1
|
Hong X, Miao K, Cao W, Lv J, Yu C, Huang T, Sun D, Liao C, Pang Y, Hu R, Pang Z, Yu M, Wang H, Wu X, Liu Y, Gao W, Li L. Association of psychological distress and DNA methylation: A 5-year longitudinal population-based twin study. Psychiatry Clin Neurosci 2024; 78:51-59. [PMID: 37793011 DOI: 10.1111/pcn.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
AIM To identify the psychological distress (PD)-associated 5'-cytosine-phosphate-guanine-3' sites (CpGs), and investigate the temporal relationship between dynamic changes in DNA methylation (DNAm) and PD. METHODS This study included 1084 twins from the Chinese National Twin Register (CNTR). The CNTR conducted epidemiological investigations and blood withdrawal twice in 2013 and 2018. These included twins were used to perform epigenome-wide association studies (EWASs) and to validate the previously reported PD-associated CpGs selected from previous EWASs in PubMed, Embase, and the EWAS catalog. Next, a cross-lagged study was performed to examine the temporality between changes in DNAm and PD in 308 twins who completed both 2013 and 2018 surveys. RESULTS The EWAS analysis of our study identified 25 CpGs. In the validation analysis, 741 CpGs from 29 previous EWASs on PD were selected for validation, and 101 CpGs were validated to be significant at a false discovery rate <0.05. The cross-lagged analysis found a unidirectional path from PD to DNAm at 14 CpGs, while no sites showed significance from DNAm to PD. CONCLUSIONS This study identified and validated PD-related CpGs in a Chinese twin population, and suggested that PD may be the cause of changes in DNAm over time. The findings provide new insights into the molecular mechanisms underlying PD pathophysiology.
Collapse
Affiliation(s)
- Xuanming Hong
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Ke Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Weihua Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Runhua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Zengchang Pang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Min Yu
- Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| | - Hua Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Yu Liu
- Heilongjiang Center for Disease Control and Prevention, Harbin, China
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
2
|
The black sheep of the family- whole-exome sequencing in family of lithium response discordant bipolar monozygotic twins. Eur Neuropsychopharmacol 2020; 34:19-27. [PMID: 32305265 DOI: 10.1016/j.euroneuro.2020.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/06/2020] [Indexed: 01/20/2023]
Abstract
Twin studies are among the most promising strategies for studying heritable disorders, including bipolar disorder (BD). The aim of the present study was to identify distinguishing genes between monozygotic (MZ) twins with different BD phenotype and compare them to their non-affected siblings. Whole-exome sequencing (WES) can identify rare and structural variants that could detect the polygenetic burden of complex disorders. WES was performed on a family composed of two MZ twins with BD, their unaffected brother and unaffected parents. The twins have a discordant response to lithium and distinct course of illness. Following WES, six genes of particular interest emerged: Neurofibromin type 1 (NF1), Biorientation of chromosomes in cell division 1 (BOD1), Golgi-associated gamma adaptin ear-containing ARF binding protein 3 (GGA3), Disrupted in schizophrenia 1 (DISC1), Neuromedin U receptor 2 (NMUR2), and Huntingtin interacting protein 1-related (HIP1R). Interestingly, many of these influence glutamatergic pathways and thus the findings may have therapeutical implications. These results may provide important insights to unveil genetic underpinnings of BD and the response to lithium.
Collapse
|
3
|
Lombardo S, Chiacchiaretta M, Tarr A, Kim W, Cao T, Sigal G, Rosahl TW, Xia W, Haydon PG, Kennedy ME, Tesco G. BACE1 partial deletion induces synaptic plasticity deficit in adult mice. Sci Rep 2019; 9:19877. [PMID: 31882662 PMCID: PMC6934620 DOI: 10.1038/s41598-019-56329-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACE1 is the first enzyme involved in APP processing, thus it is a strong therapeutic target candidate for Alzheimer's disease. The observation of deleterious phenotypes in BACE1 Knock-out (KO) mouse models (germline and conditional) raised some concerns on the safety and tolerability of BACE1 inhibition. Here, we have employed a tamoxifen inducible BACE1 conditional Knock-out (cKO) mouse model to achieve a controlled partial depletion of BACE1 in adult mice. Biochemical and behavioural characterization was performed at two time points: 4-5 months (young mice) and 12-13 months (aged mice). A ~50% to ~70% BACE1 protein reduction in hippocampus and cortex, respectively, induced a significant reduction of BACE1 substrates processing and decrease of Aβx-40 levels at both ages. Hippocampal axonal guidance and peripheral nerve myelination were not affected. Aged mice displayed a CA1 long-term potentiation (LTP) deficit that was not associated with memory impairment. Our findings indicate that numerous phenotypes observed in germline BACE1 KO reflect a fundamental role of BACE1 during development while other phenotypes, observed in adult cKO, may be absent when partially rather than completely deleting BACE1. However, we demonstrated that partial depletion of BACE1 still induces CA1 LTP impairment, supporting a role of BACE1 in synaptic plasticity in adulthood.
Collapse
Affiliation(s)
- Sylvia Lombardo
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Martina Chiacchiaretta
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Andrew Tarr
- Circuits and Behaviour Core, Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - WonHee Kim
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Tingyi Cao
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Griffin Sigal
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Thomas W Rosahl
- External In Vivo Pharmacology, Merck & Co. Inc., Kenilworth, NJ, 07033, USA
| | - Weiming Xia
- Geriatric Research, Education and Clinic Center, Bedford Veterans Affairs Medical Center, Bedford, MA, 01730, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | | | - Giuseppina Tesco
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA.
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA.
| |
Collapse
|
4
|
Teoh J, Subramanian N, Pero ME, Bartolini F, Amador A, Kanber A, Williams D, Petri S, Yang M, Allen AS, Beal J, Haut SR, Frankel WN. Arfgef1 haploinsufficiency in mice alters neuronal endosome composition and decreases membrane surface postsynaptic GABA A receptors. Neurobiol Dis 2019; 134:104632. [PMID: 31678406 DOI: 10.1016/j.nbd.2019.104632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/23/2022] Open
Abstract
ARFGEF1 encodes a guanine exchange factor involved in intracellular vesicle trafficking, and is a candidate gene for childhood genetic epilepsies. To model ARFGEF1 haploinsufficiency observed in a recent Lennox Gastaut Syndrome patient, we studied a frameshift mutation (Arfgef1fs) in mice. Arfgef1fs/+ pups exhibit signs of developmental delay, and Arfgef1fs/+ adults have a significantly decreased threshold to induced seizures but do not experience spontaneous seizures. Histologically, the Arfgef1fs/+ brain exhibits a disruption in the apical lining of the dentate gyrus and altered spine morphology of deep layer neurons. In primary hippocampal neuron culture, dendritic surface and synaptic but not total GABAA receptors (GABAAR) are reduced in Arfgef1fs/+ neurons with an accompanying decrease in the number of GABAAR-containing recycling endosomes in cell body. Arfgef1fs/+ neurons also display differences in the relative ratio of Arf6+:Rab11+:TrfR+ recycling endosomes. Although the GABAAR-containing early endosomes in Arfgef1fs/+ neurons are comparable to wildtype, Arfgef1fs/+ neurons show an increase in the number of GABAAR-containing lysosomes in dendrite and cell body. Together, the altered endosome composition and decreased neuronal surface GABAAR results suggests a mechanism whereby impaired neuronal inhibition leads to seizure susceptibility.
Collapse
Affiliation(s)
- JiaJie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America.
| | - Narayan Subramanian
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Maria Elena Pero
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, United States of America; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Ariadna Amador
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Ayla Kanber
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Damian Williams
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Mu Yang
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of America
| | - Jules Beal
- The Saul R. Korey Department of Neurology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Sheryl R Haut
- The Saul R. Korey Department of Neurology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America; Department of Genetic and Development, Columbia University Irving Medical Center, New York, NY, United States of America
| |
Collapse
|