1
|
Barati M, Jabbari M, Abdi Ghavidel A, Nikmehr P, Arzhang P, Aynehchi A, Babashahi M, Mosharkesh E, Roshanravan N, Shabani M, Davoodi SH. The engineered probiotics for the treatment of chronic diseases: A systematic review. J Food Biochem 2022; 46:e14343. [PMID: 35880960 DOI: 10.1111/jfbc.14343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Engineered probiotics (EPs) are a group of probiotics whose proteome is manipulated by biotechnological techniques. EPs have attracted a lot of attention in recent researches for preventing and treating chronic diseases. The current study has been conducted to provide an overview regarding the EPs application in the treatment of chronic disease by a comprehensive systematic review of the published articles up to January 2022. To retrieve the related publications, three databases (PubMed/MEDLINE, Web of Sciences, and Scopus) were searched systematically. Finally, all human (n = 2) and animal (n = 37) studies were included. The included articles evaluated the effects of EPs on treatment of arthritis (n = 3), cancer (n = 2), autoimmune encephalomyelitis (EAE; n = 6), Parkinson disease (PD; n = 1), Alzheimer diseases (AD; n = 1), colitis (n = 11), celiac disease (n = 1), diabetes (n = 8) and cardiovascular disease (CVD; n = 6). Induction of oral tolerance (OT) is the most important mechanism of EPs action in the treatment of chronic disease. Providing oral vaccine and bioactive compounds are the other mechanisms of EPs action. PRACTICAL APPLICATIONS: The current systematic review gathered evidence about the application of EPs in the treatment of chronic diseases. Evidence suggests that EPs have very broad and potent effects in the treatment of chronic and even genetic diseases.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Clinical Nutrition & Dietetics, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jabbari
- Department of Community Nutrition, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Abdi Ghavidel
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payman Nikmehr
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pishva Arzhang
- Qods Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aydin Aynehchi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Babashahi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfan Mosharkesh
- Collage of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition & Dietetics, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Chen XY, Du GS, Sun X. Targeting Lymphoid Tissues to Promote Immune Tolerance. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao Yan Chen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Guang Sheng Du
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Xun Sun
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| |
Collapse
|
3
|
Derdelinckx J, Cras P, Berneman ZN, Cools N. Antigen-Specific Treatment Modalities in MS: The Past, the Present, and the Future. Front Immunol 2021; 12:624685. [PMID: 33679769 PMCID: PMC7933447 DOI: 10.3389/fimmu.2021.624685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Antigen-specific therapy for multiple sclerosis may lead to a more effective therapy by induction of tolerance to a wide range of myelin-derived antigens without hampering the normal surveillance and effector function of the immune system. Numerous attempts to restore tolerance toward myelin-derived antigens have been made over the past decades, both in animal models of multiple sclerosis and in clinical trials for multiple sclerosis patients. In this review, we will give an overview of the current approaches for antigen-specific therapy that are in clinical development for multiple sclerosis as well provide an insight into the challenges for future antigen-specific treatment strategies for multiple sclerosis.
Collapse
Affiliation(s)
- Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Division of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Patrick Cras
- Division of Neurology, Antwerp University Hospital, Edegem, Belgium.,Born Bunge Institute, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
4
|
Sousa-Silva M, Vieira D, Soares P, Casal M, Soares-Silva I. Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii. J Fungi (Basel) 2021; 7:36. [PMID: 33435379 PMCID: PMC7827542 DOI: 10.3390/jof7010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation. The emerging applications of this yeast reinforce its potential in the white biotechnology sector. Nonetheless, it is necessary to expand the knowledge on its metabolism, regulatory networks, and transport mechanisms, as well as to develop more robust genetic manipulation systems and synthetic biology tools to promote the full exploitation of C. jadinii.
Collapse
Affiliation(s)
- Maria Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Recent Advances in Antigen-Specific Immunotherapies for the Treatment of Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060333. [PMID: 32486045 PMCID: PMC7348736 DOI: 10.3390/brainsci10060333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system and is considered to be the leading non-traumatic cause of neurological disability in young adults. Current treatments for MS comprise long-term immunosuppressant drugs and disease-modifying therapies (DMTs) designed to alter its progress with the enhanced risk of severe side effects. The Holy Grail for the treatment of MS is to specifically suppress the disease while at the same time allow the immune system to be functionally active against infectious diseases and malignancy. This could be achieved via the development of immunotherapies designed to specifically suppress immune responses to self-antigens (e.g., myelin antigens). The present study attempts to highlight the various antigen-specific immunotherapies developed so far for the treatment of multiple sclerosis (e.g., vaccination with myelin-derived peptides/proteins, plasmid DNA encoding myelin epitopes, tolerogenic dendritic cells pulsed with encephalitogenic epitopes of myelin proteins, attenuated autologous T cells specific for myelin antigens, T cell receptor peptides, carriers loaded/conjugated with myelin immunodominant peptides, etc), focusing on the outcome of their recent preclinical and clinical evaluation, and to shed light on the mechanisms involved in the immunopathogenesis and treatment of multiple sclerosis.
Collapse
|
6
|
Reuveni D, Aricha R, Souroujon MC, Fuchs S. MuSK EAMG: Immunological Characterization and Suppression by Induction of Oral Tolerance. Front Immunol 2020; 11:403. [PMID: 32256489 PMCID: PMC7089875 DOI: 10.3389/fimmu.2020.00403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Myasthenia gravis (MG) with antibodies to the muscle-specific receptor tyrosine kinase (MuSK) is a distinct sub-group of MG, affecting 5–8% of all MG patients. MuSK, a receptor tyrosine kinase, is expressed at the neuromuscular junctions (NMJs) from the earliest stages of synaptogenesis and plays a crucial role in the development and maintenance of the NMJ. MuSK-MG patients are more severely affected and more refractory to treatments currently used for MG. Most patients require long-term immunosuppression, stressing the need for improved treatments. Ideally, preferred treatments should specifically delete the antigen-specific autoimmune response, without affecting the entire immune system. Mucosal tolerance, induced by oral or nasal administration of an auto-antigen through the mucosal system, resulting in an antigen-specific immunological systemic hyporesponsiveness, might be considered as a treatment of choice for MuSK-MG. In the present study we have characterized several immunological parameters of murine MuSK-EAMG and have employed induction of oral tolerance in mouse MuSK-EAMG, by feeding with a recombinant MuSK protein one week before disease induction. Such a treatment has been shown to attenuate MuSK-EAMG. Both induction and progression of disease were ameliorated following oral treatment with the recombinant MuSK fragment, as indicated by lower clinical scores and lower anti-MuSK antibody titers.
Collapse
Affiliation(s)
- Debby Reuveni
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Revital Aricha
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Miriam C Souroujon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel
| | - Sara Fuchs
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Dargahi N, Matsoukas J, Apostolopoulos V. Streptococcus thermophilus ST285 Alters Pro-Inflammatory to Anti-Inflammatory Cytokine Secretion against Multiple Sclerosis Peptide in Mice. Brain Sci 2020; 10:brainsci10020126. [PMID: 32102262 PMCID: PMC7071487 DOI: 10.3390/brainsci10020126] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023] Open
Abstract
Probiotic bacteria have beneficial effects to the development and maintenance of a healthy microflora that subsequently has health benefits to humans. Some of the health benefits attributed to probiotics have been noted to be via their immune modulatory properties suppressing inflammatory conditions. Hence, probiotics have become prominent in recent years of investigation with regard to their health benefits. As such, in the current study, we determined the effects of Streptococcus thermophilus to agonist MBP83-99 peptide immunized mouse spleen cells. It was noted that Streptococcus thermophilus induced a significant increase in the expression of anti-inflammatory IL-4, IL-5, IL-10 cytokines, and decreased the secretion of pro-inflammatory IL-1β and IFN-γ Regular consumption of Streptococcus thermophilus may therefore be beneficial in the management and treatment of autoimmune diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia;
| | | | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia;
- Correspondence: ; Tel.: +613-9919-2025
| |
Collapse
|
8
|
Immunomodulatory effects of probiotics: Can they be used to treat allergies and autoimmune diseases? Maturitas 2018; 119:25-38. [PMID: 30502748 DOI: 10.1016/j.maturitas.2018.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
As a person ages, physiological, immunological and gut microbiome changes collectively result in an array of chronic conditions. According to the 'hygiene hypothesis' the increasing prevalence of immune-mediated disorders may be related to intestinal dysbiosis, leading to immune dysfunction and associated conditions such as eczema, asthma, allergies and autoimmune diseases. Beneficial probiotic bacteria can be utilized by increasing their abundance within the gastrointestinal lumen, which in turn will modulate immune cells, such as, T helper (Th)-1, Th2, Th17, regulatory T (Treg) cells and B cells, which have direct relevance to human health and the pathogenesis of immune disorders. Here, we describe the cross-talk between probiotics and the gastrointestinal immune system, and their effects in relation to inflammatory bowel disease, multiple sclerosis, allergies and atopic dermatitis.
Collapse
|
9
|
Xu B, Zhang W, Chen Y, Xu Y, Wang B, Zong L. Eudragit® L100-coated mannosylated chitosan nanoparticles for oral protein vaccine delivery. Int J Biol Macromol 2018; 113:534-542. [DOI: 10.1016/j.ijbiomac.2018.02.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/06/2023]
|