1
|
Wei X, Huang W, Teng M, Shen H, Feng B, Chen L, Yang F, Wang L, Yu S. Allosteric regulation of α-amylase induced by ligands binding. Int J Biol Macromol 2023:125131. [PMID: 37257525 DOI: 10.1016/j.ijbiomac.2023.125131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
The conformational changes in α-amylase induced by different ligands, including metal ions, substrates, and aromatic compounds in liquor production, were systematically studied using spectroscopy. Fluorescence acrylamide quenching analysis showed that the interaction with active metal cations (K+, Na+, and Ca2+) led to higher exposure of the active sites in α-amylase. In contrast, interactions with substrates (soluble starch, amylose, amylopectin, wheat starch, and dextrin) reduced the degree of exposure of active sites, and the conformation of the enzyme became more rigid and compact. Although the interaction with inhibitory metal cations (Mg2+, Zn2+) and aromatic compounds generated in the brewing process (guaiacol, eugenol, thymol, and vanillin) increased the exposure of active site with a relatively low amplitude, it reduced the enzymatic activity. This finding may be due to the overall structure of the enzyme becoming looser. Structural stability showed that the active cations and substrates increased the stability of the secondary structure of the α-amylase backbone, whereas the inhibitory cations and aromatic compounds reduced the stability of the backbone but increased the compact of domain A and B. Enzymatic assays and molecular docking experiments strongly supported these conclusions. The experimental results may provide a valuable reference for controlling related conditions and improving production efficiency.
Collapse
Affiliation(s)
- Xinfei Wei
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wanqiu Huang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Mengjing Teng
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Hao Shen
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Feng
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | | | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
AmyJ33, a truncated amylase with improved catalytic properties. Biotechnol Lett 2022; 44:1447-1463. [DOI: 10.1007/s10529-022-03311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
3
|
Functional Characterization of Recombinant Raw Starch Degrading α-Amylase from Roseateles terrae HL11 and Its Application on Cassava Pulp Saccharification. Catalysts 2022. [DOI: 10.3390/catal12060647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Exploring new raw starch-hydrolyzing α-amylases and understanding their biochemical characteristics are important for the utilization of starch-rich materials in bio-industry. In this work, the biochemical characteristics of a novel raw starch-degrading α-amylase (HL11 Amy) from Roseateles terrae HL11 was firstly reported. Evolutionary analysis revealed that HL11Amy was classified into glycoside hydrolase family 13 subfamily 32 (GH13_32). It contains four protein domains consisting of domain A, domain B, domain C and carbohydrate-binding module 20 (CMB20). The enzyme optimally worked at 50 °C, pH 4.0 with a specific activity of 6270 U/mg protein and 1030 raw starch-degrading (RSD) U/mg protein against soluble starch. Remarkably, HL11Amy exhibited activity toward both raw and gelatinized forms of various substrates, with the highest catalytic efficiency (kcat/Km) on starch from rice, followed by potato and cassava, respectively. HL11Amy effectively hydrolyzed cassava pulp (CP) hydrolysis, with a reducing sugar yield of 736 and 183 mg/g starch from gelatinized and raw CP, equivalent to 72% and 18% conversion based on starch content in the substrate, respectively. These demonstrated that HL11Amy represents a promising raw starch-degrading enzyme with potential applications in starch modification and cassava pulp saccharification.
Collapse
|
4
|
Bouhlel M, Sahnoun M, Zouari N, Brini F, Saibi W. The metabolic and biochemical mapping of Agave americana leave juice encode their prospective biotechnological uses. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Bacillus velezensis Identification and Recombinant Expression, Purification, and Characterization of Its Alpha-Amylase. FERMENTATION 2021. [DOI: 10.3390/fermentation7040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amylases account for about 30% of the global market of industrial enzymes, and the current amylases cannot fully meet industrial needs. This study aimed to identify a high α-amylase producing bacterium WangLB, to clone its α-amylase coding gene, and to characterize the α-amylase. Results showed that WangLB belonged to Bacillus velezensis whose α-amylase gene was 1980 bp coding 659 amino acids designated as BvAmylase. BvAmylase was a hydrophilic stable protein with a signal peptide and a theoretical pI of 5.49. The relative molecular weight of BvAmylase was 72.35 kDa, and was verified by SDS-PAGE. Its modeled structure displayed that it was a monomer composed of three domains. Its optimum temperature and pH were 70 °C and pH 6.0, respectively. It also showed high activity in a wide range of temperatures (40–75 °C) and a relatively narrow pH (5.0–7.0). It was a Ca2+-independent enzyme, whose α-amylase activity was increased by Co2+, Tween 20, and Triton X-100, and severely decreased by SDS. The Km and the Vmax of BvAmylase were 3.43 ± 0.53 and 434.19 ± 28.57 U/mg. In conclusion, the α-amylase producing bacterium WangLB was identified, and one of its α-amylases was characterized, which will be a candidate enzyme for industrial applications.
Collapse
|
6
|
Pinto ÉSM, Dorn M, Feltes BC. The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes. CHEMOSPHERE 2020; 250:126202. [PMID: 32092569 DOI: 10.1016/j.chemosphere.2020.126202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
As the primary source of a wide range of industrial products, the study of petroleum-derived compounds is of pivotal importance. However, the process of oil extraction and refinement is among the most environmentally hazardous practices, impacting almost all levels of the ecological chain. So far, the most appropriate strategy to overcome such an issue is through bioremediation, which revolves around the employment of different microorganisms to degrade hazardous compounds, generating less environmental impact and lower monetary costs. In this sense, a myriad of organisms and enzymes are considered possible candidates for the bioremediation process. Amidst the potential candidates is α-amylase, an evolutionary conserved starch-degrading enzyme. Notably, α-amylase was not only seen to degrade n-alkanes, a subclass of alkanes considered the most abundant petroleum-derived compounds but also low-density polyethylene, a dangerous pollutant produced from petroleum. Thus, due to its high conservation in both eukaryotic and prokaryotic lineages, in addition to the capability to degrade different types of hazardous compounds, the study of α-amylase becomes a rising interest. Nevertheless, there are no studies that review all biotechnological applications of α-amylase for bioremediation. In this work, we critically review the potential biotechnological applications of α-amylase, focusing on the biodegradation of petroleum-derived compounds. Evolutionary aspects are discussed, as well for all structural information and all features that could impact on the employment of this protein in the biotechnological industry, such as pH, temperature, and medium conditions. New perspectives and critical assessments are conducted regarding the application of α-amylase in the bioremediation of n-alkanes.
Collapse
Affiliation(s)
- Éderson Sales Moreira Pinto
- Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Márcio Dorn
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil; Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Bruno César Feltes
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Dutt S, Goel V, Garg N, Choudhury D, Mallick D, Tyagi V. Biocatalytic Aza‐Michael Addition of Aromatic Amines to Enone Using α‐Amylase in Water. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sunil Dutt
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004, Punjab India
| | - Vanshita Goel
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004, Punjab India
| | - Neha Garg
- School of Basic SciencesIndian Institute of Technology Mandi 175005, Himachal Pradesh India
| | - Diptiman Choudhury
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004, Punjab India
| | - Dibyendu Mallick
- Department of ChemistryPresidency University Kolkata 700073, West Bengal India
| | - Vikas Tyagi
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004, Punjab India
| |
Collapse
|
8
|
Trabelsi S, Sahnoun M, Elgharbi F, Ameri R, Ben Mabrouk S, Mezghani M, Hmida-Sayari A, Bejar S. Aspergillus oryzae S2 AmyA amylase expression in Pichia pastoris: production, purification and novel properties. Mol Biol Rep 2018; 46:921-932. [PMID: 30535895 DOI: 10.1007/s11033-018-4548-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/30/2018] [Indexed: 01/05/2023]
Abstract
A synthetic cDNA-AmyA gene was cloned and successfully expressed in Pichia pastoris as a His-tagged enzyme under the methanol inducible AOX1 promoter. High level of extracellular amylase production of 72 U/mL was obtained after a 72 h induction by methanol. As expected, the recombinant strain produced only the AmyA isoform since the host is a protease deficient strain. Besides, the purified r-AmyA showed a molecular mass of 54 kDa, the same pH optimum equal to 5.6 but a higher thermoactivity of 60 °C against 50 °C for the native enzyme. Unlike AmyA which maintained 50% of its activity after a 10-min incubation at 60 °C, r-AmyA reached 45 min. The higher thermoactivity and thermostability could be related to the N-glycosylation. The r-AmyA activity was enhanced by 46% and 45% respectively in the presence of 4 mM Fe2+ and Mg2+ ions. This enzyme was more efficient in bread-making since such ions were reported to have a positive impact on the nutriment quality and the rheological characteristics of the wheat flour dough. The thermoactivity/thermostability as well as the iron and magnesium activations could also be ascribed to the presence of an additional C-terminal loop containing the His tag.
Collapse
Affiliation(s)
- Sahar Trabelsi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Mouna Sahnoun
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Fatma Elgharbi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Rihab Ameri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Sameh Ben Mabrouk
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Monia Mezghani
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Aïda Hmida-Sayari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
9
|
Sahnoun M, Jemli S, Trabelsi S, Bejar S. Modifing Aspergillus Oryzae S2 amylase substrate specificity and thermostability through its tetramerisation using biochemical and in silico studies and stabilization. Int J Biol Macromol 2018; 117:483-492. [DOI: 10.1016/j.ijbiomac.2018.05.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 01/01/2023]
|
10
|
Yin H, Zhang L, Yang Z, Li S, Nie X, Wang Y, Yang C. Contribution of domain B to the catalytic properties of a Flavobacteriaceae α-amylase. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Sahnoun M, Saibi W, Brini F, Bejar S. Apigenin isolated from A. americana encodes Human and Aspergillus oryzae S2 α-amylase inhibitions: credible approach for antifungal and antidiabetic therapies. Journal of Food Science and Technology 2018; 55:1489-1498. [PMID: 29606763 DOI: 10.1007/s13197-018-3065-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/27/2022]
Abstract
Agave americana extract was analyzed by reverse phase HPLC for characterization. Among phenolic compounds identified, apigenin was observed to be present. The finding showed an inhibitory effect of apigenin towards Human and Aspergillus oryzae S2 α-amylases. Apigenin inhibition towards Human and A. oryzae α-amylase activities was observed to be competitive. IC50 and % inhibition of apigenin for A. oryzae α-amylase were 3.98 and 1.65 fold higher than for Human α-amylase. The inhibition of the described biocatalyst activity was significantly lowered when apigenin was pre-incubated with starch. In addition to the catalytic residues, 44 amino acid residues were involved on A. oryzae α-amylase-apigenin interactions while only 11 amino acid residues were exposed for Human α-amylase-apigenin complex. The binding site of apigenin showed 76 polar contacts for A. oryzae S2 α-amylase against 44 interactions for Human α-amylase. The docking studies confirmed the mode of action of apigenin and strongly suggested a higher inhibitory activity towards fungal amylase which was experimentally exhibited. These findings provided a rational reason to establish apigenin capability as a therapeutic target for postprandial hyperglycaemia modulation and antifungal therapy.
Collapse
Affiliation(s)
- Mouna Sahnoun
- 1Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Walid Saibi
- 2Biotechnology and Plant Improvement Laboratory Centre of Biotechnology, Sfax University of Sfax, B.P 1177, 3018 Sfax, Tunisia
| | - Faiçal Brini
- 2Biotechnology and Plant Improvement Laboratory Centre of Biotechnology, Sfax University of Sfax, B.P 1177, 3018 Sfax, Tunisia
| | - Samir Bejar
- 1Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| |
Collapse
|