1
|
Zheng X, Hu F, Chen X, Yang G, Li M, Peng Y, Li J, Yang S, Zhang L, Wan J, Wei N, Li R. Role of microglia polarization induced by glucose metabolism disorder in the cognitive impairment of mice from PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176603. [PMID: 39349199 DOI: 10.1016/j.scitotenv.2024.176603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Studies have found that PM2.5 can damage the brain, accelerate cognitive impairment, and increase the risk of developing a variety of neurodegenerative diseases. However, the potential molecular mechanisms by which PM2.5 causes learning and memory problems are yet to be explored. In this study, we evaluated the neurotoxic effects in mice after 12 weeks of PM2.5 exposure, and found that this exposure resulted in learning and memory disorders, pathological brain damage, and M1 phenotype polarization on microglia, especially in the hippocampus. The severity of this damage increased with increasing PM2.5 concentration. Proteomic analysis, as well as validation results, suggested that PM2.5 exposure led to abnormal glucose metabolism in the mouse brain, which is mainly characterized by significant expression of hexokinase, phosphofructokinase, and lactate dehydrogenase. We therefore administered the glycolysis inhibitor 2-deoxy-d-glucose (2-DG) to the mice exposed to PM2.5, and showed that inhibition of glycolysis by 2-DG significantly alleviated PM2.5-induced hippocampal microglia M1 phenotype polarization, and reduced the release of inflammatory factors, improved synaptic structure and related protein expression, which alleviated the cognitive impairment induced by PM2.5 exposure. In summary, our study found that abnormal glucose metabolism-mediated inflammatory polarization of microglia played a role in learning and memory disorders in mice exposed to PM2.5. This study provides new insights into the neurotoxicity caused by PM2.5 exposure, and provides some theoretical references for the prevention and control of cognitive impairment induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Xinyue Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Fei Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xinyue Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ge Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Min Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Peng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jinghan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shuiqing Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Nianpeng Wei
- Wuhan Hongpeng Ecological Technology Co., Ltd., Wuhan 430070, China
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Pacnejer AM, Butuca A, Dobrea CM, Arseniu AM, Frum A, Gligor FG, Arseniu R, Vonica RC, Vonica-Tincu AL, Oancea C, Mogosan C, Popa Ilie IR, Morgovan C, Dehelean CA. Neuropsychiatric Burden of SARS-CoV-2: A Review of Its Physiopathology, Underlying Mechanisms, and Management Strategies. Viruses 2024; 16:1811. [PMID: 39772122 PMCID: PMC11680421 DOI: 10.3390/v16121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 outbreak, caused by the SARS-CoV-2 virus, was linked to significant neurological and psychiatric manifestations. This review examines the physiopathological mechanisms underlying these neuropsychiatric outcomes and discusses current management strategies. Primarily a respiratory disease, COVID-19 frequently leads to neurological issues, including cephalalgia and migraines, loss of sensory perception, cerebrovascular accidents, and neurological impairment such as encephalopathy. Lasting neuropsychological effects have also been recorded in individuals following SARS-CoV-2 infection. These include anxiety, depression, and cognitive dysfunction, suggesting a lasting impact on mental health. The neuroinvasive potential of the virus, inflammatory responses, and the role of angiotensin-converting enzyme 2 (ACE2) in neuroinflammation are critical factors in neuropsychiatric COVID-19 manifestations. In addition, the review highlights the importance of monitoring biomarkers to assess Central Nervous System (CNS) involvement. Management strategies for these neuropsychiatric conditions include supportive therapy, antiepileptic drugs, antithrombotic therapy, and psychotropic drugs, emphasizing the need for a multidisciplinary approach. Understanding the long-term neuropsychiatric implications of COVID-19 is essential for developing effective treatment protocols and improving patient outcomes.
Collapse
Affiliation(s)
- Aliteia-Maria Pacnejer
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (A.-M.P.); (C.A.D.)
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Rares Arseniu
- County Emergency Clinical Hospital “Pius Brînzeu”, 300723 Timișoara, Romania;
| | - Razvan Constantin Vonica
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Andreea Loredana Vonica-Tincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Cristian Oancea
- Department of Pulmonology, Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Cristina Mogosan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400029 Cluj-Napoca, Romania;
| | - Ioana Rada Popa Ilie
- Department of Endocrinology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 3-5 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (A.-M.P.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| |
Collapse
|
3
|
Benarroch E. What Is the Role of Cytokines in Synaptic Transmission? Neurology 2024; 103:e209928. [PMID: 39303183 DOI: 10.1212/wnl.0000000000209928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
|
4
|
Yu Y, Chen R, Mao K, Deng M, Li Z. The Role of Glial Cells in Synaptic Dysfunction: Insights into Alzheimer's Disease Mechanisms. Aging Dis 2024; 15:459-479. [PMID: 37548934 PMCID: PMC10917533 DOI: 10.14336/ad.2023.0718] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impacts a substantial number of individuals globally. Despite its widespread prevalence, there is currently no cure for AD. It is widely acknowledged that normal synaptic function holds a key role in memory, cognitive abilities, and the interneuronal transfer of information. As AD advances, symptoms including synaptic impairment, decreased synaptic density, and cognitive decline become increasingly noticeable. The importance of glial cells in the formation of synapses, the growth of neurons, brain maturation, and safeguarding the microenvironment of the central nervous system is well recognized. However, during AD progression, overactive glial cells can cause synaptic dysfunction, neuronal death, and abnormal neuroinflammation. Both neuroinflammation and synaptic dysfunction are present in the early stages of AD. Therefore, focusing on the changes in glia-synapse communication could provide insights into the mechanisms behind AD. In this review, we aim to provide a summary of the role of various glial cells, including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells, in regulating synaptic dysfunction. This may offer a new perspective on investigating the underlying mechanisms of AD.
Collapse
Affiliation(s)
- Yang Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Ran Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Kaiyue Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Maoyan Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| |
Collapse
|
5
|
Zhuge F, Zheng L, Pan Y, Ni L, Fu Z, Shi J, Ni Y. DPP-4 inhibition by linagliptin ameliorates age-related mild cognitive impairment by regulating microglia polarization in mice. Exp Neurol 2024; 373:114689. [PMID: 38199510 DOI: 10.1016/j.expneurol.2024.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Extensive preclinical evidence demonstrates a causative link between insulin signaling dysfunction and the pathogenesis of Alzheimer's disease (AD), and diabetic drugs may represent a promising approach to fighting AD. However, it remains to be determined which antidiabetic drugs are more effective in preventing cognitive impairment. Thus, the present study investigated the effect of dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin on cognitive impairment in middle-aged mice by comparing it with the effect of metformin. We found that DPP-4 activity increased in the hippocampus of middle-aged mice, and DPP-4 was mainly expressed by microglia rather than astrocytes and oligodendrocytes. DPP-4 directly regulated M1/M2 microglia polarization following LPS or IL-4 stimulation, while DPP-4 inhibitor, linagliptin, suppressed M1-polarized activation and induced M2-polarized activation. Both linagliptin and metformin enhanced cognitive ability, increased hippocampal synaptic plasticity and neurogenesis, and decreased age-related oxidative stress and inflammation by regulating microglia polarization in the hippocampus of middle-aged mice. The combination of linagliptin and metformin showed a maximum protective effect compared to the individual drugs alone. Loss of macrophage inflammatory protein-1α (MIP-1α), a DPP-4 substrate, abrogated the cognitive protection and anti-inflammation effects of linagliptin. Therefore, the current investigation exhibits a potential utility for DPP-4 inhibition in attenuating microglia-mediated inflammation and preventing mild cognitive impairment (MCI) in middle-aged mice, and the effect was partly mediated by MIP-1α.
Collapse
Affiliation(s)
- Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuxiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liyang Ni
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Junping Shi
- Department of Infectious Disease, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
6
|
Zhang Y, Zhang J, Wang Y, Yao J. Global trends and prospects about synaptic plasticity in Alzheimer's disease: a bibliometric analysis. Front Aging Neurosci 2023; 15:1234719. [PMID: 37731952 PMCID: PMC10508060 DOI: 10.3389/fnagi.2023.1234719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Background and purpose In recent years, synaptic plasticity disorders have been identified as one of the key pathogenic factors and the early pathological characteristics of Alzheimer's disease (AD). In this study, we tried to use bibliometric analysis to gain a systematic understanding about synaptic plasticity in Alzheimer's disease. Methods We extracted relevant publications from the Web of Science Core Collection (WoSCC) on August 29th, 2022. Then, we used CiteSpace, VOSviewer and other online bibliometric platforms to further analyze the obtained data. Results A total of 2,348 published articles and reviews about synaptic plasticity in AD from 2002 to 2022 were identified. During the past two decades, the overall trends of the numbers and citations of manuscripts were on the rise. The United States was the leading country with the largest number of publications which showed its crucial role in this field. The collaboration network analysis showed that the United States and China had the most frequent collaboration. In addition, Harvard University was the institution with the greatest number of publications and cited times. Among all authors, Selkoe DJ was the most influential author with the greatest cited times. The journal of Alzheimer's disease published the maximum number of documents in the field of synaptic plasticity in AD within 20 years. Furthermore, the results of keywords burst detection showed that the hot topics have shifted from the synaptic transmission, precursor protein and plaque formation to neuroinflammation, microglia and alpha synuclein. Conclusion This study analyzed 2,348 publications with 82,025 references covering the topic of synaptic plasticity in AD and presented the research trends. The results indicated that neuroinflammation, microglia and alpha synuclein were the current research hotspots, which implied the potential clinical applications to AD.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyao Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinuo Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, Yu M, Lan J. Microglia in Alzheimer's disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 2023; 15:1201982. [PMID: 37396657 PMCID: PMC10309009 DOI: 10.3389/fnagi.2023.1201982] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregation in the brain. Recent studies have revealed the critical role of microglia in AD pathogenesis. This review provides a comprehensive summary of the current understanding of microglial involvement in AD, focusing on genetic determinants, phenotypic state, phagocytic capacity, neuroinflammatory response, and impact on synaptic plasticity and neuronal regulation. Furthermore, recent developments in drug discovery targeting microglia in AD are reviewed, highlighting potential avenues for therapeutic intervention. This review emphasizes the essential role of microglia in AD and provides insights into potential treatments.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Haixia Ma
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yang Yang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanpin Liao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Cui Lin
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Juanxia Zheng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Muli Yu
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiao Lan
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
8
|
Chen YH, Jin SY, Yang JM, Gao TM. The Memory Orchestra: Contribution of Astrocytes. Neurosci Bull 2023; 39:409-424. [PMID: 36738435 PMCID: PMC10043126 DOI: 10.1007/s12264-023-01024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
For decades, memory research has centered on the role of neurons, which do not function in isolation. However, astrocytes play important roles in regulating neuronal recruitment and function at the local and network levels, forming the basis for information processing as well as memory formation and storage. In this review, we discuss the role of astrocytes in memory functions and their cellular underpinnings at multiple time points. We summarize important breakthroughs and controversies in the field as well as potential avenues to further illuminate the role of astrocytes in memory processes.
Collapse
Affiliation(s)
- Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Goudarzi R, Zamanian G, Seyyedian Z, Mirzaee Saffari P, Dehpour AR, Partoazar A. Beneficial effects of arthrocen on neuroinflammation and behavior like depression in stroke in a murine model. Food Sci Nutr 2023; 11:527-534. [PMID: 36655100 PMCID: PMC9834816 DOI: 10.1002/fsn3.3083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/21/2023] Open
Abstract
Stroke is a considerable reason for death, disability, socioeconomic loss, and depression in the world. Notably, many attempts to the reduction of the complications of poststroke injuries like depression have failed so far. In this study, we aimed to evaluate the anti-inflammatory effect of arthrocen, avocado/soybean unsaponifiables (ASU), in the poststroke injuries like depression improvement in a mice model. We examined the antidepressant-like effect of arthrocen using the forced swimming test and tail suspension test in mice subjected to stroke. Furthermore, immunohistochemistry of proinflammatory cytokines, IL-10 and TNF-α, and neural cell count were performed in the ischemic brain hippocampus of mice. Oral arthrocen reduced significantly (p < .001) the immobility time in the forced swimming test and tail suspension test in the stroke animals. Also, immunohistochemistry analysis of the hippocampus indicated significantly (p < .01) the reduction of IL-10 and TNF-α cytokines production. Nissl staining showed a significant (p < .0001) increase in the number of viable neurons in stroke mice receiving arthrocen. In conclusion, our data revealed the antidepressant activity of arthrocen in the stroke mice which may be the result of its anti-inflammatory and neuroprotective role.
Collapse
Affiliation(s)
- Ramin Goudarzi
- Division of Research and Development, Pharmin USALLCSan JoseCaliforniaUSA
| | - Golnaz Zamanian
- Department of Pharmacology, School of MedicineTehran University of Medical SciencesTehranIran
| | - Zahra Seyyedian
- Department of Pharmacology, School of MedicineTehran University of Medical SciencesTehranIran
| | - Partow Mirzaee Saffari
- Department of Pharmacology, School of MedicineTehran University of Medical SciencesTehranIran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of MedicineTehran University of Medical SciencesTehranIran
- Experimental Medicine Research CenterTehran University of Medical SciencesTehranIran
| | - Alireza Partoazar
- Department of Pharmacology, School of MedicineTehran University of Medical SciencesTehranIran
- Experimental Medicine Research CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Mezo-González CE, Daher Abdi A, Reyes-Castro LA, Olvera Hernández S, Almeida C, Croyal M, Aguesse A, Gavioli EC, Zambrano E, Bolaños-Jiménez F. Learning Deficits Induced by High-Calorie Feeding in the Rat are Associated With Impaired Brain Kynurenine Pathway Metabolism. Int J Tryptophan Res 2022; 15:11786469221111116. [PMID: 35846874 PMCID: PMC9277427 DOI: 10.1177/11786469221111116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
In addition to be a primary risk factor for type 2 diabetes and cardiovascular
disease, obesity is associated with learning disabilities. Here we examined
whether a dysregulation of the kynurenine pathway (KP) of tryptophan (Trp)
metabolism might underlie the learning deficits exhibited by obese individuals.
The KP is initiated by the enzymatic conversion of Trp into kynurenine (KYN) by
indoleamine 2,3-dioxygenase (IDO). KYN is further converted to several signaling
molecules including quinolinic acid (QA) which has a negative impact on
learning. Wistar rats were fed either standard chow or made obese by exposure to
a free choice high-fat high-sugar (fcHFHS) diet. Their learning capacities were
evaluated using a combination of the novel object recognition and the novel
object location tasks, and the concentrations of Trp and KYN-derived metabolites
in several brain regions determined by ultra-performance liquid
chromatography-tandem mass spectrometry. Male, but not female, obese rats
exhibited reduced learning capacity characterized by impaired encoding along
with increased hippocampal concentrations of QA, Xanthurenic acid (XA),
Nicotinamide (Nam), and oxidized Nicotinamide Adenine Dinucleotide (NAD+). In
contrast, no differences were detected in the serum levels of Trp or KP
metabolites. Moreover, obesity enhanced the expression in the hippocampus and
frontal cortex of kynurenine monooxygenase (KMO), an enzyme involved in the
production of QA from kynurenine. QA stimulates the glutamatergic system and its
increased production leads to cognitive impairment. These results suggest that
the deleterious effects of obesity on cognition are sex dependent and that
altered KP metabolism might contribute to obesity-associated learning
disabilities.
Collapse
Affiliation(s)
| | - Amran Daher Abdi
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Université de Nantes, Nantes France
| | - Luis Antonio Reyes-Castro
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Université de Nantes, Nantes France.,Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Sandra Olvera Hernández
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Université de Nantes, Nantes France.,Medical and Psychology School, Autonomous University of Baja California, Tijuana, Mexico
| | - Clarissa Almeida
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mikaël Croyal
- CRNH-O Mass Spectrometry Core Facility, Nantes, France.,Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France.,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | | | - Elaine Cristina Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | |
Collapse
|
11
|
Wang Q, Yao H, Liu W, Ya B, Cheng H, Xing Z, Wu Y. Microglia Polarization in Alzheimer's Disease: Mechanisms and a Potential Therapeutic Target. Front Aging Neurosci 2021; 13:772717. [PMID: 34819850 PMCID: PMC8606412 DOI: 10.3389/fnagi.2021.772717] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation regulated by microglia is one of the important factors involved in the pathogenesis of Alzheimer’s disease (AD). Activated microglia exhibited phenotypes termed as M1 and M2 phenotypes separately. M1 microglia contribute to the development of inflammation via upregulating pro-inflammatory cytokines, while M2 microglia exert anti-inflammation effects through enhancing the expression of anti-inflammation factors. Moreover, M1 and M2 microglia could be mutually transformed under various conditions. Both M1 and M2 microglia are implicated in AD. Amyloid-β (Aβ) and hyperphosphorylated tau are two major components of AD pathological hallmarks, neuritic plaques, and neurofibrillary tangles. Both Aβ and hyperphosphorylated tau were involved in microglial activation and subsequent inflammation, which further contribute to neuronal and synaptic loss in AD. In this review, we summarized the roles of M1 and M2 microglia in AD and underlying mechanisms, which will provide an insight into the role of microglia in the pathogenesis of AD and highlight the therapeutic potential of modulating microglia.
Collapse
Affiliation(s)
- Qinqin Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Hongmei Yao
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Wenyan Liu
- Department of Physiology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Bailiu Ya
- Department of Physiology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Hongju Cheng
- Department of Physiology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Zhenkai Xing
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Wenzhou, China
| |
Collapse
|
12
|
Cornell J, Salinas S, Huang HY, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res 2021; 17:705-716. [PMID: 34472455 PMCID: PMC8530121 DOI: 10.4103/1673-5374.322423] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microglia are the resident macrophages of the central nervous system. Microglia possess varied morphologies and functions. Under normal physiological conditions, microglia mainly exist in a resting state and constantly monitor their microenvironment and survey neuronal and synaptic activity. Through the C1q, C3 and CR3 “Eat Me” and CD47 and SIRPα “Don’t Eat Me” complement pathways, as well as other pathways such as CX3CR1 signaling, resting microglia regulate synaptic pruning, a process crucial for the promotion of synapse formation and the regulation of neuronal activity and synaptic plasticity. By mediating synaptic pruning, resting microglia play an important role in the regulation of experience-dependent plasticity in the barrel cortex and visual cortex after whisker removal or monocular deprivation, and also in the regulation of learning and memory, including the modulation of memory strength, forgetfulness, and memory quality. As a response to brain injury, infection or neuroinflammation, microglia become activated and increase in number. Activated microglia change to an amoeboid shape, migrate to sites of inflammation and secrete proteins such as cytokines, chemokines and reactive oxygen species. These molecules released by microglia can lead to synaptic plasticity and learning and memory deficits associated with aging, Alzheimer’s disease, traumatic brain injury, HIV-associated neurocognitive disorder, and other neurological or mental disorders such as autism, depression and post-traumatic stress disorder. With a focus mainly on recently published literature, here we reviewed the studies investigating the role of resting microglia in synaptic plasticity and learning and memory, as well as how activated microglia modulate disease-related plasticity and learning and memory deficits. By summarizing the function of microglia in these processes, we aim to provide an overview of microglia regulation of synaptic plasticity and learning and memory, and to discuss the possibility of microglia manipulation as a therapeutic to ameliorate cognitive deficits associated with aging, Alzheimer’s disease, traumatic brain injury, HIV-associated neurocognitive disorder, and mental disorders.
Collapse
Affiliation(s)
- Jessica Cornell
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Shelbi Salinas
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Hou-Yuan Huang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
13
|
Garrone B, Durando L, Prenderville J, Sokolowska E, Milanese C, Di Giorgio FP, Callaghan C, Bianchi M. Paracetamol (acetaminophen) rescues cognitive decline, neuroinflammation and cytoskeletal alterations in a model of post-operative cognitive decline (POCD) in middle-aged rats. Sci Rep 2021; 11:10139. [PMID: 33980934 PMCID: PMC8115335 DOI: 10.1038/s41598-021-89629-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
Post-operative cognitive dysfunction (POCD) is a debilitating clinical phenomenon in elderly patients. Management of pain in elderly is complicated because analgesic opiates elicit major side effects. In contrast, paracetamol (acetaminophen) has shown analgesic efficacy, no impact on cognition, and its side effects are well tolerated. We investigated the efficacy of paracetamol, compared to the opioid analgesic buprenorphine, in a model of POCD by investigating cognitive decline, allodynia, peripheral and hippocampal cytokines levels, and hippocampal microtubule dynamics as a key modulator of synaptic plasticity. A POCD model was developed in middle-aged (MA) rats by inducing a tibia fracture via orthopaedic surgery. Control MA rats did not undergo any surgery and only received isoflurane anaesthesia. We demonstrated that cognitive decline and increased allodynia following surgery was prevented in paracetamol-treated animals, but not in animals which were exposed to anesthesia alone or underwent the surgery and received buprenorphine. Behavioral alterations were associated with different peripheral cytokine changes between buprenorphine and paracetamol treated animals. Buprenorphine showed no central effects, while paracetamol showed modulatory effects on hippocampal cytokines and markers of microtubule dynamics which were suggestive of neuroprotection. Our data provide the first experimental evidence corroborating the use of paracetamol as first-choice analgesic in POCD.
Collapse
Affiliation(s)
- B Garrone
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - L Durando
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - J Prenderville
- Transpharmation Ireland Ltd., Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - E Sokolowska
- Transpharmation Ireland Ltd., Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - C Milanese
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - F P Di Giorgio
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - C Callaghan
- Ulysses Neuroscience Ltd, Room 3.57B, Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - M Bianchi
- Ulysses Neuroscience Ltd, Room 3.57B, Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
14
|
Alvarez Cooper I, Beecher K, Chehrehasa F, Belmer A, Bartlett SE. Tumour Necrosis Factor in Neuroplasticity, Neurogenesis and Alcohol Use Disorder. Brain Plast 2020; 6:47-66. [PMID: 33680846 PMCID: PMC7903009 DOI: 10.3233/bpl-190095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder is a pervasive and detrimental condition that involves changes in neuroplasticity and neurogenesis. Alcohol activates the neuroimmune system and alters the inflammatory status of the brain. Tumour necrosis factor (TNF) is a well characterised neuroimmune signal but its involvement in alcohol use disorder is unknown. In this review, we discuss the variable findings of TNF's effect on neuroplasticity and neurogenesis. Acute ethanol exposure reduces TNF release while chronic alcohol intake generally increases TNF levels. Evidence suggests TNF potentiates excitatory transmission, promotes anxiety during alcohol withdrawal and is involved in drug use in rodents. An association between craving for alcohol and TNF is apparent during withdrawal in humans. While anti-inflammatory therapies show efficacy in reversing neurogenic deficit after alcohol exposure, there is no evidence for TNF's essential involvement in alcohol's effect on neurogenesis. Overall, defining TNF's role in alcohol use disorder is complicated by poor understanding of its variable effects on synaptic transmission and neurogenesis. While TNF may be of relevance during withdrawal, the neuroimmune system likely acts through a larger group of inflammatory cytokines to alter neuroplasticity and neurogenesis. Understanding the individual relevance of TNF in alcohol use disorder awaits a more comprehensive understanding of TNF's effects within the brain.
Collapse
Affiliation(s)
- Ignatius Alvarez Cooper
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Kate Beecher
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Selena E. Bartlett
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
15
|
Wang D. Tumor Necrosis Factor-Alpha Alters Electrophysiological Properties of Rabbit Hippocampal Neurons. J Alzheimers Dis 2020; 68:1257-1271. [PMID: 30909246 DOI: 10.3233/jad-190043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have shown tumor necrosis factor-alpha (TNF-α) may impact neurodegeneration in Alzheimer's disease (AD) by regulating amyloid-β and tau pathogenesis. However, it is unclear whether TNF-α has a role in a cholesterol-fed rabbit model of AD or TNF-α affects the electrophysiological properties of rabbit hippocampus. This study was designed to investigate whether long-term feeding of cholesterol diet known to induce AD pathology regulates TNF-α expression in the hippocampus and whether TNF-α would modulate electrophysiological properties of rabbit hippocampal CA1 neurons. TNF-α ELISA showed dietary cholesterol increased hippocampal TNF-α expression in a dose-dependent manner. Whole-cell recordings revealed TNF-α altered the membrane properties of rabbit hippocampal CA1 neurons, which was characterized by a decrease in after-hyperpolarization amplitudes; Field potential recordings showed TNF-α inhibited long-term potentiation but did not influence presynaptic function. Interestingly, TNF-α did not significantly affect the after-hyperpolarization amplitudes of hippocampal CA1 neurons from cholesterol fed rabbits compared to normal chow fed rabbits. In conclusion, dietary cholesterol generated an in vivo model of chronic TNF-α elevation and TNF-α may underlie the learning and memory changes previously seen in the rabbit model of AD by acting as a bridge between dietary cholesterol and brain function and directly modulating the electrophysiological properties of hippocampal CA1 neurons.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA.,Rockefeller Neuroscience Institute, Morgantown, WV, USA
| |
Collapse
|
16
|
Liu WC, Wu CW, Fu MH, Tain YL, Liang CK, Hung CY, Chen IC, Lee YC, Wu CY, Wu KLH. Maternal high fructose-induced hippocampal neuroinflammation in the adult female offspring via PPARγ-NF-κB signaling. J Nutr Biochem 2020; 81:108378. [PMID: 32330843 DOI: 10.1016/j.jnutbio.2020.108378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022]
Abstract
The mechanisms beneath the initiation of neuroinflammation are still inconclusive. Growing evidence proposes the maternal effect on the development of neuroinflammation. In this study, we evaluated the upstream regulators and the indices of neuroinflammation in the hippocampi of female offspring at 3 months old. The accumulation of nuclear factor-κB (NF-κB, 65 kDa), a cytokine-encoding transcription factor, was increased in microglia. The enhanced microglial activation was detected in CA1, CA3 and dentate gyrus (DG) HFD group with upregulation of CD11b and ionized calcium binding adaptor molecule 1 (Iba-1). Moreover, proinflammatory cytokines (including TNFα, IL-1β and IL-6) were significantly increased in HFD group. Peroxisome proliferator-activated receptors γ (PPARγ) is a transcription factor involved in the suppression of NF-κB expression and in encoding endogenous antioxidants (such as catalase and glutathione peroxidases). On the contrary, the expression of nuclear PPARγ was suppressed in hippocampal neurons of the HFD group. In addition, the expressions of glutathione peroxidase 1 (GPx1) was suppressed in HFD group. Oral application with pioglitazone, a PPARγ agonist, effectively ceased the neuroinflammation and reversed the expression of antioxidants in HFD group. Together, these results for the first time demonstrated that maternal HFD triggered the waxing and waning of NF-κB and PPARγ may initiate neuroinflammation in the hippocampus of adult female offspring. Our findings further suggest that PPARγ could be the feasible targets to reprogram the hippocampal impairment induced by maternal HFD.
Collapse
Affiliation(s)
- Wen-Chung Liu
- Plastic surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China; Department of Surgery, School of medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC
| | - Mu-Hui Fu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Republic of China
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Republic of China; Chang Gung University, College of Medicine, Kaohsiung, Taiwan, ROC
| | - Chih-Kuang Liang
- Division of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan, ROC
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC
| | - Yu-Chi Lee
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Republic of China
| | - Cai-Yi Wu
- Plastic surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC; Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan, ROC.
| |
Collapse
|
17
|
Bourgognon JM, Cavanagh J. The role of cytokines in modulating learning and memory and brain plasticity. Brain Neurosci Adv 2020; 4:2398212820979802. [PMID: 33415308 PMCID: PMC7750764 DOI: 10.1177/2398212820979802] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022] Open
Abstract
Cytokines are proteins secreted in the central nervous system by neurons, microglia, astrocytes and infiltrating peripheral immune cells under physiological and pathological conditions. Over the last 20 years, a growing number of reports have investigated the effects of these molecules on brain plasticity. In this review, we describe how the key cytokines interleukin 1β, interleukin 6 and tumour necrosis factor α were found to support long-term plasticity and learning and memory processes in physiological conditions. In contrast, during inflammation where cytokines levels are elevated such as in models of brain injury or infection, depression or neurodegeneration, the effects of cytokines are mostly detrimental to memory mechanisms, associated behaviours and homeostatic plasticity.
Collapse
Affiliation(s)
| | - Jonathan Cavanagh
- Institute of Infection, Immunity &
Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Early minor stimulation of microglial TLR2 and TLR4 receptors attenuates Alzheimer's disease-related cognitive deficit in rats: behavioral, molecular, and electrophysiological evidence. Neurobiol Aging 2018; 70:203-216. [PMID: 30031930 DOI: 10.1016/j.neurobiolaging.2018.06.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/26/2018] [Accepted: 06/18/2018] [Indexed: 11/20/2022]
Abstract
At early stages of Alzheimer's disease (AD), soluble amyloid beta (Aβ) accumulates in brain while microglia are in resting state. Microglia can recognize Aβ long after formation of plaques and release neurotoxic mediators. We examined impact of early minor activation of microglia by Toll-like receptors (TLRs) 2 and 4 agonists on Alzheimer's disease-related disturbed synaptic function and spatial memory in rats. Microglial BV-2 cells were treated by 0.1, 1, and 10 μg/mL of the TLRs ligands lipopolysaccharide, monophosphoryl lipid A (MPL), and Pam3Cys for 24 hours. Culture medium was then changed with media containing 1-μM Aβ. Tumour necrosis factor (TNF)-α and CCL3 levels were measured in the supernatant, 24 hours thereafter. One μg of TLRs ligands which was able to release low level of TNF-α and CCL3, was administered intracerebroventricularly (i.c.v) to adult male rats every 3 days for 24 days. At the half of the treatment period, Aβ1-42 was infused i.c.v (0.075 μg/hour) for 2 weeks. Finally, the following factors were measured: memory performance by Morris water maze, postsynaptic potentials of dentate gyrus following perforant pathway stimulation, hippocampal inflammatory cytokines interleukin 1 (IL-1)β and TNF-α, anti-inflammatory cytokines IL-10 and TGF-1β, microglia marker arginase 1, Aβ deposits, and the receptor involved in Aβ clearance, formyl peptide receptor 2 (FPR2). TLRs ligands caused dose-dependent release of TNF-α and CCL3 by BV-2 cells. Aβ-treated cells did not release TNF-α and CCL3, whereas those pretreated with MPL and Pam3Cys significantly released these cytokines in response to Aβ. Low-dose TLRs ligands improved the disturbance in spatial and working memory; restored the impaired long-term potentiation induced by Aβ; decreased TNF-α, and Aβ deposits; enhanced TGF-1β, IL-10, and arginase 1 in the hippocampus of Aβ-treated rats; and increased polarization of hippocampal microglia to the anti-inflammatory phenotype. The ligands increased formyl peptide receptor 2 in both BV-2 cells and hippocampus/cortex of Aβ-treated rats. Microglia can sense/clear soluble Aβ by early low-dose MPL and Pam3Cys and safeguard synaptic function and memory in rats.
Collapse
|
19
|
Tumor Necrosis Factor and Interleukin-1 β Modulate Synaptic Plasticity during Neuroinflammation. Neural Plast 2018; 2018:8430123. [PMID: 29861718 PMCID: PMC5976900 DOI: 10.1155/2018/8430123] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Cytokines are constitutively released in the healthy brain by resident myeloid cells to keep proper synaptic plasticity, either in the form of Hebbian synaptic plasticity or of homeostatic plasticity. However, when cytokines dramatically increase, establishing a status of neuroinflammation, the synaptic action of such molecules remarkably interferes with brain circuits of learning and cognition and contributes to excitotoxicity and neurodegeneration. Among others, interleukin-1β (IL-1β) and tumor necrosis factor (TNF) are the best studied proinflammatory cytokines in both physiological and pathological conditions and have been invariably associated with long-term potentiation (LTP) (Hebbian synaptic plasticity) and synaptic scaling (homeostatic plasticity), respectively. Multiple sclerosis (MS) is the prototypical neuroinflammatory disease, in which inflammation triggers excitotoxic mechanisms contributing to neurodegeneration. IL-β and TNF are increased in the brain of MS patients and contribute to induce the changes in synaptic plasticity occurring in MS patients and its animal model, the experimental autoimmune encephalomyelitis (EAE). This review will introduce and discuss current evidence of the role of IL-1β and TNF in the regulation of synaptic strength at both physiological and pathological levels, in particular speculating on their involvement in the synaptic plasticity changes observed in the EAE brain.
Collapse
|
20
|
Klein RS, Garber C, Howard N. Infectious immunity in the central nervous system and brain function. Nat Immunol 2017; 18:132-141. [PMID: 28092376 DOI: 10.1038/ni.3656] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022]
Abstract
Inflammation is emerging as a critical mechanism underlying neurological disorders of various etiologies, yet its role in altering brain function as a consequence of neuroinfectious disease remains unclear. Although acute alterations in mental status due to inflammation are a hallmark of central nervous system (CNS) infections with neurotropic pathogens, post-infectious neurologic dysfunction has traditionally been attributed to irreversible damage caused by the pathogens themselves. More recently, studies indicate that pathogen eradication within the CNS may require immune responses that interfere with neural cell function and communication without affecting their survival. In this Review we explore inflammatory processes underlying neurological impairments caused by CNS infection and discuss their potential links to established mechanisms of psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charise Garber
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole Howard
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|