1
|
Zhao Y, Lou Y, Qin W, Cai J, Zhang P, Hu B. Interval aeration improves degradation and humification by enhancing microbial interactions in the composting process. BIORESOURCE TECHNOLOGY 2022; 358:127296. [PMID: 35562028 DOI: 10.1016/j.biortech.2022.127296] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Five full-scale food waste composts were conducted under different aeration frequencies (no aeration, aeration at different intervals, and continuous aeration) to reveal the optimal strategy and its microbial mechanisms. The highest degradation rate (77.2%) and humus content (29.3%) were observed in Treatment D with interval aeration (aeration 20 min, pause 10 min). Aeration influenced the degradation and humification rate by regulating microbial interactions. The microbial interactions peaked in Treatment D, with a 1.30-fold increase. In terms of the microbial community, Thermobifida was a key genus for improving positive cohesion, fulfilling three criteria (high abundance, high occurrence frequency, and significant differences between treatments). The aeration strategy employed in Treatment D not only increased relative abundance of Thermobifida (1.2 times higher) but also strengthened interaction between it and functional genera (34 nodes). Overall, interval aeration, featured by 20 min aeration and 10 min pause, could increase microbial interactions and improve composting efficiency.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yicheng Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Weizhen Qin
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jingjie Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Pan Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Genomic attributes of thermophilic and hyperthermophilic bacteria and archaea. World J Microbiol Biotechnol 2022; 38:135. [PMID: 35695998 DOI: 10.1007/s11274-022-03327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Thermophiles and hyperthermophiles are immensely useful in understanding the evolution of life, besides their utility in environmental and industrial biotechnology. Advancements in sequencing technologies have revolutionized the field of microbial genomics. The massive generation of data enhances the sequencing coverage multi-fold and allows to analyse the entire genomic features of microbes efficiently and accurately. The mandate of a pure isolate can also be bypassed where whole metagenome-assembled genomes and single cell-based sequencing have fulfilled the majority of the criteria to decode various attributes of microbial genomes. A boom has, therefore, been seen in analysing the extremophilic bacteria and archaea using sequence-based approaches. Due to extensive sequence analysis, it becomes easier to understand the gene flow and their evolution among the members of bacteria and archaea. For instance, sequencing unveiled that Thermotoga maritima shares around 24% of genes of archaeal origin. Comparative and functional genomics provide an analytical view to understanding the microbial diversity of thermophilic bacteria and archaea, their interactions with other microbes, their adaptations, gene flow, and evolution over time. In this review, the genomic features of thermophilic bacteria and archaea are dealt with comprehensively.
Collapse
|
3
|
Vanderstraeten J, da Fonseca MJM, De Groote P, Grimon D, Gerstmans H, Kahn A, Moraïs S, Bayer EA, Briers Y. Combinatorial assembly and optimisation of designer cellulosomes: a galactomannan case study. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:60. [PMID: 35637485 PMCID: PMC9153192 DOI: 10.1186/s13068-022-02158-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/14/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Designer cellulosomes are self-assembled chimeric enzyme complexes that can be used to improve lignocellulosic biomass degradation. They are composed of a synthetic multimodular backbone protein, termed the scaffoldin, and a range of different chimeric docking enzymes that degrade polysaccharides. Over the years, several functional designer cellulosomes have been constructed. Since many parameters influence the efficiency of these multi-enzyme complexes, there is a need to optimise designer cellulosome architecture by testing combinatorial arrangements of docking enzyme and scaffoldin variants. However, the modular cloning procedures are tedious and cumbersome. RESULTS VersaTile is a combinatorial DNA assembly method, allowing the rapid construction and thus comparison of a range of modular proteins. Here, we present the extension of the VersaTile platform to facilitate the construction of designer cellulosomes. We have constructed a tile repository, composed of dockerins, cohesins, linkers, tags and enzymatically active modules. The developed toolbox allows us to efficiently create and optimise designer cellulosomes at an unprecedented speed. As a proof of concept, a trivalent designer cellulosome able to degrade the specific hemicellulose substrate, galactomannan, was constructed and optimised. The main factors influencing cellulosome efficiency were found to be the selected dockerins and linkers and the docking enzyme ratio on the scaffoldin. The optimised designer cellulosome was able to hydrolyse the galactomannan polysaccharide and release mannose and galactose monomers. CONCLUSION We have eliminated one of the main technical hurdles in the designer cellulosome field and anticipate the VersaTile platform to be a starting point in the development of more elaborate multi-enzyme complexes.
Collapse
Affiliation(s)
- Julie Vanderstraeten
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Maria João Maurício da Fonseca
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Philippe De Groote
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Dennis Grimon
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Hans Gerstmans
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.,Laboratory for Biomolecular Discovery and Engineering, Department of Biology, VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001, Louvain, Belgium
| | - Amaranta Kahn
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| |
Collapse
|
4
|
Zhao Y, Weng Q, Hu B. Microbial interaction promote the degradation rate of organic matter in thermophilic period. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:11-18. [PMID: 35299060 DOI: 10.1016/j.wasman.2022.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Composting is an efficient, microbe-driven method for the biodegradation of solid organic substrates. In such a complex engineering ecosystem, microbial interaction is more important to function than relative abundance and alpha diversity. However, microbial interaction and its driving force in the composting process has been rarely reported. Thus, we combined network analysis and positive cohesion to analyze the relationship between cooperation among bacteria taxa and the degradation of organic matter in ten industrial-scale food waste composting piles. The results showed that although the complexity of network and microbial diversity were inhibited by high temperature, microbial cooperation was stimulated in the thermophilic period. The positive cohesion, which reflected the degree of microbial cooperation, tended to be positively correlated with the degradation rate of organic matter, functional genera, and genes associated with organic matter degradation. Thus, microbial cooperation was a key factor in the promotion of the degradation of organic matter. From the insight microbial community, Thermobifida was the genera with high abundance, high occurrence frequency, and high contributions to microbial structure. Additionally, it was not only highly associated with the degree of cooperation but was also highly linked with the functional genera in the composting, implying that it might play an important role in regulating cooperation to promote the functional genera. Our research provides a deep understanding of the interaction among bacteria taxa during the composting process. Focusing on the abundance of Thermobifida might be an efficient way to improve composting quality by enhancing the cooperation of microbes.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Qin Weng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Møller MS. Impact of Modular Architecture on Activity of Glycoside Hydrolase Family 5 Subfamily 8 Mannanases. Molecules 2022; 27:1915. [PMID: 35335278 PMCID: PMC8952944 DOI: 10.3390/molecules27061915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Glycoside hydrolase family 5 subfamily 8 (GH5_8) mannanases belong to Firmicutes, Actinomycetia, and Proteobacteria. The presence or absence of carbohydrate-binding modules (CBMs) present a striking difference. While various GH5_8 mannanases need a CBM for binding galactomannans, removal of the CBM did not affect activity of some, whereas it in other cases reduced the catalytic efficiency due to increased KM. Here, monomodular GH5_8 mannanases from Eubacterium siraeum (EsGH5_8) and Xanthomonas citri pv. aurantifolii (XcGH5_8) were produced and characterized to clarify if GH5_8 mannanases from Firmicutes and Proteobacteria without CBM(s) possess distinct properties. EsGH5_8 showed a remarkably high temperature optimum of 55 °C, while XcGH5_8 had an optimum at 30 °C. Both enzymes were highly active on carob galactomannan and konjac glucomannan. Notably, EsGH5_8 was equally active on both substrates, whereas XcGH5_8 preferred galactomannan. The KM values were comparable with those of catalytic domains of truncated GH5_8s, while the turn-over numbers (kcat) were in the higher end. Notably, XcGH5_8 bound to but did not degrade insoluble ivory nut mannan. The findings support the hypothesis that GH5_8 mannanases with CBMs target insoluble mannans found in plant cell walls and seeds, while monomodular GH5_8 members have soluble mannans and mannooligosaccharides as primary substrates.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Gong W, Han Q, Chen Y, Wang B, Shi J, Wang L, Cai L, Meng Q, Zhang Z, Liu Q, Yang Y, Yang J, Zheng L, Li Y, Ma Y. A glucose biosensor based on glucose oxidase fused to a carbohydrate binding module family 2 tag that specifically binds to the cellulose-modified electrode. Enzyme Microb Technol 2021; 150:109869. [PMID: 34489028 DOI: 10.1016/j.enzmictec.2021.109869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
The method of immobilization of glucose oxidase (GOD) on electrodes is especially important for the fabrication and performance of glucose biosensors. In this study, a carbohydrate binding module family 2 (CBM2) was successfully fused to the C terminal of GOD with a natural linker (NL) in endo-β-xylanase by genetic recombination, and a fusion GOD (GOD-NL-CBM2) was obtained. The CBM2 was used as an affinity adsorption tag for immobilization of the GOD-NL-CBM2 on a cellulose modified electrode. The specific activity of GOD-NL-CBM2 was comparable to that of the wild type GOD. In addition, the CBM2 tag of fusion GOD almost maintained its highest binding capacity under optimal catalytic conditions (pH 5.0, 50 °C). The morphology and composition analysis of the cellulose film reacted with and without GOD or GOD-NL-CBM2 confirmed the immobilization of GOD-NL-CBM2. The electrochemical properties of the GOD-NL-CBM2/cellulose film bioelectrode, with a characteristic peak of H2O2 at +0.6 V in the presence of glucose, revealed the capability of the immobilized GOD-NL-CBM2 to efficiently catalyze glucose and produce H2O2. Additionally, the current signal response of the biosensor to glucose was linear in the concentration range from 1.25 to 40 mM (r2 ≥ 0.99). The sensitivity and detection limit of the GOD-NL-CBM2/cellulose film bioelectrode were 466.7 μA mol-1 L cm-2 and 0.475 mM (S/N = 3), respectively. Moreover, the glucose biosensor exhibited a rapid current change (< 5 s), high reproducibility (Relative standard deviation, RSD < 5%), substrate selectivity and stability, and retained about 80 % of the original current response after 2 months. The affinity adsorption-based immobilization strategy for GOD provides a promising approach to develop a high performance glucose biosensor.
Collapse
Affiliation(s)
- Weili Gong
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Qingye Han
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Yanru Chen
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Binglian Wang
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Jianguo Shi
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lei Cai
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Qingjun Meng
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Zhenyu Zhang
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Qingai Liu
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Yan Yang
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Junhui Yang
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Lan Zheng
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Yiwei Li
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China
| | - Yaohong Ma
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, Shandong, 250103, China.
| |
Collapse
|
7
|
Tóth Á, Máté R, Kutasi J, Bata-Vidács I, Tóth E, Táncsics A, Kovács G, Nagy I, Kukolya J. Cellvibrio polysaccharolyticus sp. nov., a cellulolytic bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 33999790 DOI: 10.1099/ijsem.0.004805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-reaction-negative bacterial strain, designated Ka43T, was isolated from agricultural soil and characterised using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, the strain shows highest similarity (97.1 %) to Cellvibrio diazotrophicus E50T. Cells of strain Ka43T are aerobic, motile, short rods. The major fatty acids are summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), C18 : 1 ω7c and C16 : 0. The only isoprenoid quinone is Q-8. The polar lipid profile includes phosphatidylethanolamine, phosphatidylglycerol, four phospholipids, two lipids and an aminolipid. The assembled genome of strain Ka43T has a total length of 4.2 Mb and the DNA G+C content is 51.6 mol%. Based on phenotypic data, including chemotaxonomic characteristics and analysis of the 16S rRNA gene sequences, it was concluded that strain Ka43T represents a novel species in the genus Cellvibrio, for which the name Cellvibrio polysaccharolyticus sp. nov. is proposed. The type strain of the species is strain Ka43T (=LMG 31577T=NCAIM B.02637T).
Collapse
Affiliation(s)
- Ákos Tóth
- Research Group for Food Biotechnology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Rózsa Máté
- BioFil Microbiological, Biotechnological and Biochemical Ltd, Budapest, Hungary
| | - József Kutasi
- BioFil Microbiological, Biotechnological and Biochemical Ltd, Budapest, Hungary
| | - Ildikó Bata-Vidács
- Research Group for Food Biotechnology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Erika Tóth
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Gábor Kovács
- University of Sopron, Sopron, Hungary.,SeqOmics Biotechnology Ltd, Szeged, Hungary
| | - István Nagy
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.,SeqOmics Biotechnology Ltd, Szeged, Hungary
| | - József Kukolya
- Research Group for Food Biotechnology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| |
Collapse
|
8
|
Orientated Immobilization of FAD-Dependent Glucose Dehydrogenase on Electrode by Carbohydrate-Binding Module Fusion for Efficient Glucose Assay. Int J Mol Sci 2021; 22:ijms22115529. [PMID: 34073858 PMCID: PMC8197230 DOI: 10.3390/ijms22115529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/27/2023] Open
Abstract
The discovery or engineering of fungus-derived FAD-dependent glucose 1-dehydrogenase (FAD-GDH) is especially important in the fabrication and performance of glucose biosensors. In this study, a novel FAD-GDH gene, phylogenetically distantly with other FAD-GDHs from Aspergillus species, was identified. Additionally, the wild-type GDH enzyme, and its fusion enzyme (GDH-NL-CBM2) with a carbohydrate binding module family 2 (CBM2) tag attached by a natural linker (NL), were successfully heterogeneously expressed. In addition, while the GDH was randomly immobilized on the electrode by conventional methods, the GDH-NL-CBM2 was orientationally immobilized on the nanocellulose-modified electrode by the CBM2 affinity adsorption tag through a simple one-step approach. A comparison of the performance of the two electrodes demonstrated that both electrodes responded linearly to glucose in the range of 0.12 to 40.7 mM with a coefficient of determination R2 > 0.999, but the sensitivity of immobilized GDH-NL-CBM2 (2.1362 × 10−2 A/(M*cm2)) was about 1-fold higher than that of GDH (1.2067 × 10−2 A/(M*cm2)). Moreover, a lower detection limit (51 µM), better reproducibility (<5%) and stability, and shorter response time (≈18 s) and activation time were observed for the GDH-NL-CBM2-modified electrode. This facile and easy immobilization approach used in the preparation of a GDH biosensor may open up new avenues in the development of high-performance amperometric biosensors.
Collapse
|
9
|
Cloning, expression, and characterization of novel GH5 endoglucanases from Thermobifida alba AHK119. J Biosci Bioeng 2019; 127:554-562. [DOI: 10.1016/j.jbiosc.2018.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
|
10
|
Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Extremophiles 2017; 22:1-12. [PMID: 29110088 DOI: 10.1007/s00792-017-0974-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a 'toolbox' of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.
Collapse
|
11
|
Wang Y, Shu T, Fan P, Zhang H, Turunen O, Xiong H, Yu L. Characterization of a recombinant alkaline thermostable β-mannanase and its application in eco-friendly ramie degumming. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Ladevèze S, Laville E, Despres J, Mosoni P, Potocki-Véronèse G. Mannoside recognition and degradation by bacteria. Biol Rev Camb Philos Soc 2016; 92:1969-1990. [PMID: 27995767 DOI: 10.1111/brv.12316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/01/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein-protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. This review focuses on the various mannosides that can be found in nature and details their structure. It underlines their involvement in cellular interactions and finally describes the latest discoveries regarding the catalytic machinery and metabolic pathways that bacteria have developed to metabolize them.
Collapse
Affiliation(s)
- Simon Ladevèze
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Elisabeth Laville
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Jordane Despres
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | - Pascale Mosoni
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | | |
Collapse
|