1
|
Fan T, Su Z, Wang X, Wei T, Zhao L, Liu S. TarP: A microRNA target gene prediction tool utilizing a polymorphic structured alignment approach. Int J Biol Macromol 2025; 314:144320. [PMID: 40383335 DOI: 10.1016/j.ijbiomac.2025.144320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
MicroRNAs (miRNAs) represent a vital class of small non-coding RNAs that play key regulatory roles in gene expression. Accurate identification of miRNA-mRNA interactions is essential for understanding their biological functions. However, current computational prediction tools suffer from several limitations, including species-specific biases, suboptimal accuracy, high false discovery rates, and incomplete target gene coverage. To address these challenges, we present TarP, a novel miRNA target prediction algorithm employing a Polymorphic structured alignment (PMS) approach. Our method mimics the natural binding process between miRNAs and their target mRNAs by integrating key biological interaction features. The algorithm utilizes five distinct nucleotide-binding motifs to perform a structured decomposition and alignment of potential mRNA targets. Predictions are then rigorously evaluated through a dual scoring system: a Structure (St) coefficient assessing binding conformation and an Energy (En) coefficient evaluating thermodynamic stability, ensuring high-confidence target selection. Using experimentally validated human miRNA-mRNA interaction datasets, we benchmarked TarP against four widely used prediction tools (miRanda, RNAhybrid, PITA, and TargetScan). Comparative analyses demonstrate that TarP achieves superior performance in both sensitivity and specificity, exhibiting enhanced accuracy in positive target identification and improved discrimination between true and false interactions. The TarP algorithm is freely available at: https://github.com/Whimonk/TarP.
Collapse
Affiliation(s)
- Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Zhuanzhuan Su
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Xin Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Yuan L, Li J, Yin L, Lin X, Ni D, Deng C, Liang P, Jiang B. 5'tiRNA-33-CysACA-1 promotes septic cardiomyopathy by targeting PGC-1α-mediated mitochondrial biogenesis. Int J Biochem Cell Biol 2025; 179:106714. [PMID: 39631469 DOI: 10.1016/j.biocel.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND We revealed for the first time that the expression of 158 tRNA-derived small RNAs (tsRNAs) was altered in septic cardiomyopathy (SCM) by microarray analysis, and we selected 5'tiRNA-33-CysACA-1, which was the most significantly up-regulated, as a representative to explore the roles and mechanisms of tsRNAs in SCM. METHODS We constructed a sepsis model by cecum ligation and puncture (CLP) in mice and detected the expression of 5'tiRNA-33-CysACA-1 using quantitative real-time PCR (qRT-PCR). The supernatant generated after LPS stimulation of macrophages was used as the conditional medium (CM) to stimulate H9C2 and established the injured cell model. CCK-8 and LDH release assays were used to detect cell viability and cell death. Mitochondrial membrane potential (MMP), ATP production, ROS production, and Mitotracker Red mitochondrial morphology were assayed to assess mitochondrial function. Expression of mRNA for molecules related to the mitochondrial quality control system was verified by qRT-PCR. The mechanism by which 5'tiRNA-33-CysACA-1 regulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) expression was examined by western blot, mRNA stability analysis, and rescue experiments. RESULTS Expression of 5'tiRNA-33-CysACA-1 was elevated in cardiac tissue and H9C2 cells during septic myocardial injury. Stimulation of the CM resulted in cardiomyocyte injury and impaired mitochondrial function. Transfection of 5'tiRNA-33-CysACA-1 mimic in CM further downregulated PGC-1α expression, inhibited mitochondrial biogenesis thereby impairing mitochondrial function and leading to decreased cardiomyocyte activity and increased cell death. In contrast, transfection of the inhibitor ameliorated the above biological processes. In addition, mRNA stability assay and bioinformatics analysis showed that 5'tiRNA-33-CysACA-1 led to a decrease in the stability of PGC-1α mRNA, which in turn downregulated the expression of PGC-1α and promoted the development of SCM. CONCLUSIONS 5'tiRNA-33-CysACA-1 expression is upregulated in SCM and inhibits mitochondrial biogenesis by targeting PGC-1α and decreasing the stability of PGC-1α mRNA, leading to mitochondrial dysfunction and promoting the development of SCM.
Collapse
Affiliation(s)
- Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Dan Ni
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Chuanhuan Deng
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
3
|
Kołat D, Kałuzińska-Kołat Ż, Kośla K, Orzechowska M, Płuciennik E, Bednarek AK. LINC01137/miR-186-5p/WWOX: a novel axis identified from WWOX-related RNA interactome in bladder cancer. Front Genet 2023; 14:1214968. [PMID: 37519886 PMCID: PMC10373930 DOI: 10.3389/fgene.2023.1214968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: The discovery of non-coding RNA (ncRNA) dates back to the pre-genomics era, but the progress in this field is still dynamic and leverages current post-genomics solutions. WWOX is a global gene expression modulator that is scarcely investigated for its role in regulating cancer-related ncRNAs. In bladder cancer (BLCA), the link between WWOX and ncRNA remains unexplored. The description of AP-2α and AP-2γ transcription factors, known as WWOX-interacting proteins, is more commonplace regarding ncRNA but still merits investigation. Therefore, this in vitro and in silico study aimed to construct an ncRNA-containing network with WWOX/AP-2 and to investigate the most relevant observation in the context of BLCA cell lines and patients. Methods: RT-112, HT-1376, and CAL-29 cell lines were subjected to two stable lentiviral transductions. High-throughput sequencing of cellular variants (deposited in the Gene Expression Omnibus database under the GSE193659 record) enabled the investigation of WWOX/AP-2-dependent differences using various bioinformatics tools (e.g., limma-voom, FactoMineR, multiple Support Vector Machine Recursive Feature Elimination (mSVM-RFE), miRDB, Arena-Idb, ncFANs, RNAhybrid, TargetScan, Protein Annotation Through Evolutionary Relationships (PANTHER), Gene Transcription Regulation Database (GTRD), or Evaluate Cutpoints) and repositories such as The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia. The most relevant observations from cap analysis gene expression sequencing (CAGE-seq) were confirmed using real-time PCR, whereas TCGA data were validated using the GSE31684 cohort. Results: The first stage of the whole study justified focusing solely on WWOX rather than on WWOX combined with AP-2α/γ. The most relevant observation of the developed ncRNA-containing network was LINC01137, i.e., long non-coding RNAs (lncRNAs) that unraveled the core network containing UPF1, ZC3H12A, LINC01137, WWOX, and miR-186-5p, the last three being a novel lncRNA/miRNA/mRNA axis. Patients' data confirmed the LINC01137/miR-186-5p/WWOX relationship and provided a set of dependent genes (i.e., KRT18, HES1, VCP, FTH1, IFITM3, RAB34, and CLU). Together with the core network, the gene set was subjected to survival analysis for both TCGA-BLCA and GSE31684 patients, which indicated that the increased expression of WWOX or LINC01137 is favorable, similar to their combination with each other (WWOX↑ and LINC01137↑) or with MIR186 (WWOX↑/LINC01137↑ but MIR186↓). Conclusion: WWOX is implicated in the positive feedback loop with LINC01137 that sponges WWOX-targeting miR-186-5p. This novel WWOX-containing lncRNA/miRNA/mRNA axis should be further investigated to depict its relationships in a broader context, which could contribute to BLCA research and treatment.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | | | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Toledo-Solís FJ, Larrán AM, Ortiz-Delgado JB, Sarasquete C, Dias J, Morais S, Fernández I. Specific Blood Plasma Circulating miRs Are Associated with the Physiological Impact of Total Fish Meal Replacement with Soybean Meal in Diets for Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2023; 12:937. [PMID: 37508368 PMCID: PMC10376541 DOI: 10.3390/biology12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
High dietary SBM content is known to induce important physiological alterations, hampering its use as a major FM alternative. Rainbow trout (Oncorhynchus mykiss) juveniles were fed two experimental diets during 9 weeks: (i) a FM diet containing 12% FM; and (ii) a vegetable meal (VM) diet totally devoid of FM and based on SBM (26%). Fish fed the VM diet did not show reduced growth performance when compared with fish fed the FM diet. Nevertheless, fish fed the VM diet had an increased viscerosomatic index, lower apparent fat digestibility, higher aminopeptidase enzyme activity and number of villi fusions, and lower α-amylase enzyme activity and brush border integrity. Small RNA-Seq analysis identified six miRs (omy-miR-730a-5p, omy-miR-135c-5p, omy-miR-93a-3p, omy-miR-152-5p, omy-miR-133a-5p, and omy-miR-196a-3p) with higher expression in blood plasma from fish fed the VM diet. Bioinformatic prediction of target mRNAs identified several overrepresented biological processes known to be associated with high dietary SBM content (e.g., lipid metabolism, epithelial integrity disruption, and bile acid status). The present research work increases our understanding of how SBM dietary content has a physiological impact in farmed fish and suggests circulating miRs might be suitable, integrative, and less invasive biomarkers in fish.
Collapse
Affiliation(s)
- Francisco Javier Toledo-Solís
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Insurgentes Sur 1582, Col. Crédito 6 Constructor, Alcaldía Benito Juárez, Mexico City 03940, Mexico
| | - Ana M Larrán
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, Puerto Real, 11510 Cádiz, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, Puerto Real, 11510 Cádiz, Spain
| | - Jorge Dias
- SPAROS Ltd., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Sofia Morais
- Lucta S.A., Innovation Division, UAB Research Park, 08193 Bellaterra, Spain
| | - Ignacio Fernández
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, 36390 Vigo, Spain
| |
Collapse
|
5
|
Find new channel for overcoming chemoresistance in cancers: Role of stem cells-derived exosomal microRNAs. Int J Biol Macromol 2022; 219:530-537. [PMID: 35948201 DOI: 10.1016/j.ijbiomac.2022.07.253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
|
6
|
Genetic Variants of MIR27A, MIR196A2 May Impact the Risk for the Onset of Coronary Artery Disease in the Pakistani Population. Genes (Basel) 2022; 13:genes13050747. [PMID: 35627132 PMCID: PMC9141586 DOI: 10.3390/genes13050747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic variants in microRNA genes have a detrimental effect on miRNA-mediated regulation of gene expression and may contribute to coronary artery disease (CAD). CAD is the primary cause of mortality worldwide. Several environmental, genetic, and epigenetic factors are responsible for CAD susceptibility. The contribution of protein-coding genes is extensively studied. However, the role of microRNA genes in CAD is at infancy. The study is aimed to investigate the impact of rs895819, rs11614913, and rs2168518 variants in MIR27A, MIR196A2, and MIR4513, respectively, in CAD using allele-specific PCR. Results: For variant rs11614913, significant distribution of the genotypes among the cases and controls was determined by co-dominant [χ2 = 54.4; p value ≤ 0.0001], dominant (C/C vs. C/T + T/T) [OR = 0.257 (0.133-0.496); p value ≤ 0.0001], recessive (T/T vs. C/T + C/C) [OR = 1.56 (0.677-0.632); p value = 0.398], and additive models [OR = 0.421 (0.262-0.675); p value = 0.0004]. Similarly, a significant association of rs895819 was determined by co-dominant [χ2 = 9.669; p value ≤ 0.008], dominant (A/A vs. A/G + G/G) [OR = 0.285 (0.1242-0.6575); p value ≤ 0.0034], recessive (G/G vs. A/G + A/A) [OR = 0.900 (0.3202-3.519); p value = 1.000], and additive models [OR = 0.604 (0.3640-1.002); p value = 0.05] while no significant association of rs2168518 with CAD was found. Conclusion: The variants rs895819 and rs11614913 are the susceptibility factors for CAD.
Collapse
|
7
|
Chakraborty S, Nath D. A Study on microRNAs Targeting the Genes Overexpressed in Lung Cancer and their Codon Usage Patterns. Mol Biotechnol 2022; 64:1095-1119. [DOI: 10.1007/s12033-022-00491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
8
|
Jasinski-Bergner S, Mandelboim O, Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance. J Immunother Cancer 2021; 8:jitc-2020-000841. [PMID: 32616556 PMCID: PMC7333871 DOI: 10.1136/jitc-2020-000841] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Several human herpes viruses (HHVs) exert oncogenic potential leading to malignant transformation of infected cells and/or tissues. The molecular processes induced by viral-encoded molecules including microRNAs, peptides, and proteins contributing to immune evasion of the infected host cells are equal to the molecular processes of immune evasion mediated by tumor cells independently of viral infections. Such major immune evasion strategies include (1) the downregulation of proinflammatory cytokines/chemokines as well as the induction of anti-inflammatory cytokines/chemokines, (2) the downregulation of major histocompatibility complex (MHC) class Ia directly as well as indirectly by downregulation of the components involved in the antigen processing, and (3) the downregulation of stress-induced ligands for activating receptors on immune effector cells with NKG2D leading the way. Furthermore, (4) immune modulatory molecules like MHC class Ib molecules and programmed cell death1 ligand 1 can be upregulated on infections with certain herpes viruses. This review article focuses on the known molecular mechanisms of HHVs modulating the above-mentioned possibilities for immune surveillance and even postulates a temporal order linking regular tumor immunology with basic virology and offering putatively novel insights for targeting HHVs.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Ofer Mandelboim
- Immunology & Cancer Research Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
9
|
Nath D, Chakraborty S. Genome wide analysis of Mycobacterium leprae for identification of putative microRNAs and their possible targets in human. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Zhang X, Ping P, Hutvagner G, Blumenstein M, Li J. Aberration-corrected ultrafine analysis of miRNA reads at single-base resolution: a k-mer lattice approach. Nucleic Acids Res 2021; 49:e106. [PMID: 34291293 PMCID: PMC8631080 DOI: 10.1093/nar/gkab610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
Raw sequencing reads of miRNAs contain machine-made substitution errors, or even insertions and deletions (indels). Although the error rate can be low at 0.1%, precise rectification of these errors is critically important because isoform variation analysis at single-base resolution such as novel isomiR discovery, editing events understanding, differential expression analysis, or tissue-specific isoform identification is very sensitive to base positions and copy counts of the reads. Existing error correction methods do not work for miRNA sequencing data attributed to miRNAs’ length and per-read-coverage properties distinct from DNA or mRNA sequencing reads. We present a novel lattice structure combining kmers, (k – 1)mers and (k + 1)mers to address this problem. The method is particularly effective for the correction of indel errors. Extensive tests on datasets having known ground truth of errors demonstrate that the method is able to remove almost all of the errors, without introducing any new error, to improve the data quality from every-50-reads containing one error to every-1300-reads containing one error. Studies on experimental miRNA sequencing datasets show that the errors are often rectified at the 5′ ends and the seed regions of the reads, and that there are remarkable changes after the correction in miRNA isoform abundance, volume of singleton reads, overall entropy, isomiR families, tissue-specific miRNAs, and rare-miRNA quantities.
Collapse
Affiliation(s)
- Xuan Zhang
- Data Science Institute, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Pengyao Ping
- Data Science Institute, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Michael Blumenstein
- Faculty of Engineering and IT, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Jinyan Li
- To whom correspondence should be addressed. Tel: +61 295149264; Fax: +61 295149264;
| |
Collapse
|
11
|
The Non-Coding RNA Landscape in IgA Nephropathy-Where Are We in 2021? J Clin Med 2021; 10:jcm10112369. [PMID: 34071162 PMCID: PMC8198207 DOI: 10.3390/jcm10112369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
IgA nephropathy (IgAN) is the most commonly diagnosed primary glomerulonephritis worldwide. It is a slow progressing disease with approximately 30% of cases reaching end-stage kidney disease within 20 years of diagnosis. It is currently only diagnosed by an invasive biopsy and treatment options are limited. However, the current surge in interest in RNA interference is opening up new horizons for the use of this new technology in the field of IgAN management. A greater understanding of the fundamentals of RNA interference offers exciting possibilities both for biomarker discovery and, more importantly, for novel therapeutic approaches to target key pathogenic pathways in IgAN. This review aims to summarise the RNA interference literature in the context of microRNAs and their association with the multifaceted aspects of IgA nephropathy.
Collapse
|
12
|
Ruan GT, Wang S, Zhu LC, Liao XW, Wang XK, Liao C, Yan L, Xie HL, Gong YZ, Gan JL, Gao F. Investigation and verification of the clinical significance and perspective of natural killer group 2 member D ligands in colon adenocarcinoma. Aging (Albany NY) 2021; 13:12565-12586. [PMID: 33909599 PMCID: PMC8148460 DOI: 10.18632/aging.202935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
This study investigated and verified the diagnostic and prognostic values of natural killer group 2 member D ligand (NKG2DL) genes in colon adenocarcinoma (COAD). We downloaded NKG2DLs expression data and corresponding clinical parameters from The Cancer Genome Atlas (TCGA) and used bioinformatics techniques to investigate the values of NKG2DLs in COAD. Then, we used the GSE40967 cohort to verify the prognostic value of NKG2DLs. Finally, we verified the ULBP2 expression level in tissues, and also investigated the diagnostic and prognostic values of ULBP2 in COAD. The diagnostic receiver operating characteristic curves showed that ULBP1, ULBP2, ULBP3, and RAET1L had high diagnostic values in COAD [Area Under Curve (AUC) > 0.9]. In TCGA cohort, the univariate and multivariate survival analyses suggested that ULBP2 was correlated with the prognosis of COAD recurrence-free survival (RFS) and overall survival (OS). In GSE40967 cohort, ULBP2 was associated with CC RFS and OS. Reverse transcription-quantitative polymerase chain reaction and immunohistochemistry results showed that ULBP2 was highly expressed in COAD tumor tissues (P < 0.05) and both had diagnostic values (AUC > 0.7). Validated survival analysis showed that the high expression of ULBP2 had a worse prognosis in COAD OS and RFS. Thus, ULBP2 might be an independent diagnostic and prognostic biomarker of COAD.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shuai Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Li-Chen Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ling Yan
- Department of Thoracic Surgery, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hai-Lun Xie
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Zhen Gong
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jia-Liang Gan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
13
|
Kozar I, Philippidou D, Margue C, Gay LA, Renne R, Kreis S. Cross-Linking Ligation and Sequencing of Hybrids (qCLASH) Reveals an Unpredicted miRNA Targetome in Melanoma Cells. Cancers (Basel) 2021; 13:1096. [PMID: 33806450 PMCID: PMC7961530 DOI: 10.3390/cancers13051096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are key post-transcriptional gene regulators often displaying aberrant expression patterns in cancer. As microRNAs are promising disease-associated biomarkers and modulators of responsiveness to anti-cancer therapies, a solid understanding of their targetome is crucial. Despite enormous research efforts, the success rates of available tools to reliably predict microRNAs (miRNA)-target interactions remains limited. To investigate the disease-associated miRNA targetome, we have applied modified cross-linking ligation and sequencing of hybrids (qCLASH) to BRAF-mutant melanoma cells. The resulting RNA-RNA hybrid molecules provide a comprehensive and unbiased snapshot of direct miRNA-target interactions. The regulatory effects on selected miRNA target genes in predicted vs. non-predicted binding regions was validated by miRNA mimic experiments. Most miRNA-target interactions deviate from the central dogma of miRNA targeting up to 60% interactions occur via non-canonical seed pairing with a strong contribution of the 3' miRNA sequence, and over 50% display a clear bias towards the coding sequence of mRNAs. miRNAs targeting the coding sequence can directly reduce gene expression (miR-34a/CD68), while the majority of non-canonical miRNA interactions appear to have roles beyond target gene suppression (miR-100/AXL). Additionally, non-mRNA targets of miRNAs (lncRNAs) whose interactions mainly occur via non-canonical binding were identified in melanoma. This first application of CLASH sequencing to cancer cells identified over 8 K distinct miRNA-target interactions in melanoma cells. Our data highlight the importance non-canonical interactions, revealing further layers of complexity of post-transcriptional gene regulation in melanoma, thus expanding the pool of miRNA-target interactions, which have so far been omitted in the cancer field.
Collapse
Affiliation(s)
- Ines Kozar
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Lauren A. Gay
- Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA; (L.A.G.); (R.R.)
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA; (L.A.G.); (R.R.)
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| |
Collapse
|
14
|
Nguyen DND, Chilian WM, Zain SM, Daud MF, Pung YF. MicroRNA regulation of vascular smooth muscle cells and its significance in cardiovascular diseases. Can J Physiol Pharmacol 2021; 99:827-838. [PMID: 33529092 DOI: 10.1139/cjpp-2020-0581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is among the leading causes of death worldwide. MicroRNAs (miRNAs), regulatory molecules that repress protein expression, have attracted considerable attention in CVD research. The vasculature plays a big role in CVD development and progression and dysregulation of vascular cells underlies the root of many vascular diseases. This review provides a brief introduction of the biogenesis of miRNAs and exosomes, followed by overview of the regulatory mechanisms of miRNAs in vascular smooth muscle cells (VSMCs) intracellular signaling during phenotypic switching, senescence, calcification, and neointimal hyperplasia. Evidence of extracellular signaling of VSMCs and other cells via exosomal and circulating miRNAs is also presented. Lastly, current drawbacks and limitations of miRNA studies in CVD research and potential ways to overcome these disadvantages are discussed in detail. In-depth understanding of VSMC regulation via miRNAs will add substantial knowledge and advance research in diagnosis, disease progression, and (or) miRNA-derived therapeutic approaches in CVD research.
Collapse
Affiliation(s)
- Duong Ngoc Diem Nguyen
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500 Selangor, Malaysia
| | - William M Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, P.O. Box 95, Rootstown, OH P.O. Box 95, USA
| | - Shamsul Mohd Zain
- The Pharmacogenomics Laboratory, Department of Pharmacology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, 43000 Selangor, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500 Selangor, Malaysia
| |
Collapse
|
15
|
Coccia E, Masanas M, López-Soriano J, Segura MF, Comella JX, Pérez-García MJ. FAIM Is Regulated by MiR-206, MiR-1-3p and MiR-133b. Front Cell Dev Biol 2021; 8:584606. [PMID: 33425889 PMCID: PMC7785887 DOI: 10.3389/fcell.2020.584606] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis plays an important role during development, control of tissue homeostasis and in pathological contexts. Apoptosis is executed mainly through the intrinsic pathway or the death receptor pathway, i.e., extrinsic pathway. These processes are tightly controlled by positive and negative regulators that dictate pro- or anti-apoptotic death receptor signaling. One of these regulators is the Fas Apoptotic Inhibitory Molecule (FAIM). This death receptor antagonist has two main isoforms, FAIM-S (short) which is the ubiquitously expressed, and a longer isoform, FAIM-L (long), which is mainly expressed in the nervous system. Despite its role as a death receptor antagonist, FAIM also participates in cell death-independent processes such as nerve growth factor-induced neuritogenesis or synaptic transmission. Moreover, FAIM isoforms have been implicated in blocking the formation of protein aggregates under stress conditions or de-regulated in certain pathologies such as Alzheimer’s and Parkinson’s diseases. Despite the role of FAIM in physiological and pathological processes, little is known about the molecular mechanisms involved in the regulation of its expression. Here, we seek to investigate the post-transcriptional regulation of FAIM isoforms by microRNAs (miRNAs). We found that miR-206, miR-1-3p, and miR-133b are direct regulators of FAIM expression. These findings provide new insights into the regulation of FAIM and may provide new opportunities for therapeutic intervention in diseases in which the expression of FAIM is altered.
Collapse
Affiliation(s)
- Elena Coccia
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marc Masanas
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Joaquín López-Soriano
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Joan X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M José Pérez-García
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
16
|
Oliveira CCV, Fatsini E, Fernández I, Anjos C, Chauvigné F, Cerdà J, Mjelle R, Fernandes JMO, Cabrita E. Kisspeptin Influences the Reproductive Axis and Circulating Levels of microRNAs in Senegalese Sole. Int J Mol Sci 2020; 21:E9051. [PMID: 33260781 PMCID: PMC7730343 DOI: 10.3390/ijms21239051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Kisspeptin regulates puberty and reproduction onset, acting upstream of the brain-pituitary-gonad (HPG) axis. This study aimed to test a kisspeptin-based hormonal therapy on cultured Senegalese sole (G1) breeders, known to have reproductive dysfunctions. A single intramuscular injection of KISS2-10 decapeptide (250 µg/kg) was tested in females and males during the reproductive season, and gonad maturation, sperm motility, plasma levels of gonadotropins (Fsh and Lh) and sex steroids (11-ketotestosterone, testosterone and estradiol), as well as changes in small non-coding RNAs (sncRNAs) in plasma, were investigated. Fsh, Lh, and testosterone levels increased after kisspeptin injection in both sexes, while sperm analysis did not show differences between groups. Let7e, miR-199a-3p and miR-100-5p were differentially expressed in females, while miR-1-3p miRNA was up-regulated in kisspeptin-treated males. In silico prediction of mRNAs targeted by miRNAs revealed that kisspeptin treatment might affect paracellular transporters, regulate structural and functional polarity of cells, neural networks and intracellular trafficking in Senegalese sole females; also, DNA methylation and sphingolipid metabolism might be altered in kisspeptin-treated males. Results demonstrated that kisspeptin stimulated gonadotropin and testosterone secretion in both sexes and induced an unanticipated alteration of plasma miRNAs, opening new research venues to understand how this neuropeptide impacts in fish HPG axis.
Collapse
Affiliation(s)
- Catarina C. V. Oliveira
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - Elvira Fatsini
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - Ignacio Fernández
- Aquaculture Research Center, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, s/n, 40196 Segovia, Spain;
| | - Catarina Anjos
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - François Chauvigné
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (F.C.); (J.C.)
| | - Joan Cerdà
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (F.C.); (J.C.)
| | - Robin Mjelle
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway; (R.M.); (J.M.O.F.)
| | - Jorge M. O. Fernandes
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway; (R.M.); (J.M.O.F.)
| | - Elsa Cabrita
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Mounting evidence suggests that long noncoding RNAs (lncRNAs) are essential regulators of gene expression. Although few lncRNAs have been the subject of detailed molecular and functional characterization, it is believed that lncRNAs play an important role in tissue homeostasis and development. In fact, gene expression profiling studies reveal lncRNAs are developmentally regulated in a tissue-type and cell-type specific manner. Such findings have brought significant attention to their potential contribution to disease cause. The current review summarizes recent studies of lncRNAs in the heart. RECENT FINDINGS lncRNA discovery has largely been driven by the implementation of next generation sequencing technologies. To date, such technologies have contributed to the identification of tens of thousands of distinct lncRNAs in humans -- accounting for a large majority of all RNA sequences transcribed across the human genome. Although the functions of these lncRNAs remain largely unknown, gain-of-function and loss-of-function studies (in vivo and in vitro) have uncovered a number of mechanisms by which lncRNAs regulate gene expression and protein function. Such mechanisms have been stratified according to three major functional categories: RNA sponges (RNA-mediated sequestration of free miRNAs; e.g. H19, MEG3, and MALAT1); transcription-modulating lncRNAs (RNA influences regulatory factor recruitment by binding to histone modifiers or transcription factors; e.g. CAIF, MANTIS, and NEAT1); and translation-modulating lncRNAs (RNA modifies protein function via directly interacting with a protein itself or binding partners; e.g. Airn, CCRR, and ZFAS1). SUMMARY Recent studies strongly suggest that lncRNAs function via binding to macromolecules (e.g. genomic DNA, miRNAs, or proteins). Thus, lncRNAs constitute an additional mode by which cells regulate gene expression.
Collapse
|
18
|
Ruan GT, Gong YZ, Zhu LC, Gao F, Liao XW, Wang XK, Zhu GZ, Liao C, Wang S, Yan L, Xie HL, Zhou X, Liu JQ, Shao MN, Gan JL. The Perspective of Diagnostic and Prognostic Values of Lipoxygenases mRNA Expression in Colon Adenocarcinoma. Onco Targets Ther 2020; 13:9389-9405. [PMID: 33061426 PMCID: PMC7520158 DOI: 10.2147/ott.s251965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background This study was mainly to explore and study the potential application of lipoxygenases (ALOX) family genes in the diagnostic and prognostic values of colon adenocarcinoma (COAD). Methods Data sets related to the ALOX genes of COAD were obtained from The Cancer Genome Atlas and the University of California, Santa Cruz Xena browser. Then, the relevant biological information was downloaded from the public data platform. Finally, the bioinformatics technologies and clinical verification were employed to comprehensively analyze the potential values of ALOX genes. Results The Pearson correlation analysis indicated that there were correlations among ALOXE3, ALOX5, ALOX12, and ALOX12B. The diagnostic receiver operating characteristic (ROC) curves suggested that ALOXE3 and ALOX12 had significant diagnosis in COAD: ALOXE3; P<0.001, area under curve (AUC) 95%CI:=0.818 (0.773–0.862) and ALOX12; P<0.001, AUC 95%CI=0.774 (0.682–0.807). Besides, the verification study indicated that ALOX12 had a diagnostic value in COAD. Finally, our multivariate survival analysis and comprehensive prognosis of ALOX genes in COAD suggested that the ALOXE3 and ALOX12 were associated with COAD overall survival: ALOXE3; P=0.025, HR 95%CI=1.765 (1.074–2.901), ALOX12; P=0.046, HR 95%CI=1.680 (1.009–2.796), and the low expression of ALOXE3 and ALOX12 had a favorable prognosis of COAD (all P<0.05); on the contrary, the high regulation of them increased the risk of death. Conclusion In our study, we observed that the mRNA expressions of ALOX genes were associated with the diagnosis and prognosis of COAD. The results of the diagnostic analysis suggested that ALOX12 might have a diagnosis value in COAD. Besides, our comprehensive prognosis analysis indicated that ALOXE3 combined ALOX12 might serve as potential prognosis biomarkers for COAD.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Zhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Li-Chen Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shuai Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ling Yan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hai-Lun Xie
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jun-Qi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Meng-Nan Shao
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jia-Liang Gan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
19
|
Long Non-Coding RNAs in Liver Cancer and Nonalcoholic Steatohepatitis. Noncoding RNA 2020; 6:ncrna6030034. [PMID: 32872482 PMCID: PMC7549373 DOI: 10.3390/ncrna6030034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
This review aims to highlight the recent findings of long non-coding RNAs (lncRNAs) in liver disease. In particular, we focus on the functions of lncRNAs in hepatocellular carcinoma (HCC) and non-alcoholic steatohepatitis (NASH). We summarize the current research trend in lncRNAs and their potential as biomarkers and therapeutic targets for the treatment of HCC and NASH.
Collapse
|
20
|
Kim TW, Lee YS, Yun NH, Shin CH, Hong HK, Kim HH, Cho YB. MicroRNA-17-5p regulates EMT by targeting vimentin in colorectal cancer. Br J Cancer 2020; 123:1123-1130. [PMID: 32546833 PMCID: PMC7524803 DOI: 10.1038/s41416-020-0940-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 01/29/2023] Open
Abstract
Background Epithelial–mesenchymal transition (EMT) is the most common cause of death in colorectal cancer (CRC). In this study, we investigated the functional roles of miRNA-17-5p in EMT of CRC cells. Methods In order to determine if miRNA-17-5p regulated EMT, the precursors and inhibitors of miR-17-5p were transduced into four CRC cells. To evaluate the regulatory mechanism, we performed argonaute 2 (Ago2) immunoprecipitation (IP) and luciferase assay. In addition, we used an intra-splenic injection mouse model of BALB/c nude mice to investigate the metastatic potential of miRNA-17-5p in vivo. Results The miRNA-17-5p expression was lower in primary CRC tissues with metastasis than in primary CRC tissues without metastasis in our RNA sequencing data of patient tissue. Real-time quantitative PCR revealed that miRNA-17-5p was inversely correlated with that of vimentin in five CRC cell lines. Over-expression of miRNA-17-5p decreased vimentin expression and inhibited cell migration and invasion in both LoVo and HT29 cells. However, inhibition of miRNA-17-5p showed the opposite effect. Ago2 IP and luciferase assay revealed that miRNA-17-5p directly bound to the 3′UTR of VIM mRNA. Furthermore, miRNA-17-5p inhibited the metastasis of CRC into liver in vivo. Conclusions Our results demonstrated that miRNA-17-5p regulates vimentin expression, thereby regulating metastasis of CRC.
Collapse
Affiliation(s)
- Tae Won Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yeo Song Lee
- Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Nak Hyeon Yun
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Chang Hoon Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hye Kyung Hong
- Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. .,Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.
| | - Yong Beom Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. .,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Rodrigues TB, Petrick JS. Safety Considerations for Humans and Other Vertebrates Regarding Agricultural Uses of Externally Applied RNA Molecules. FRONTIERS IN PLANT SCIENCE 2020; 11:407. [PMID: 32391029 PMCID: PMC7191066 DOI: 10.3389/fpls.2020.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 05/13/2023]
Abstract
The potential of double-stranded RNAs (dsRNAs) for use as topical biopesticides in agriculture was recently discussed during an OECD (Organisation for Economic Co-operation and Development) Conference on RNA interference (RNAi)-based pesticides. Several topics were presented and these covered different aspects of RNAi technology, its application, and its potential effects on target and non-target organisms (including both mammals and non-mammals). This review presents information relating to RNAi mechanisms in vertebrates, the history of safe RNA consumption, the biological barriers that contribute to the safety of its consumption, and effects related to humans and other vertebrates as discussed during the conference. We also review literature related to vertebrates exposed to RNA molecules and further consider human health safety assessments of RNAi-based biopesticides. This includes possible routes of exposure other than the ingestion of potential residual material in food and water (such as dermal and inhalation exposures during application in the field), the implications of different types of formulations and RNA structures, and the possibility of non-specific effects such as the activation of the innate immune system or saturation of the RNAi machinery.
Collapse
|
22
|
Zhang J, Wei X, Zhang W, Wang F, Li Q. MiR-326 targets MDK to regulate the progression of cardiac hypertrophy through blocking JAK/STAT and MAPK signaling pathways. Eur J Pharmacol 2020; 872:172941. [PMID: 31972179 DOI: 10.1016/j.ejphar.2020.172941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/25/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Cardiac hypertrophy is a heart reaction to the increase of cardiac load, with the characteristics of increased expression of cardiac hypertrophy markers, enhanced protein synthesis, and enlarged cell area. However, molecular mechanisms in cardiac hypertrophy are still poorly substantiated. It has been reported that miRNAs can modulate human diseases, among which miR-326 has been reported as a biological regulator in human cancers, but its role in cardiac hypertrophy is rarely explored. This study focused on the exploration of the potential of miR-326 in cardiac hypertrophy. Our data revealed the downregulation of miR-326 in the TAC-induced hypertrophic mice and the Ang II-induced hypertrophic H9c2 cells. Functionally, miR-326 attenuated the effect of Ang II on cardiac hypertrophy in vitro. In addition, miR-326 negatively regulated JAK/STAT and MAPK signaling pathways. Mechanistically, miR-326 targeted and inhibited MDK to induce JAK/STAT and MAPK pathways. Rescue assays certified that miR-326 attenuated cardiac hypertrophy through targeting MDK and inhibiting JAK/STAT and MAPK signaling pathways. In brief, our study unveiled that miR-326 targets MDK to regulate the progression of cardiac hypertrophy through blocking JAK/STAT and MAPK signaling pathways, indicating that targeting miR-326 as a potential approach for cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, No. 1, Fu Wai Road, Zhengzhou, Henan, 450000, China
| | - Xinhua Wei
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, No. 1, Fu Wai Road, Zhengzhou, Henan, 450000, China
| | - Weitao Zhang
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, No. 1, Fu Wai Road, Zhengzhou, Henan, 450000, China
| | - Fengfeng Wang
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, No. 1, Fu Wai Road, Zhengzhou, Henan, 450000, China
| | - Qun Li
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, No. 1, Fu Wai Road, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
23
|
Görücü Yılmaz Ş, Bozkurt H, Ndadza A, Thomford NE, Karaoğlan M, Keskin M, Benlier N, Dandara C. Childhood Obesity Risk in Relationship to Perilipin 1 ( PLIN1) Gene Regulation by Circulating microRNAs. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 24:43-50. [PMID: 31851864 DOI: 10.1089/omi.2019.0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Childhood obesity is a growing public health burden in many countries. The lipid perilipin 1 (PLIN1) gene is involved in regulation of lipolysis, and thus represents a viable candidate mechanism for obesity genetics research in children. In addition, the regulation of candidate gene expression by circulating microRNAs (miRNAs) offers a new research venue for diagnostic innovation. We report new findings on associations among circulating miRNAs, regulation of the PLIN1 gene, and susceptibility to childhood obesity. In a sample of 135 unrelated subjects, 35 children with obesity (between ages 3 and 13) and 100 healthy controls (between ages 4 and 16), we examined the expression levels of four candidate miRNAs (hsa-miR-4777-3p, hsa-miR-642b-3p, hsa-miR-3671-1, and hsa-miR-551b-2) targeting the PLIN1 as measured by real-time polymerase chain reaction in whole blood samples. We found that the full genetic model, including the four candidate miRNAs and the PLIN1 gene, explained a statistically significant 12.7% of the variance in childhood obesity risk (p = 0.0034). The four miRNAs together explained 10.1% of the risk (p = 0.008). The percentage of variation in childhood obesity risk explained by hsa-miR-642b-3p and age was 19%. In accordance with biological polarity of the observed association, for example, hsa-miR-642b-3p was upregulated, while the PLIN1 expression decreased in obese participants compared to healthy controls. To the best of our knowledge, this is the first clinical association study of these candidate miRNAs targeting the PLIN1 in childhood obesity. These data offer new molecular leads for future clinical biomarker and diagnostic discovery for childhood obesity.
Collapse
Affiliation(s)
- Şenay Görücü Yılmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey
| | - Hakan Bozkurt
- Department of Neurology, Medical Park Hospital, Gaziantep, Turkey
| | - Arinao Ndadza
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Murat Karaoğlan
- Department of Pediatric Endocrinology, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Keskin
- Department of Pediatric Endocrinology, Gaziantep University, Gaziantep, Turkey
| | - Necla Benlier
- Department of Medical Pharmacology, Sanko University, Gaziantep, Turkey
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Slattery ML, Mullany LE, Sakoda LC, Wolff RK, Samowitz WS, Herrick JS. Dysregulated genes and miRNAs in the apoptosis pathway in colorectal cancer patients. Apoptosis 2019. [PMID: 29516317 PMCID: PMC5856858 DOI: 10.1007/s10495-018-1451-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptosis is genetically regulated and involves intrinsic and extrinsic pathways. We examined 133 genes within these pathways to identify whether they are expressed differently in colorectal carcinoma (CRC) and normal tissue (N = 217) and if they are associated with similar differential miRNA expression. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.0) were generated. We focused on dysregulated genes with a fold change (FC) of > 1.50 or < 0.67, that were significant after adjustment for multiple comparisons. miRNA:mRNA seed-region matches were determined. Twenty-three genes were significantly downregulated (FC < 0.67) and 18 were significantly upregulated (FC > 1.50). Of these 41 genes, 11 were significantly associated with miRNA differential expression. BIRC5 had the greatest number of miRNA associations (14) and the most miRNAs with a seed-region match (10). Four of these matches, miR-145-5p, miR-150-5p, miR-195-5p, and miR-650, had a negative beta coefficient. CSF2RB was associated with ten total miRNAs (five with a seed-region match, and one miRNA, miR-92a-3p, with a negative beta coefficient). Of the three miRNAs associated with CTSS, miR-20b-5p, and miR-501-3p, had a seed-region match and a negative beta coefficient between miRNA:mRNA pairs. Several miRNAs that were associated with dysregulated gene expression, seed-region matches, and negative beta coefficients also were associated with CRC-specific survival. Our data suggest that miRNAs could influence several apoptosis-related genes. BIRC5, CTSS, and CSF2R all had seed-region matches with miRNAs that would favor apoptosis. Our study identifies several miRNA associated with apoptosis-related genes, that if validated, could be important therapeutic targets.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA.
| | - Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| |
Collapse
|
25
|
Mullany LE, Slattery ML. The functional role of miRNAs in colorectal cancer: insights from a large population-based study. Cancer Biol Med 2019; 16:211-219. [PMID: 31516743 PMCID: PMC6713639 DOI: 10.20892/j.issn.2095-3941.2018.0514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Identification of causal microRNAs (miRNAs) in colorectal cancer (CRC) is elusive, due to our lack of understanding of how specific miRNAs affect biological pathways and outcomes. An miRNA can regulate many mRNAs and an mRNA can be associated with many miRNAs; appreciation of these complex networks in which miRNAs operate is necessary to transition from identifying dysregulated miRNAs to identifying individual miRNAs or groups of miRNAs that are suitable for therapeutic purposes. The aim of the paper is to compile results from a population-based study (n = 1,954 cases with matched carcinoma/normal tissue) of miRNAs in CRC. The information gained allows for cohesive and comprehensive insight into miRNAs and CRC in terms of function and impact. Comparison of miRNA expression with mRNA expression from nine signaling pathways in carcinogenic processes allowed us to identify miRNA targets within a biological context. MiRNAs that directly influence mRNA expression may be effective biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Lila E Mullany
- Department of Internal Medicine, University of Utah, Salt Lake City 84108, UT, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City 84108, UT, USA
| |
Collapse
|
26
|
Fernández I, Fernandes JM, Roberto VP, Kopp M, Oliveira C, Riesco MF, Dias J, Cox CJ, Leonor Cancela M, Cabrita E, Gavaia P. Circulating small non-coding RNAs provide new insights into vitamin K nutrition and reproductive physiology in teleost fish. Biochim Biophys Acta Gen Subj 2019; 1863:39-51. [DOI: 10.1016/j.bbagen.2018.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
|
27
|
Guerrero Flórez M, Guerrero Gómez OA, Mena Huertas J, Yépez Chamorro MC. Mapping of microRNAs related to cervical cancer in Latin American human genomic variants. F1000Res 2018; 6:946. [PMID: 37766816 PMCID: PMC10521080 DOI: 10.12688/f1000research.10138.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2018] [Indexed: 09/29/2023] Open
Abstract
Background: MicroRNAs are related to human cancers, including cervical cancer (CC) caused by HPV. In 2018, approximately 56.075 cases and 28.252 deaths from this cancer were registered in Latin America and the Caribbean according to GLOBOCAN reports. The main molecular mechanism of HPV in CC is related to integration of viral DNA into the hosts' genome. However, the different variants in the human genome can result in different integration mechanisms, specifically involving microRNAs (miRNAs). Methods: The miRNAs associated with CC were obtained from literature, the miRNA sequences and four human genome variants (HGV) from Latin American populations were obtained from miRBase and 1000 Genomes Browser, respectively. HPV integration sites near cell cycle regulatory genes were identified. miRNAs were mapped on HGV. miRSNPs were identified in the miRNA sequences located at HPV integration sites on the Latin American HGV. Results: Two hundred seventy-two miRNAs associated with CC were identified in 139 reports from different geographic locations. By mapping with Blast-Like Alignment Tool (BLAT), 2028 binding sites were identified from these miRNAs on the human genome (version GRCh38/hg38); 42 miRNAs were located on unique integration sites; and miR-5095, miR-548c-5p and miR-548d-5p were involved with multiple genes related to the cell cycle. Thirty-seven miRNAs were mapped on the Latin American HGV (PUR, MXL, CLM and PEL), but only miR-11-3p, miR-31-3p, miR-107, miR-133a-3p, miR-133a-5p, miR-133b, miR-215-5p, miR-491-3p, miR-548d-5p and miR-944 were conserved. Conclusions: Ten miRNAs were conserved in the four HGV. In the remaining 27 miRNAs, substitutions, deletions or insertions were observed. These variation patterns can imply differentiated mechanisms towards each genomic variant in human populations because of specific genomic patterns and geographic features. These findings may help in determining susceptibility for CC development. Further identification of cellular genes and signalling pathways involved in CC progression could lead new therapeutic strategies based on miRNAs.
Collapse
Affiliation(s)
- Milena Guerrero Flórez
- Department of Biology, University of Nariño, Pasto, Nariño, Colombia
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| | - Olivia Alexandra Guerrero Gómez
- Department of Biology, University of Nariño, Pasto, Nariño, Colombia
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| | - Jaqueline Mena Huertas
- Department of Biology, University of Nariño, Pasto, Nariño, Colombia
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| | - María Clara Yépez Chamorro
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| |
Collapse
|
28
|
Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs. Funct Integr Genomics 2018; 19:171-190. [PMID: 30244303 DOI: 10.1007/s10142-018-0635-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
Elevated CO2 along with drought is a serious global threat to crop productivity. Therefore, understanding the molecular mechanisms plants use to protect these stresses is the key for plant growth and development. In this study, we mimicked natural stress conditions under a controlled Soil-Plant-Atmosphere-Research (SPAR) system and provided the evidence for how miRNAs regulate target genes under elevated CO2 and drought conditions. Significant physiological and biomass data supported the effective utilization of source-sink (leaf to root) under elevated CO2. Additionally, elevated CO2 partially rescued the effect of drought on total biomass. We identified both known and novel miRNAs differentially expressed during drought, CO2, and combined stress, along with putative targets. A total of 32 conserved miRNAs belonged to 23 miRNA families, and 25 novel miRNAs were identified by deep sequencing. Using the existing sweet potato genome database and stringent analyses, a total of 42 and 22 potential target genes were predicted for the conserved and novel miRNAs, respectively. These target genes are involved in drought response, hormone signaling, photosynthesis, carbon fixation, sucrose and starch metabolism, etc. Gene ontology and KEGG ontology functional enrichment revealed that these miRNAs might target transcription factors (MYB, TCP, NAC), hormone signaling regulators (ARF, AP2/ERF), cold and drought factors (corA), carbon metabolism (ATP synthase, fructose-1,6-bisphosphate), and photosynthesis (photosystem I and II complex units). Our study is the first report identifying targets of miRNAs under elevated CO2 levels and could support the molecular mechanisms under elevated CO2 in sweet potato and other crops in the future.
Collapse
|
29
|
Mullany LE, Herrick JS, Sakoda LC, Samowitz W, Stevens JR, Wolff RK, Slattery ML. MicroRNA-messenger RNA interactions involving JAK-STAT signaling genes in colorectal cancer. Genes Cancer 2018; 9:232-246. [PMID: 30603058 PMCID: PMC6305104 DOI: 10.18632/genesandcancer.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
JAK-STAT signaling influences many downstream processes that, unchecked, contribute to carcinogenesis and metastasis. MicroRNAs (miRNAs) are hypothesized as a mechanism to prevent uncontrolled growth from continuous JAK-STAT activation. We investigated differential expression between paired carcinoma and normal colorectal mucosa of messenger RNAs (mRNAs) and miRNAs using RNA-Seq and Agilent Human miRNA Microarray V19.0 data, respectively, using a negative binomial mixed effects model to test 122 JAK-STAT-signaling genes in 217 colorectal cancer (CRC) cases. Overall, 42 mRNAs were differentially expressed with a fold change of >1.50 or <0.67, remaining significant with a false discovery rate of < 0.05; four were dysregulated in microsatellite stable (MSS) tumors, eight were for microsatellite unstable (MSI)-specific tumors. Of these 54 mRNAs, 17 were associated with differential expression of 46 miRNAs, comprising 116 interactions: 16 were significant overall, one for MSS tumors only. Twenty of the 29 interactions with negative beta coefficients involved miRNA seed sequence matches with mRNAs, supporting miRNA-mediated mRNA repression; 17 of these mRNAs encode for receptor molecules. Receptor molecule degradation is an established JAK-STAT signaling control mechanism; our results suggest that miRNAs facilitate this process. Interactions involving positive beta coefficients may illustrate downstream effects of disrupted STAT activity, and subsequent miRNA upregulation.
Collapse
Affiliation(s)
- Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Wade Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| | - Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| |
Collapse
|
30
|
Pellatt AJ, Mullany LE, Herrick JS, Sakoda LC, Wolff RK, Samowitz WS, Slattery ML. The TGFβ-signaling pathway and colorectal cancer: associations between dysregulated genes and miRNAs. J Transl Med 2018; 16:191. [PMID: 29986714 PMCID: PMC6038278 DOI: 10.1186/s12967-018-1566-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
Abstract
Background The TGFβ-signaling pathway plays an important role in the pathogenesis of colorectal cancer (CRC). Loss of function of several genes within this pathway, such as bone morphogenetic proteins (BMPs) have been seen as key events in CRC progression. Methods In this study we comprehensively evaluate differential gene expression (RNASeq) of 81 genes in the TGFβ-signaling pathway and evaluate how dysregulated genes are associated with miRNA expression (Agilent Human miRNA Microarray V19.0). We utilize paired carcinoma and normal tissue from 217 CRC cases. We evaluate the associations between differentially expressed genes and miRNAs and sex, age, disease stage, and survival months. Results Thirteen genes were significantly downregulated and 14 were significantly upregulated after considering fold change (FC) of > 1.50 or < 0.67 and multiple comparison adjustment. Bone morphogenetic protein genes BMP5, BMP6, and BMP2 and growth differentiation factor GDF7 were downregulated. BMP4, BMP7, INHBA (Inhibin beta A), TGFBR1, TGFB2, TGIF1, TGIF2, and TFDP1 were upregulated. In general, genes with the greatest dysregulation, such as BMP5 (FC 0.17, BMP6 (FC 0.25), BMP2 (FC 0.32), CDKN2B (FC 0.32), MYC (FC 3.70), BMP7 (FC 4.17), and INHBA (FC 9.34) showed dysregulation in the majority of the population (84.3, 77.4, 81.1, 80.2, 82.0, 51.2, and 75.1% respectively). Four genes, TGFBR2, ID4, ID1, and PITX2, were un-associated or slightly upregulated in microsatellite-stable (MSS) tumors while downregulated in microsatellite-unstable (MSI) tumors. Eight dysregulated genes were associated with miRNA differential expression. E2F5 and THBS1 were associated with one or two miRNAs; RBL1, TGFBR1, TGIF2, and INHBA were associated with seven or more miRNAs with multiple seed-region matches. Evaluation of the joint effects of mRNA:miRNA identified interactions that were stronger in more advanced disease stages and varied by survival months. Conclusion These data support an interaction between miRNAs and genes in the TGFβ-signaling pathway in association with CRC risk. These interactions are associated with unique clinical characteristics that may provide targets for further investigations. Electronic supplementary material The online version of this article (10.1186/s12967-018-1566-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
31
|
Slattery ML, Mullany LE, Wolff RK, Sakoda LC, Samowitz WS, Herrick JS. The p53-signaling pathway and colorectal cancer: Interactions between downstream p53 target genes and miRNAs. Genomics 2018; 111:762-771. [PMID: 29860032 DOI: 10.1016/j.ygeno.2018.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION We examined expression of genes in the p53-signaling pathway. We determine if genes that have significantly different expression in carcinoma tissue compared to normal mucosa also have significantly differentially expressed miRNAs. We utilize a sample of 217 CRC cases. METHODS We focused on fold change (FC) > 1.50 or <0.67 for genes and miRNAs, that were statistically significant after adjustment for multiple comparisons. We evaluated the linear association between the differential expression of miRNA and mRNA. miRNA:mRNA seed-region matches also were determined. RESULTS Eleven dysregulated genes were associated with 37 dysregulated miRNAs; all were down-stream from the TP53 gene. MiR-150-5p (HR = 0.82) and miR-196b-5p (HR 0.73) significantly reduced the likelihood of dying from CRC when miRNA expression increased in rectal tumors. CONCLUSIONS Our data suggest that activation of p53 from cellular stress, could target downstream genes that in turn could influence cell cycle arrest, apoptosis, and angiogenesis through mRNA:miRNA interactions.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States.
| | - Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| |
Collapse
|
32
|
Hirschberger S, Hinske LC, Kreth S. MiRNAs: dynamic regulators of immune cell functions in inflammation and cancer. Cancer Lett 2018; 431:11-21. [PMID: 29800684 DOI: 10.1016/j.canlet.2018.05.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs), small noncoding RNA molecules, have emerged as important regulators of almost all cellular processes. By binding to specific sequence motifs within the 3'- untranslated region of their target mRNAs, they induce either mRNA degradation or translational repression. In the human immune system, potent miRNAs and miRNA-clusters have been discovered, that exert pivotal roles in the regulation of gene expression. By targeting cellular signaling hubs, these so-called immuno-miRs have fundamental regulative impact on both innate and adaptive immune cells in health and disease. Importantly, they also act as mediators of tumor immune escape. Secreted by cancer cells and consecutively taken up by immune cells, immuno-miRs are capable to influence immune functions towards a blunted anti-tumor response, thus shaping a permissive tumor environment. This review provides an overview of immuno-miRs and their functional impact on individual immune cell entities. Further, implications of immuno-miRs in the amelioration of tumor surveillance are discussed.
Collapse
Affiliation(s)
- Simon Hirschberger
- Department of Anesthesiology, University Hospital, LMU Munich, Germany; Walter-Brendel-Center of Experimental Medicine, LMU Munich, Germany
| | | | - Simone Kreth
- Department of Anesthesiology, University Hospital, LMU Munich, Germany; Walter-Brendel-Center of Experimental Medicine, LMU Munich, Germany.
| |
Collapse
|
33
|
Slattery ML, Mullany LE, Sakoda LC, Wolff RK, Samowitz WS, Herrick JS. The MAPK-Signaling Pathway in Colorectal Cancer: Dysregulated Genes and Their Association With MicroRNAs. Cancer Inform 2018; 17:1176935118766522. [PMID: 29636593 PMCID: PMC5888819 DOI: 10.1177/1176935118766522] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate many cellular functions including cell proliferation and apoptosis. We examined associations of differential gene and microRNA (miRNA) expression between carcinoma and paired normal mucosa for 241 genes in the KEGG-identified MAPK-signaling pathway among 217 colorectal cancer (CRC) cases. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.0; Agilent Technologies Inc., Santa Clara, CA, USA) were analyzed. We first identified genes most strongly associated with CRC using a fold change (FC) of >1.50 or <0.67) that were statistically significant after adjustment for multiple comparisons. We then determined miRNAs associated with dysregulated genes and through miRNA:mRNA (messenger RNA) seed region matches discerned genes with a greater likelihood of having a direct biological association. Ninety-nine genes had a meaningful FC for all CRC, microsatellite unstable–specific tumors, or microsatellite stable–specific tumors. Thirteen dysregulated genes were associated with miRNAs, totaling 68 miRNA:mRNA associations. Thirteen of the miRNA:mRNA associations had seed region matches where the differential expression between the miRNA and mRNA was inversely related suggesting a direct association as a result of their binding. Several direct associations, upstream of ERK1/ERK2, JNK, and p38, were found for PDGFRA with 7 miRNAs; RASGRP3 and PRKCB with miR-203a; and TGFBR1 with miR-6071 and miR-2117. Other associations between miRNAs and mRNAs are most likely indirect, resulting from feedback and feed forward loops. Our results suggest that miRNAs may alter MAPK signaling through direct binding with key genes in this pathway. We encourage others to validate results in targeted CRC experiments that can help solidify important therapeutic targets.
Collapse
Affiliation(s)
| | - Lila E Mullany
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Roger K Wolff
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
34
|
Mullany LE, Herrick JS, Sakoda LC, Samowitz W, Stevens JR, Wolff RK, Slattery ML. miRNA involvement in cell cycle regulation in colorectal cancer cases. Genes Cancer 2018; 9:53-65. [PMID: 29725503 PMCID: PMC5931252 DOI: 10.18632/genesandcancer.167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Uncontrolled cell replication is a key component of carcinogenesis. MicroRNAs (miRNAs) regulate genes involved in checkpoints, DNA repair, and genes encoding for key proteins regulating the cell cycle. We investigated how miRNAs and mRNAs in colorectal cancer subjects interact to regulate the cell cycle. Using RNA-Seq data from 217 individuals, we analyzed differential expression (carcinoma minus normal mucosa) of 123 genes within the cell cycle pathway with differential miRNA expression, adjusting for age and sex. Multiple comparison adjustments for gene/miRNA associations were made at the gene level using an FDR <0.05. Differentially expressed miRNAs and mRNAs were tested for associations with colorectal cancer survival. MRNA and miRNA sequences were compared to identify seed region matches to support biological interpretation of the observed associations. Sixty-seven mRNAs were dysregulated with a fold change (FC) <0.67 or >1.50. Thirty-two mRNAs were associated with 48 miRNAs; 102 of 290 total associations had identified seed matches; of these, ten had negative beta coefficients. Hsa-miR-15a-5p and hsa-miR-20b-5p were associated with colorectal cancer survival with an FDR <0.05 (HR 0.86 95% CI 0.79, 0.94; HR 0.83 95% CI 0.75, 0.91 respectively). Our findings suggest that miRNAs impact mRNA translation at multiple levels within the cell cycle.
Collapse
Affiliation(s)
- Lila E Mullany
- Division of Epidemiology, University of Utah, Salt Lake City, Ut, USA
| | | | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, CA, USA
| | - Wade Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Ut, USA
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Ut, USA
| | - Roger K Wolff
- Division of Epidemiology, University of Utah, Salt Lake City, Ut, USA
| | - Martha L Slattery
- Division of Epidemiology, University of Utah, Salt Lake City, Ut, USA
| |
Collapse
|
35
|
Selvaskandan H, Pawluczyk I, Barratt J. MicroRNAs: a new avenue to understand, investigate and treat immunoglobulin A nephropathy? Clin Kidney J 2018; 11:29-37. [PMID: 29423198 PMCID: PMC5798124 DOI: 10.1093/ckj/sfx096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common cause of primary glomerulonephritis worldwide. Up to 30% of cases develop the progressive form of the disease, eventually requiring renal replacement therapy. Diagnosis and risk stratification relies on an invasive kidney biopsy and management options are limited, with recurrence following renal transplantation being common. Thus the quest to understand the pathophysiology of IgAN has been one of great importance. MicroRNAs (miRs) are short nucleotides that suppress gene expression by hybridizing to the 3' untranslated region of messenger RNA (mRNAs), promoting mRNA degradation or disrupting translation. First discovered in 1993, miRs have since been implicated in a number of chronic conditions, including cancer, heart disease and kidney disease. The mounting interest in the field of miRs has led to fascinating developments in the field of nephrology, ranging from their roles as biomarkers for disease to the development of miR antagonists as avenues for treatment. The translational potential for miRs in IgAN is thus well grounded and may represent a paradigm shift in current approaches to the disease. This review aims to summarize the literature with regard to miRs and their roles in IgAN.
Collapse
Affiliation(s)
- Haresh Selvaskandan
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Izabella Pawluczyk
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
36
|
Ferruelo A, Peñuelas Ó, Lorente JA. MicroRNAs as biomarkers of acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:34. [PMID: 29430451 DOI: 10.21037/atm.2018.01.10] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a common and complex inflammatory lung diseases affecting critically ill patients requiring mechanical ventilation. MicroRNAs (miRNAs), a novel pathway of non-coding RNA molecules that regulate gene expression at the post-transcriptional level, have emerged as a novel class of gene expression, and can play important roles in inflammation or apoptosis, which are common manifestations of ARDS and diffuse alveolar damage (DAD). In the present review, we discuss the role of miRNAs as biomarkers of ARDS and DAD, and their potential use as therapeutic targets for this condition.
Collapse
Affiliation(s)
- Antonio Ferruelo
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Óscar Peñuelas
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Department of Medicine, Universidad Europea, Madrid, Spain
| | - José A Lorente
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Department of Medicine, Universidad Europea, Madrid, Spain
| |
Collapse
|
37
|
Mullany LE, Herrick JS, Wolff RK, Stevens JR, Samowitz W, Slattery ML. MicroRNA-transcription factor interactions and their combined effect on target gene expression in colon cancer cases. Genes Chromosomes Cancer 2017; 57:192-202. [PMID: 29226599 PMCID: PMC5807123 DOI: 10.1002/gcc.22520] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
Transcription factors (TFs) and microRNAs (miRNAs) regulate gene expression: TFs by influencing messenger RNA (mRNA) transcription and miRNAs by influencing mRNA translation and transcript degradation. Additionally, miRNAs and TFs alter each other's expression, making it difficult to ascertain the effect either one has on target gene (TG) expression. In this investigation, we use a two‐way interaction model with the TF and miRNA as independent variables to investigate whether miRNAs and TFs work together to influence TG expression levels in colon cancer subjects. We used known TF binding sites and validated miRNA targets to determine potential miRNA‐TF‐TG interactions, restricting interactions to those with a TF previously associated with altered risk of colorectal cancer death. We analyzed interactions using normal colonic mucosa expression as well as differential expression, which is measured as colonic carcinoma expression minus normal colonic mucosa expression. We analyzed 3518 miRNA‐TF‐TG triplets using normal mucosa expression and 617 triplets using differential expression. Normal colonic RNA‐Seq data were available for 168 individuals; of these, 159 also had carcinoma RNA‐Seq data. Thirteen unique miRNA‐TF‐TG interactions, comprising six miRNAs, four TFs, and 11 TGs, were statistically significant after adjustment for multiple comparisons in normal colonic mucosa, and 14 unique miRNA‐TF‐TG interactions, comprising two miRNAs, two TFs, and 13 TGs, were found for carcinoma‐normal differential expression. Our results show that TG expression is influenced by both miRNAs as well as TFs, and the influence of one regulator impacts the effect of the other on the shared TG expression.
Collapse
Affiliation(s)
- Lila E Mullany
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Division of Epidemiology, University of Utah, Salt Lake City, Utah
| | - Jennifer S Herrick
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Division of Epidemiology, University of Utah, Salt Lake City, Utah
| | - Roger K Wolff
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Division of Epidemiology, University of Utah, Salt Lake City, Utah
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Wade Samowitz
- Department of Pathology, University of Utah School, Salt Lake City, Utah
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Division of Epidemiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
38
|
Slattery ML, Mullany LE, Sakoda LC, Samowitz WS, Wolff RK, Stevens JR, Herrick JS. Expression of Wnt-signaling pathway genes and their associations with miRNAs in colorectal cancer. Oncotarget 2017; 9:6075-6085. [PMID: 29464056 PMCID: PMC5814196 DOI: 10.18632/oncotarget.23636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/08/2017] [Indexed: 01/01/2023] Open
Abstract
The Wnt-signaling pathway functions in regulating cell growth and thus is involved in the carcinogenic process of several cancers, including colorectal cancer. We tested the hypothesis that multiple genes in this signaling pathway are dysregulated and that miRNAs are associated with these dysregulated genes. We used data from 217 colorectal cancer (CRC) cases to evaluate differences in Wnt-signaling pathway gene expression between paired CRC and normal mucosa and identify miRNAs that are associated with these genes. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were analyzed. We focused on genes most strongly associated with CRC (fold change (FC) of >1.5 or <0.67) and that were statistically significant after adjustment for multiple comparisons. Of the 138 Wnt-signaling pathway genes examined, 27 were significantly down-regulated (FC<0.67) and 32 genes were significantly up-regulated (FC>1.50) after adjusting for multiple comparisons. Thirteen of the 66 Wnt-signaling genes that were differentially expressed in CRC tumors were associated with differential expression of miRNAs. A total of 93 miRNA:mRNA associations were detected for these 13 genes. Of these 93 associations, 36 miRNA seed-region matches were observed, suggesting that miRNAs have both direct and indirect effects on Wnt-signaling pathway genes. In summary, our data supports the hypothesis that the Wnt-signaling pathway is dysregulated in CRC and suggest that miRNAs may importantly influence that dysregulation.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Lila E Mullany
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | | |
Collapse
|
39
|
Abstract
INTRODUCTION Osteoarthritis (OA), a chronic, debilitating and degenerative disease of the joints, is the most common form of arthritis. The seriousness of this prevalent and chronic disease is often overlooked. Disease modifying OA drug development is hindered by the lack of soluble biomarkers to detect OA early. The objective of OA biomarker research is to identify early OA prior to the appearance of radiographic signs and the development of pain. Areas covered: This review has focused on extracellular genomic material that could serve as biomarkers of OA. Recent studies have examined the expression of extracellular genomic material such as miRNA, lncRNA, snoRNA, mRNA and cell-free DNA, which are aberrantly expressed in the body fluids of OA patients. Changes in genomic content of peripheral blood mononuclear cells in OA could also function as biomarkers of OA. Expert commentary: There is an unmet need for soluble biomarkers for detecting and then monitoring OA disease progression. Extracellular genomic material research may also reveal more about the underlying pathophysiology of OA. Minimally-invasive liquid biopsies such as synovial fluid and blood sampling of genomic material may be more sensitive over radiography in the detection, diagnosis and monitoring of OA in the future.
Collapse
Affiliation(s)
- Emma Budd
- a The D-BOARD European Consortium for Biomarker Discovery, School of Veterinary Medicine , University of Surrey , Guildford , UK.,b Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Giovanna Nalesso
- b Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Ali Mobasheri
- a The D-BOARD European Consortium for Biomarker Discovery, School of Veterinary Medicine , University of Surrey , Guildford , UK.,b Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK.,c Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis , Queen's Medical Centre , Nottingham , UK
| |
Collapse
|
40
|
A microsatellite repeat in PCA3 long non-coding RNA is associated with prostate cancer risk and aggressiveness. Sci Rep 2017; 7:16862. [PMID: 29203868 PMCID: PMC5715103 DOI: 10.1038/s41598-017-16700-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023] Open
Abstract
Short tandem repeats (STRs) are repetitive sequences of a polymorphic stretch of two to six nucleotides. We hypothesized that STRs are associated with prostate cancer development and/or progression. We undertook RNA sequencing analysis of prostate tumors and adjacent non-malignant cells to identify polymorphic STRs that are readily expressed in these cells. Most of the expressed STRs in the clinical samples mapped to intronic and intergenic DNA. Our analysis indicated that three of these STRs (TAAA-ACTG2, TTTTG-TRIB1, and TG-PCA3) are polymorphic and differentially expressed in prostate tumors compared to adjacent non-malignant cells. TG-PCA3 STR expression was repressed by the anti-androgen drug enzalutamide in prostate cancer cells. Genetic analysis of prostate cancer patients and healthy controls (N > 2,000) showed a significant association of the most common 11 repeat allele of TG-PCA3 STR with prostate cancer risk (OR = 1.49; 95% CI 1.11–1.99; P = 0.008). A significant association was also observed with aggressive disease (OR = 2.00; 95% CI 1.06–3.76; P = 0.031) and high mortality rates (HR = 3.0; 95% CI 1.03–8.77; P = 0.045). We propose that TG-PCA3 STR has both diagnostic and prognostic potential for prostate cancer. We provided a proof of concept to be applied to other RNA sequencing datasets to identify disease-associated STRs for future clinical exploratory studies.
Collapse
|
41
|
The NF-κB signalling pathway in colorectal cancer: associations between dysregulated gene and miRNA expression. J Cancer Res Clin Oncol 2017; 144:269-283. [PMID: 29188362 PMCID: PMC5794831 DOI: 10.1007/s00432-017-2548-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/20/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The nuclear factor-kappa B (NF-κB) signalling pathway is a regulator of immune response and inflammation that has been implicated in the carcinogenic process. We examined differentially expressed genes in this pathway and miRNAs to determine associations with colorectal cancer (CRC). METHODS We used data from 217 CRC cases to evaluate differences in NF-κB signalling pathway gene expression between paired carcinoma and normal mucosa and identify miRNAs that are associated with these genes. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were analysed. We evaluated genes most strongly associated and differentially expressed (fold change (FC) of > 1.5 or < 0.67) that were statistically significant after adjustment for multiple comparisons. RESULTS Of the 92 genes evaluated, 22 were significantly downregulated and nine genes were significantly upregulated in all tumours. Two additional genes (CD14 and CSNK2A1) were dysregulated in MSS tumours and two genes (CARD11 and VCAM1) were downregulated and six genes were upregulated (LYN, TICAM2, ICAM1, IL1B, CCL4 and PTGS2) in MSI tumours. Sixteen of the 21 dysregulated genes were associated with 40 miRNAs. There were 76 miRNA:mRNA associations of which 38 had seed-region matches. Genes were associated with multiple miRNAs, with TNFSRF11A (RANK) being associated with 15 miRNAs. Likewise several miRNAs were associated with multiple genes (miR-150-5p with eight genes, miR-195-5p with four genes, miR-203a with five genes, miR-20b-5p with four genes, miR-650 with six genes and miR-92a-3p with five genes). CONCLUSIONS Focusing on the genes and their associated miRNAs within the entire signalling pathway provides a comprehensive understanding of this complex pathway as it relates to CRC and offers insight into potential therapeutic agents.
Collapse
|
42
|
Slattery ML, Mullany LE, Sakoda LC, Wolff RK, Stevens JR, Samowitz WS, Herrick JS. The PI3K/AKT signaling pathway: Associations of miRNAs with dysregulated gene expression in colorectal cancer. Mol Carcinog 2017; 57:243-261. [PMID: 29068474 PMCID: PMC5760356 DOI: 10.1002/mc.22752] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023]
Abstract
The PI3K/AKT‐signaling pathway is one of the most frequently activated signal‐transduction pathways in cancer. We examined how dysregulated gene expression is associated with miRNA expression in this pathway in colorectal cancer (CRC). We used data from 217 CRC cases to evaluate differential pathway gene expression between paired carcinoma and normal mucosa and identify miRNAs that are associated with these genes. Gene expression data from RNA‐Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were analyzed. We focused on genes most associated with CRC (fold change (FC) of >1.5 or <0.67) that were statistically significant after adjustment for multiple comparisons. Of the 304 genes evaluated, 76 had a FC of <0.67, and 57 had a FC of >1.50; 47 of these genes were associated with miRNA differential expression. There were 145 mRNA:miRNA seed‐region matches of which 26 were inversely associated suggesting a greater likelihood of a direct association. Most miRNA:mRNA associations were with factors that stimulated the pathway. For instance, both IL6R and PDGFRA had inverse seed‐region matches with seven miRNAs, suggesting that these miRNAs have a direct effect on these genes and may be key elements in activation of the pathway. Other miRNA:mRNA associations with similar impact on the pathway were miR‐203a with ITGA4, miR‐6071 with ITGAV, and miR‐375 with THBS2, all genes involved in extracellular matrix function that activate PI3Ks. Gene expression in the PI3K/Akt‐signaling pathway is dysregulated in CRC. MiRNAs were associated with many of these dysregulated genes either directly or in an indirect manner.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Colorow, Salt Lake City, Utah
| | - Lila E Mullany
- Department of Medicine, University of Utah, Colorow, Salt Lake City, Utah
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Roger K Wolff
- Department of Medicine, University of Utah, Colorow, Salt Lake City, Utah
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, Colorow, Salt Lake City, Utah
| |
Collapse
|
43
|
Huang K, Doyle F, Wurz ZE, Tenenbaum SA, Hammond RK, Caplan JL, Meyers BC. FASTmiR: an RNA-based sensor for in vitro quantification and live-cell localization of small RNAs. Nucleic Acids Res 2017; 45:e130. [PMID: 28586459 PMCID: PMC5737440 DOI: 10.1093/nar/gkx504] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/27/2017] [Indexed: 01/19/2023] Open
Abstract
Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play a variety of important regulatory roles in many eukaryotes. Their small size has made it challenging to study them directly in live cells. Here we describe an RNA-based fluorescent sensor for small RNA detection both in vitro and in vivo, adaptable for any small RNA. It utilizes an sxRNA switch for detection of miRNA–mRNA interactions combined with a fluorophore-binding sequence ‘Spinach’, a GFP-like RNA aptamer for which the RNA–fluorophore complex exhibits strong and consistent fluorescence under an excitation wavelength. Two example sensors, FASTmiR171 and FASTmiR122, can rapidly detect and quantify the levels of miR171 and miR122 in vitro. The sensors can determine relative levels of miRNAs in total RNA extracts with sensitivity similar to small RNA sequencing and northern blots. FASTmiR sensors were also used to estimate the copy number range of miRNAs in total RNA extracts. To localize and analyze the spatial distribution of small RNAs in live, single cells, tandem copies of FASTmiR122 were expressed in different cell lines. FASTmiR122 was able to quantitatively detect the differences in miR122 levels in Huh7 and HEK293T cells demonstrating its potential for tracking miRNA expression and localization in vivo.
Collapse
Affiliation(s)
- Kun Huang
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.,Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Francis Doyle
- Nanobioscience Constellation, State University of New York- Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Zachary E Wurz
- Nanobioscience Constellation, State University of New York- Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- Nanobioscience Constellation, State University of New York- Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Reza K Hammond
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | - Jeffrey L Caplan
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.,Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Blake C Meyers
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA.,Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA.,University of Missouri-Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211, USA
| |
Collapse
|
44
|
Meng X, Jin-Cheng G, Jue Z, Quan-Fu M, Bin Y, Xu-Feng W. Protein-coding genes, long non-coding RNAs combined with microRNAs as a novel clinical multi-dimension transcriptome signature to predict prognosis in ovarian cancer. Oncotarget 2017; 8:72847-72859. [PMID: 29069830 PMCID: PMC5641173 DOI: 10.18632/oncotarget.20457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/11/2017] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is prevalent in women which is usually diagnosed at an advanced stage with a high mortality rate. The aim of this study is to investigate protein-coding gene, long non-coding RNA, and microRNA associated with the prognosis of patients with ovarian serous carcinoma by mining data from TCGA (The Cancer Genome Atlas) public database. The clinical data of ovarian serous carcinoma patients was downloaded from TCGA database in September, 2016. The mean age and survival time of 407 patients with ovarian serous carcinoma were 59.71 ± 11.54 years and 32.98 ± 26.66 months. Cox's proportional hazards regression analysis was conducted to analyze genes that were significantly associated with the survival of ovarian serous carcinoma patients in the training group. Using the random survival forest algorithm, Kaplan-Meier and ROC analysis, we kept prognostic genes to construct the multi-dimensional transcriptome signature with max area under ROC curve (AUC) (0.69 in the training group and 0.62 in the test group). The selected signature composed by VAT1L, CALR, LINC01456, RP11-484L8.1, MIR196A1 and MIR148A, separated the training group patients into high-risk or low-risk subgroup with significantly different survival time (median survival: 35.3 months vs. 64.9 months, P < 0.001). The signature was validated in the test group showing similar prognostic values (median survival: 41.6 months in high-risk vs. 57.4 months in low-risk group, P=0.018). Chi-square test and multivariable Cox regression analysis showed that the signature was an independent prognostic factor for patients with ovarian serous carcinoma. Finally, we validated the expression of the genes experimentally.
Collapse
Affiliation(s)
- Xu Meng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Guo Jin-Cheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Zhang Jue
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Ma Quan-Fu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yan Bin
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Wu Xu-Feng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
45
|
Mullany LE, Herrick JS, Wolff RK, Stevens JR, Samowitz W, Slattery ML. Transcription factor-microRNA associations and their impact on colorectal cancer survival. Mol Carcinog 2017; 56:2512-2526. [PMID: 28667784 PMCID: PMC5633497 DOI: 10.1002/mc.22698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/06/2017] [Accepted: 06/29/2017] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) and Transcription Factors (TFs) both influence messenger RNA (mRNA) expression, disrupting biological pathways involved in carcinogenesis and prognosis. As many miRNAs target multiple mRNAs, thus influencing a multitude of biological pathways, deciphering which miRNAs are important for cancer development and survival is difficult. In this study, we (i) determine associations between TF and survival (N = 168 colon cancer cases); (ii) identify miRNAs associated with TFs related to survival; and (iii) determine if factors derived from TF-specific miRNA principal component analysis (PCA) influence survival. Cox Proportional hazard models were run for each PCA factor to determine Hazard Ratios (HR) and 95% Confidence Intervals (CI) adjusting for age, center, and AJCC stage. Thirty TFs improved survival when differential expression increased; 27 of these were associated significantly with normal colonic mucosa expression of 65 unique miRNAs when an FDR q-value of <0.05 was applied. Five factors, comprising 21 miRNAs, altered survival in rectal cancer subjects; four of these five factors improved survival and one factor reduced survival. One factor comprising four miRNAs reduced survival in colon cancer subjects. In summary, our data suggest that expression of TFs and their related miRNAs influence survival after diagnosis with colorectal cancer.
Collapse
Affiliation(s)
- Lila E Mullany
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jennifer S Herrick
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Roger K Wolff
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Wade Samowitz
- Department of Pathology, University of Utah School, Salt Lake City, Utah
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
46
|
Slattery ML, Herrick JS, Stevens JR, Wolff RK, Mullany LE. An Assessment of Database-Validated microRNA Target Genes in Normal Colonic Mucosa: Implications for Pathway Analysis. Cancer Inform 2017; 16:1176935117716405. [PMID: 28690395 PMCID: PMC5484592 DOI: 10.1177/1176935117716405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/28/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Determination of functional pathways regulated by microRNAs (miRNAs), while an essential step in developing therapeutics, is challenging. Some miRNAs have been studied extensively; others have limited information. In this study, we focus on 254 miRNAs previously identified as being associated with colorectal cancer and their database-identified validated target genes. METHODS We use RNA-Seq data to evaluate messenger RNA (mRNA) expression for 157 subjects who also had miRNA expression data. In the replication phase of the study, we replicated associations between 254 miRNAs associated with colorectal cancer and mRNA expression of database-identified target genes in normal colonic mucosa. In the discovery phase of the study, we evaluated expression of 18 miR-NAs (those with 20 or fewer database-identified target genes along with miR-21-5p, miR-215-5p, and miR-124-3p which have more than 500 database-identified target genes) with expression of 17 434 mRNAs to identify new targets in colon tissue. Seed region matches between miRNA and newly identified targeted mRNA were used to help determine direct miRNA-mRNA associations. RESULTS From the replication of the 121 miRNAs that had at least 1 database-identified target gene using mRNA expression methods, 97.9% were expressed in normal colonic mucosa. Of the 8622 target miRNA-mRNA associations identified in the database, 2658 (30.2%) were associated with gene expression in normal colonic mucosa after adjusting for multiple comparisons. Of the 133 miRNAs with database-identified target genes by non-mRNA expression methods, 97.2% were expressed in normal colonic mucosa. After adjustment for multiple comparisons, 2416 miRNA-mRNA associations remained significant (19.8%). Results from the discovery phase based on detailed examination of 18 miRNAs identified more than 80 000 miRNA-mRNA associations that had not previously linked to the miRNA. Of these miRNA-mRNA associations, 15.6% and 14.8% had seed matches for CRCh38 and CRCh37, respectively. CONCLUSIONS Our data suggest that miRNA target gene databases are incomplete; pathways derived from these databases have similar deficiencies. Although we know a lot about several miRNAs, little is known about other miRNAs in terms of their targeted genes. We encourage others to use their data to continue to further identify and validate miRNA-targeted genes.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Jennifer S Herrick
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | - John R Stevens
- Department of Mathematics & Statistics, Utah State University, Logan, UT, USA
| | - Roger K Wolff
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Lila E Mullany
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
47
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
48
|
Tume L, Cisneros C, Sevillano J, Pacheco-Tapia R, Matos D, Acevedo-Espínola R, Ubidia-Incio R, Rodríguez W. Desregulación de microARN en el cáncer: un enfoque terapéutico y diagnóstico. GACETA MEXICANA DE ONCOLOGÍA 2016. [DOI: 10.1016/j.gamo.2016.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|