ganesan LP. The Battle of LPS Clearance in Host Defense vs. Inflammatory Signaling. Cells 2024; 13:1590. [PMID: 39329771 PMCID: PMC11430141 DOI: 10.3390/cells13181590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Lipopolysaccharide (LPS) in blood circulation causes endotoxemia and is linked to various disease conditions. Current treatments focus on preventing LPS from interacting with its receptor Toll-like receptor 4 (TLR4) and reducing inflammation. However, our body has a natural defense mechanism: reticuloendothelial cells in the liver rapidly degrade and inactivate much of the circulating LPS within minutes. But this LPS clearance mechanism is not perfect. Excessive LPS that escape this clearance mechanism cause systemic inflammatory damage through TLR4. Despite its importance, the role of reticuloendothelial cells in LPS elimination is not well-studied, especially regarding the specific cells, receptors, and mechanisms involved. This gap hampers the development of effective therapies for endotoxemia and related diseases. This review consolidates the current understanding of LPS clearance, narrates known and explores potential mechanisms, and discusses the relationship between LPS clearance and LPS signaling. It also aims to highlight key insights that can guide the development of strategies to reduce circulating LPS by way of bolstering host defense mechanisms. Ultimately, we seek to provide a foundation for future research that could lead to innovative approaches for enhancing the body's natural ability to clear LPS and thereby lower the risk of endotoxin-related inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Evan A. Schroder
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Latha P. Ganesan
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
3
|
Dong T, Li J, Liu Y, Zhou S, Wei X, Hua H, Tang K, Zhang X, Wang Y, Wu Z, Gao C, Zhang H. Roles of immune dysregulation in MASLD. Biomed Pharmacother 2024; 170:116069. [PMID: 38147736 DOI: 10.1016/j.biopha.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide. Its occurrence and progression involve the process from simple hepatic steatosis to metabolic dysfunction associated steatohepatitis (MASH), which could develop into advanced liver fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). Growing evidences support that the pathogenesis and progression of MASLD are closely related to immune system dysfunction. This review aims to summarize the association of MASLD with immune disorders and the prospect of using immunotherapy for MASLD.
Collapse
Affiliation(s)
- Tingyu Dong
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Jiajin Li
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuqing Liu
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Shikai Zhou
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China
| | - Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Hongting Hua
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kechao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yiming Wang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Zhen Wu
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Chaobing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Ogbodo E, Michelangeli F, Williams JHH. Exogenous heat shock proteins HSPA1A and HSPB1 regulate TNF-α, IL-1β and IL-10 secretion from monocytic cells. FEBS Open Bio 2023; 13:1922-1940. [PMID: 37583307 PMCID: PMC10549225 DOI: 10.1002/2211-5463.13695] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023] Open
Abstract
Endogenous molecules, such as heat shock proteins (HSP), can function as danger signals when released into the extracellular environment in response to cell stress, where they elicit an immune response such as cytokine secretion. There has also been some suggestion that contamination of exogenous HSPs with lipopolysaccharide (LPS) may be responsible for these effects. This study investigates the effects of exogenous HSPA1A and HSPB1 on the activation of immune cells and the resulting secretion of cytokines, which are involved in inflammatory responses. To address whether exogenous HSPs can directly activate cytokine secretion, naïve U937 cells, differentiated U937 cells and peripheral blood mononuclear cells (PBMCs) were treated with either exogenously applied HSPA1A or HSPB1 and then secreted IL-1β, TNF-α and IL-10 were measured by ELISA. Both HSPs were able to induce a dose-dependent increase in IL-10 secretion from naïve U937 cells and dose-dependent IL-1β, TNF-α and IL-10 secretion were also observed in differentiated U937 cells and PBMCs. We also observed that CD14 affects the secretion levels of IL-1β, TNF-α and IL-10 from cells in response to exogenous HSP treatment. In addition, HSPA1A and HSPB1 were shown to interact with CD14, CD36 and CD11b extracellular receptor proteins. Several approaches used in this study indicate that HSP-induced cytokine secretion is largely independent of any contaminating LPS in the samples.
Collapse
|
5
|
Santos RA, Cardoso C, Pedrosa N, Gonçalves G, Matinha-Cardoso J, Coutinho F, Carvalho AP, Tamagnini P, Oliva-Teles A, Oliveira P, Serra CR. LPS-Induced Mortality in Zebrafish: Preliminary Characterisation of Common Fish Pathogens. Microorganisms 2023; 11:2205. [PMID: 37764049 PMCID: PMC10535040 DOI: 10.3390/microorganisms11092205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Disease outbreaks are a common problem in aquaculture, with serious economic consequences to the sector. Some of the most important bacterial diseases affecting aquaculture are caused by Gram-negative bacteria including Vibrio spp. (vibriosis), Photobacterium damselae (photobacteriosis), Aeromonas spp. (furunculosis; haemorrhagic septicaemia) or Tenacibaculum maritimum (tenacibaculosis). Lipopolysaccharides (LPS) are important components of the outer membrane of Gram-negative bacteria and have been linked to strong immunogenic responses in terrestrial vertebrates, playing a role in disease development. To evaluate LPS effects in fish, we used a hot-phenol procedure to extract LPS from common fish pathogens. A. hydrophila, V. harveyi, T. maritimum and P. damselae purified LPS were tested at different concentrations (50, 100, 250 and 500 µg mL-1) at 3 days post-fertilisation (dpf) Danio rerio larvae, for 5 days. While P. damselae LPS did not cause any mortality under all concentrations tested, A. hydrophila LPS induced 15.5% and V. harveyi LPS induced 58.3% of zebrafish larvae mortality at 500 µg mL-1. LPS from T. maritimum was revealed to be the deadliest, with a zebrafish larvae mortality percentage of 80.6%. Analysis of LPS separated by gel electrophoresis revealed differences in the overall LPS structure between the bacterial species analysed that might be the basis for the different mortalities observed.
Collapse
Affiliation(s)
- Rafaela A. Santos
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Cláudia Cardoso
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Neide Pedrosa
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Gabriela Gonçalves
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Jorge Matinha-Cardoso
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Filipe Coutinho
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - António P. Carvalho
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Paula Tamagnini
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aires Oliva-Teles
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Paulo Oliveira
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Cláudia R. Serra
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Vistain L, Van Phan H, Keisham B, Jordi C, Chen M, Reddy ST, Tay S. Quantification of extracellular proteins, protein complexes and mRNAs in single cells by proximity sequencing. Nat Methods 2022; 19:1578-1589. [PMID: 36456784 PMCID: PMC11289786 DOI: 10.1038/s41592-022-01684-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022]
Abstract
We present proximity sequencing (Prox-seq) for simultaneous measurement of proteins, protein complexes and mRNAs in thousands of single cells. Prox-seq combines proximity ligation assay with single-cell sequencing to measure proteins and their complexes from all pairwise combinations of targeted proteins, providing quadratically scaled multiplexing. We validate Prox-seq and analyze a mixture of T cells and B cells to show that it accurately identifies these cell types and detects well-known protein complexes. Next, by studying human peripheral blood mononuclear cells, we discover that naïve CD8+ T cells display the protein complex CD8-CD9. Finally, we study protein interactions during Toll-like receptor (TLR) signaling in human macrophages. We observe the formation of signal-specific protein complexes, find CD36 co-receptor activity and additive signal integration under lipopolysaccharide (TLR4) and Pam2CSK4 (TLR2) stimulation, and show that quantification of protein complexes identifies signaling inputs received by macrophages. Prox-seq provides access to an untapped measurement modality for single-cell phenotyping and can discover uncharacterized protein interactions in different cell types.
Collapse
Affiliation(s)
- Luke Vistain
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Hoang Van Phan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Christian Jordi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Mengjie Chen
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Leung AKK, Xue YC, de Guzman A, Grzelkovski G, Kong HJ, Genga KR, Russell JA, Boyd JH, Francis GA, Walley KR. Modulation of vascular endothelial inflammatory response by proprotein convertase subtilisin-kexin type 9. Atherosclerosis 2022; 362:29-37. [PMID: 36207148 DOI: 10.1016/j.atherosclerosis.2022.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/15/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Endotoxins carried within LDL are cleared from the circulation via hepatic LDL receptor (LDLR)-mediated endocytosis. Proprotein convertase subtilisin-kexin type 9 (PCSK9) reduces this clearance by down-regulating LDLR density on hepatocytes. In addition to hepatocytes, vascular endothelial cells also express receptor targets of PCSK9, including LDLR. Therefore, we hypothesized that PCSK9 may regulate vascular endothelial cell uptake of lipopolysaccharide (LPS) and alter the vascular endothelial cell inflammatory response. METHODS AND RESULTS We found that LPS is internalized by human umbilical vein vascular endothelial cells (HUVECs) and LPS uptake dose-dependently increased with increasing LDL concentration. Intracellular LPS co-localized with LDL. PCSK9 and, separately, blocking antibodies against LDLR, dose-dependently decreased the vascular endothelial cell uptake of LPS and, furthermore, inhibition of endocytosis using Dynasore blocked LPS uptake. In contrast, blocking antibodies against TLR4 did not alter LPS uptake. PCSK9 decreased the LPS-induced proinflammatory response (IL-6 and IL-8 gene expression and protein secretion, and VCAM-1/ICAM-1 expression) in vascular endothelial cells. In addition, a decrease in PCSK9 and increase in LDLR, mediated by triciribine or siPCSK9, increased LPS uptake and the LPS-induced proinflammatory response. Similar results were also found in aortic vascular tissue from Pcsk9-/- mice after LPS injection. CONCLUSIONS Our data suggest that, similar to PCSK9 treatment in hepatocytes, PCSK9 reduces vascular endothelial cell uptake of LPS via LDLR-mediated endocytosis. Consequently, PCSK9 decreases the LPS-induced proinflammatory response in vascular endothelial cells. These results raise the possibility that PCSK9 inhibition may have additional effects on vascular endothelial inflammation via this alternative pathway, beyond the known effects of PCSK9 inhibition on LDL lowering and hepatic endotoxin clearance.
Collapse
Affiliation(s)
- Alex K K Leung
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Yuan Chao Xue
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Antyrah de Guzman
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Guilherme Grzelkovski
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - HyeJin Julia Kong
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kelly R Genga
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - James A Russell
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - John H Boyd
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gordon A Francis
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Keith R Walley
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Peruń A, Gębicka M, Biedroń R, Skalska P, Józefowski S. The CD36 and SR-A/CD204 scavenger receptors fine-tune Staphylococcus aureus-stimulated cytokine production in mouse macrophages. Cell Immunol 2022; 372:104483. [DOI: 10.1016/j.cellimm.2022.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
9
|
Linares-Alcántara E, Mendlovic F. Scavenger Receptor A1 Signaling Pathways Affecting Macrophage Functions in Innate and Adaptive Immunity. Immunol Invest 2022; 51:1725-1755. [PMID: 34986758 DOI: 10.1080/08820139.2021.2020812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
First discovered on macrophages by Goldstein and Brown in 1979, Scavenger Receptors have since been shown to participate in a diverse number of cell functions; equally diverse are their structures and the ligands they bind. Macrophage activation is crucial in the outcome of an immune response. SR-A1 is highly abundant on macrophages and recognizes both host- and microorganism-derived molecules that impact processes that are initiated, perpetuated, or modified. This review summarizes the involvement of SR-A1 in both inflammatory and anti-inflammatory responses, the multiple-ligand internalization mechanisms and the diversity of signaling pathways that impact macrophage function and activation. Engagement of SR-A1 results in the stimulation of differential signaling pathways and patterns of cytokine expression, kinetics, magnitude of response and activation status. SR-A1 plays essential roles in phagocytosis and efferocytosis, interacting with other receptors and promoting tolerance in response to apoptotic cell uptake. In cell adhesion, tissue remodeling, and cell migration, SR-A1 signals through different pathways engaging different cytoplasmic motifs. We describe the role of SR-A1 during innate and adaptive immune responses, such as participation in macrophage polarization and interaction with other innate receptors, as well as in antigen uptake, processing, and presentation, regulating T and B cell activation. The dichotomous contribution of SR-A1 on macrophage functions is discussed. A better understanding of the role SR-A1 plays through molecular mechanisms and crosstalk with other receptors may provide insights into developing novel therapeutic strategies to modulate immune responses and immunopathologies.
Collapse
Affiliation(s)
- Elizabeth Linares-Alcántara
- Facultad de Ciencias, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico.,Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico.,Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, Mexico
| |
Collapse
|
10
|
Kiyan Y, Tkachuk S, Rong S, Gorrasi A, Ragno P, Dumler I, Haller H, Shushakova N. TLR4 Response to LPS Is Reinforced by Urokinase Receptor. Front Immunol 2020; 11:573550. [PMID: 33362762 PMCID: PMC7757075 DOI: 10.3389/fimmu.2020.573550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
GPI-anchored uPAR is the receptor for the extracellular serine protease urokinase-type plasminogen activator (uPA). Though uPAR role in inflammatory processes is documented, underlying mechanisms are not fully understood. In this study we demonstrate that uPAR is a part of Toll-like receptor 4 (TLR4) interactome. Downregulation of uPAR expression resulted in diminished LPS-induced TLR4 signaling, less activation of NFκB, and decreased secretion of inflammatory mediators in myeloid and non-myeloid cells in vitro. In vivo uPAR−/− mice demonstrated better survival, strongly diminished inflammatory response and better organ functions in cecal ligation and puncture mouse polymicrobial sepsis model. Mechanistically, GPI-uPAR and soluble uPAR colocalized with TLR4 on the cell membrane and interacted with scavenger receptor CD36. Our data show that uPAR can interfere with innate immunity response via TLR4 and this mechanism represents a potentially important target in inflammation and sepsis therapy.
Collapse
Affiliation(s)
- Yulia Kiyan
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Sergey Tkachuk
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | | | | | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Inna Dumler
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Nephrology Department, Hannover Medical School, Hannover, Germany.,Phenos GmbH, Hannover, Germany
| |
Collapse
|
11
|
Laparra JM, Haros CM. Plant seed protease inhibitors differentially affect innate immunity in a tumor microenvironment to control hepatocarcinoma. Food Funct 2020; 10:4210-4219. [PMID: 31257391 DOI: 10.1039/c9fo00795d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identifying tolerance responses to ingested foodstuff over life is essential for understanding dysfunction in metabolic diseases. This study presents a comparative structural and functional analysis of serine-type protease inhibitors (STPIs) from Chenopodium quinoa, Salvia hispanica L., Avena sativa and Triticum durum. It also evaluates their influence on an in vivo hepatocarcinoma (HCC) model. STPIs are found in all samples with significant differences in protease inhibitory capacity: C. quinoa = S. hispanica < A. sativa = T. durum. STPIs in C. quinoa and S. hispanica appear as heterologous complexes, while those in A. sativa are present as homologous complexes. T. durum provides different subunits with STPI capacity. HPLC-RP-ESI analyses revealed homology between STPIs in the different samples and the partial resistance of those to simulated gastrointestinal digestion. In vivo, STPIs from S. hispanica showed the most positive effects, increasing F4/80+ cells normalizing the expression (mRNA) of CD36 and the innate immune 'Toll-like' receptor (TLR)-4. Only STPIs from C. quinoa and S. hispanica did not impair the production of inflammatory mediators (granulocyte-monocyte colony stimulating factor, stem cell factor and TNFα), contributing to maintaining the polarization of the antitumoral M1 macrophage phenotype. These structural and functional features of STPIs from C. quinoa and S. hispanica can be used to control HCC aggressiveness.
Collapse
Affiliation(s)
- J M Laparra
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA-Food), Ctra. de Canto Blanco n° 8, 28049 Madrid, Spain.
| | | |
Collapse
|
12
|
He C, Zhang G, Ouyang H, Zhang P, Chen Y, Wang R, Zhou H. Effects of β2/aβ2 on oxLDL-induced CD36 activation in THP-1 macrophages. Life Sci 2019; 239:117000. [PMID: 31654747 DOI: 10.1016/j.lfs.2019.117000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 01/01/2023]
Abstract
AIMS β2-glycoprotein I/anti-β2-glycoprotein I antibody complex (β2/aβ2) could promote oxLDL-induced endothelial inflammation through Toll-like receptor 4 (TLR4), therefore accelerates atherosclerosis in patients with anti-phospholipid syndrome (APS). However, effects of β2/aβ2 and TLR4 on oxLDL-induced CD36 activation in macrophages remain to be elucidated and are currently under investigation. MATERIALS AND METHODS THP-1 macrophages with or without the pre-treatment of TAK-242, a TLR4 inhibitor, were treated with RPMI 1640, oxLDL, oxLDL+β2/aβ2 or oxLDL + LPS.CD36 expression and subsequent intracellular lipid accumulation, cholesterol-transportation-related proteins (ACAT1, ABCG1 and ABCA1) expression, inflammatory cytokines (IL-1β, TNF-α and IL-6) secretion, focal adhesion kinases (FAK) activation and matrix metalloproteinases (MMP-2 and MMP-9) expression by these THP-1 macrophages were evaluated. Moreover, effects of TLR4 on oxLDL+β2/aβ2-induced peroxisome proliferators-activated receptor-γ (PPAR-γ) expression and CD36 translocation have also been observed. KEY FINDINGS Compared with oxLDL-treated ones, CD36 expression, intracellular lipid accumulation and FAK activation were inhibited, whereas the levels of inflammatory cytokines and MMPs were upregulated in THP-1 macrophages treated with oxLDL+β2/aβ2 (p < 0.05). Moreover, observed differences between oxLDL-treated and oxLDL+β2/aβ2-treated THP-1 macrophages could be reversed by TAK-242 pre-treatment (p < 0.05). Furthermore, oxLDL+β2/aβ2 promoted PPAR-γ expression and CD36 cytoplasmic translocation in THP-1 macrophages, these effects could also be attenuated by TAK-242 (p < 0.05). SIGNIFICANCE Through a TLR4 dependent manner, β2/aβ2 inhibited oxLDL-induced CD36 expression, lipid accumulation and FAK activation, while promoted inflammatory cytokines and MMPs expression in THP-1 macrophages, indicating the novel dual roles played by β2/aβ2 in APS-related atherosclerosis.
Collapse
Affiliation(s)
- Chao He
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Guiting Zhang
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Hang Ouyang
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Peng Zhang
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Yudan Chen
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Ren Wang
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Hong Zhou
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| |
Collapse
|
13
|
Dickson K, Lehmann C. Inflammatory Response to Different Toxins in Experimental Sepsis Models. Int J Mol Sci 2019; 20:ijms20184341. [PMID: 31491842 PMCID: PMC6770119 DOI: 10.3390/ijms20184341] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by the dysregulated host response to infection. Despite serious mortality and morbidity, no sepsis-specific drugs exist. Endotoxemia is often used to model the hyperinflammation associated with early sepsis. This model classically uses lipopolysaccharide (LPS) from Gram-negative pathogens to activate the immune system, leading to hyperinflammation, microcirculatory disturbances and death. Other toxins may also be used to activate the immune system including Gram-positive peptidoglycan (PG) and lipoteichoic acid (LTA). In addition to these standard toxins, other bacterial components can induce inflammation. These molecules activate different signaling pathways and produce different physiological responses which can be taken advantage of for sepsis modeling. Endotoxemia modeling can provide information on pathways to inflammation in sepsis and contribute to preclinical drug development.
Collapse
Affiliation(s)
- Kayle Dickson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Christian Lehmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
14
|
Dembek A, Laggai S, Kessler SM, Czepukojc B, Simon Y, Kiemer AK, Hoppstädter J. Hepatic interleukin-6 production is maintained during endotoxin tolerance and facilitates lipid accumulation. Immunobiology 2017; 222:786-796. [DOI: 10.1016/j.imbio.2017.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/23/2016] [Accepted: 01/17/2017] [Indexed: 02/08/2023]
|
15
|
Józefowski S, Śróttek M. Lipid raft-dependent endocytosis negatively regulates responsiveness of J774 macrophage-like cells to LPS by down regulating the cell surface expression of LPS receptors. Cell Immunol 2016; 312:42-50. [PMID: 27908440 DOI: 10.1016/j.cellimm.2016.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023]
Abstract
Acting through CD14 and TLR4/MD-2, lipopolysaccharide (LPS) triggers strong pro-inflammatory activation of macrophages, which, if not appropriately controlled, may lead to lethal septic shock. Therefore, numerous mechanisms of negative regulation of responses to LPS exist, but whether they include down-regulation of LPS receptors is not clear. We have found that in J774 cells, the clathrin-dependent endocytic pathway enables activation of TRIF-dependent TLR4 signaling within endosomes, but is not associated with the down-regulation of TLR4 or CD14 surface expression. In contrast, lipid raft-dependent endocytosis negatively regulates the basal cell surface expression of LPS receptors and, consequently, responsiveness to LPS. Together with observations that treatments, known to selectively disrupt lipid rafts, do not inhibit LPS-stimulated cytokine production, our results suggest that lipid rafts may serve as sites in which LPS receptors are sorted for endocytosis, rather than being platforms for the assembly of TLR4-centered signaling complexes, as suggested previously.
Collapse
Affiliation(s)
- Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Czysta Street 18, 31-121 Kraków, Poland.
| | - Małgorzata Śróttek
- Department of Immunology, Jagiellonian University Medical College, Czysta Street 18, 31-121 Kraków, Poland
| |
Collapse
|
16
|
Peruń A, Biedroń R, Konopiński MK, Białecka A, Marcinkiewicz J, Józefowski S. Phagocytosis of live versus killed or fluorescently labeled bacteria by macrophages differ in both magnitude and receptor specificity. Immunol Cell Biol 2016; 95:424-435. [PMID: 27826145 DOI: 10.1038/icb.2016.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 01/23/2023]
Abstract
Scavenger receptor (SR)-mediated opsonin-independent phagocytosis of bacteria by macrophages has been suggested to represent an important, early mechanism of anti-bacterial host defense. However, although the ability to bind bacteria has been demonstrated to be a shared feature of all types of SRs, in many cases the evidence is limited to the demonstration of increased binding of killed, fluorescently labeled bacteria to non-phagocytic cells transfected with these receptors. We sought to verify the ability of SRs to mediate non-opsonic phagocytosis of live Escherichia coli (Ec) and Staphylococcus aureus (Sa), model species of Gram-negative and -positive bacteria, respectively, and to assess the relative contributions of different SRs expressed on murine macrophages in this process. We found that the class A SR SR-A/CD204 was the major receptor mediating phagocytosis of fluorescently labeled Sa, whereas different SRs had highly redundant roles in the phagocytosis of live Sa. Conversely, different SRs contributed to the phagocytosis of fluorescently labeled Ec. In comparison, phagocytosis of live Ec was of much lower magnitude and was selectively mediated by SR-A. These results question the use of fluorescently labeled bacteria as valid replacements for live bacteria. The low magnitude of opsonin-independent phagocytosis of Ec and unimpaired phagocytosis of Sa in SR-A- or CD36-deficient macrophages indicate that the defect in this process might not be responsible for the reported impaired bacteria clearance in mice deficient in these receptors. We postulate that this impairment might result to a larger extent from inhibition of intracellular bacteria killing caused by pro-inflammatory cytokines, produced in excessive amounts by SR-deficient cells in response to bacterial products.
Collapse
Affiliation(s)
- Angelika Peruń
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | - Rafał Biedroń
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | - Maciej K Konopiński
- Institute of Nature Conservation, Polish Academy of Sciences, Cracow, Poland
| | - Anna Białecka
- Centre of Microbiological Research and Autovaccines, Cracow, Poland
| | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | - Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|