1
|
Mahmoud AA, Wang X, Liao X, Zhang S, Ding T, Ahn J. Impact of prophages on gut microbiota and disease associations. Microb Pathog 2025; 204:107642. [PMID: 40300731 DOI: 10.1016/j.micpath.2025.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
The gut microbiota plays an important role in maintaining host health by affecting various physiological functions. Among the diverse microbial communities in the gut, prophages are integral components of bacterial genomes, contributing significantly to bacterial evolution, ecology and pathogenicity. Prophages are capable of switching to lytic cycles in response to various internal and external factors. Factors that induce prophage induction include DNA damage, oxidative stress, nutrient availability, host immune response, quorum sensing, diet, secondary metabolites, antibiotics, and lifestyle changes. Prophage induction could contribute to both gut homeostasis and dysbiosis. Importantly, the connections between prophage induction and disorders such as inflammatory bowel disease, ulcerative colitis, and bacterial vaginosis highlight the dual roles of prophages in both health and disease. Although therapeutic approaches such as phage therapy (PT), fecal microbiota transplants (FMT), and fecal virome transplants (FVT) have gained attention, the concept of dietary prophage induction therapy offers a novel, targeted method to modulate gut microbiota. In spite of recent advances in understanding the role of prophages in gut health, the exact mechanisms by which they influence gut health remain only partially understood. Therefore, further research is needed to elucidate additional molecular mechanisms of prophage induction pathways and to explore their implications for gut microbiota dynamics and disease associations. This review discusses the molecular mechanisms and key factors that trigger prophage induction in the gut. Insights into these processes could lead to innovative therapeutic strategies that utilize prophages to support gut health.
Collapse
Affiliation(s)
- Aminu Abdullahi Mahmoud
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoyu Wang
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Juhee Ahn
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
2
|
Martiniuc C, Taveira I, Abreu F, Cabral AS, Paranhos R, Seldin L, Jurelevicius D. Insights into the dynamics and evolution of Rummeliibacillus stabekisii prophages in extreme environments: from Antarctic soil to spacecraft floors. Extremophiles 2024; 29:10. [PMID: 39708135 DOI: 10.1007/s00792-024-01377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Since prophages can play a multifaceted role in bacterial evolution, this study aims to characterize the virome of Rummeliibacillus stabekisii, a bacterium isolated from different environments, including Antarctic soil and NASA spacecraft floors. From the analyses, it was found that the Antarctic strain, PP9, had the largest number of prophages, including intact ones, indicating potential benefits for survival in adverse conditions. In contrast, other strains harbored predominantly degenerate prophages, suggesting a dynamic process of gene gain and loss during evolution. Furthermore, strain PP9 exhibited polylysogeny, a strategy capable of increasing its competitive advantage by providing a broader spectrum of defensive mechanisms. In addition, evidence demonstrates that prophage regions in PP9 act as hotspots for recombination events, favoring the insertion of different phages and possible antimicrobial resistance genes. Finally, lytic cycle induction experiments revealed at least two intact prophages active in PP9. In this way, understanding the interaction between viruses and bacteria can provide valuable information about microbial evolution and adaptation in extreme environments, such as Antarctica.
Collapse
Affiliation(s)
- Caroline Martiniuc
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Igor Taveira
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Fernanda Abreu
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Anderson S Cabral
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rodolfo Paranhos
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lucy Seldin
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Diogo Jurelevicius
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
3
|
Saikia B, Riquelme-Barrios S, Carell T, Brameyer S, Jung K. Depletion of m 6A-RNA in Escherichia coli reduces the infectious potential of T5 bacteriophage. Microbiol Spectr 2024; 12:e0112424. [PMID: 39422505 PMCID: PMC11619597 DOI: 10.1128/spectrum.01124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification of mRNA in eukaryotes that plays, among other mechanisms, an essential role in virus replication. However, the understanding of m6A-RNA modification in prokaryotes, especially in relation to phage replication, is limited. To address this knowledge gap, we investigated the effects of m6A-RNA modifications on phage replication in two model organisms: Vibrio campbellii BAA-1116 (previously Vibrio harveyi BB120) and Escherichia coli MG1655. An m6A-RNA-depleted V. campbellii mutant (ΔrlmFΔrlmJ) did not differ from the wild type in the induction of lysogenic phages or in susceptibility to the lytic Virtus phage. In contrast, the infection potential of the T5 phage, but not that of other T phages or the lambda phage, was reduced in an m6A-RNA-depleted E. coli mutant (ΔrlmFΔrlmJ) compared to the wild type. This was shown by a lower plaquing efficiency and a higher percentage of surviving cells. There were no differences in the T5 phage adsorption rate, but the mutant exhibited a 5-min delay in the rise period during the one-step growth curve. This is the first report demonstrating that E. coli cells with lower m6A-RNA levels have a higher chance of surviving T5 phage infection. IMPORTANCE The importance of RNA modifications has been thoroughly studied in the context of eukaryotic viral infections. However, their role in bacterial hosts during phage infections is largely unexplored. Our research delves into this gap by investigating the effect of host N6-methyladenosine (m6A)-RNA modifications during phage infection. We found that an Escherichia coli mutant depleted of m6A-RNA is less susceptible to T5 infection than the wild type. This finding emphasizes the need to further investigate how RNA modifications affect the fine-tuned regulation of individual bacterial survival in the presence of phages to ensure population survival.
Collapse
Affiliation(s)
- Bibakhya Saikia
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Thomas Carell
- Department for Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität, München, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
4
|
Itelson L, Merav M, Haymi S, Carmeli S, Ilan M. Diversity and Activity of Bacteria Cultured from a Cup-The Sponge Calyx nicaeensis. Mar Drugs 2024; 22:440. [PMID: 39452848 PMCID: PMC11509412 DOI: 10.3390/md22100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Marine sponges are well-known for hosting rich microbial communities. Sponges are the most prolific source of marine bioactive compounds, which are frequently synthesized by their associated microbiota. Calyx nicaeensis is an endemic Mediterranean sponge with scarce information regarding its (bioactive) secondary metabolites. East Mediterranean specimens of mesophotic C. nicaeensis have never been studied. Moreover, no research has inspected its associated bacteria. Thus, we studied the sponge's bacterial diversity and examined bacterial interspecific interactions in search of a promising antibacterial candidate. Such novel antimicrobial agents are needed since extensive antibiotic use leads to bacterial drug resistance. Bacteria cultivation yielded 90 operational taxonomic units (OTUs). A competition assay enabled the testing of interspecific interactions between the cultured OTUs. The highest-ranked antagonistic bacterium, identified as Paenisporosarcina indica (previously never found in marine or cold habitats), was mass cultured, extracted, and separated using size exclusion and reversed-phase chromatographic methods, guided by antibacterial activity. A pure compound was isolated and identified as 3-oxy-anteiso-C15-fatty acid-lichenysin. Five additional active compounds await final cleaning; however, they are lichenysins and surfactins. These are the first antibacterial compounds identified from either the C. nicaeensis sponge or P. indica bacterium. It also revealed that the genus Bacillus is not an exclusive producer of lichenysin and surfactin.
Collapse
Affiliation(s)
- Lynne Itelson
- School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Mayan Merav
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.M.); (S.C.)
| | - Shai Haymi
- School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Shmuel Carmeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.M.); (S.C.)
| | - Micha Ilan
- School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
5
|
Jia C, Wang Y, Zheng B, Wang Y, He L, Xu Q, Gao F. Comparative Analysis of Gut Bacterial Community Composition in Two Tropical Economic Sea Cucumbers under Different Seasons of Artificial Environment. Int J Mol Sci 2024; 25:4573. [PMID: 38674158 PMCID: PMC11049810 DOI: 10.3390/ijms25084573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
With the continuous rise of the sea cucumber aquaculture industry in China, the tropical sea cucumber aquaculture industry is also improving. However, research on the gut microorganisms of tropical sea cucumbers in captivity is scarce. In this study, high-throughput sequencing methods were used to analyze the gut microbial composition of Stichopus monotuberculatus and Holothuria scabra in the dry season and wet season of artificial environments. The results showed that 66 phyla were obtained in all samples, of which 59 phyla were obtained in the dry season, and 45 phyla were obtained in the wet season. The Tax4Fun analysis showed that certain gut bacterial communities affect the daily metabolism of two sea cucumber species and are involved in maintaining gut microecological balance in the gut of two sea cucumber species. In addition, compared with differences between species, PCoA and UPGMA clustering analysis showed the gut prokaryotes of the same sea cucumber species varied more in different seasons, indicating that the influence of environment was higher than the feeding choices of sea cucumbers under relatively closed conditions. These results revealed the gut bacterial community composition of S. monotuberculatus and H. scabra and the differences in gut bacterial structure between two sea cucumber species in different seasons were compared, which would provide the foundation for tropical sea cucumber aquaculture in the future.
Collapse
Affiliation(s)
- Chenghao Jia
- School of Ecology and Environment, Hainan University, Haikou 570228, China;
| | - Yuanhang Wang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| | - Bojun Zheng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| | - Yanan Wang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| | - Linwen He
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| | - Qiang Xu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| | - Fei Gao
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| |
Collapse
|
6
|
Dougherty PE, Nielsen TK, Riber L, Lading HH, Forero-Junco LM, Kot W, Raaijmakers JM, Hansen LH. Widespread and largely unknown prophage activity, diversity, and function in two genera of wheat phyllosphere bacteria. THE ISME JOURNAL 2023; 17:2415-2425. [PMID: 37919394 PMCID: PMC10689766 DOI: 10.1038/s41396-023-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Environmental bacteria host an enormous number of prophages, but their diversity and natural functions remain largely elusive. Here, we investigate prophage activity and diversity in 63 Erwinia and Pseudomonas strains isolated from flag leaves of wheat grown in a single field. Introducing and validating Virion Induction Profiling Sequencing (VIP-Seq), we identify and quantify the activity of 120 spontaneously induced prophages, discovering that some phyllosphere bacteria produce more than 108 virions/mL in overnight cultures, with significant induction also observed in planta. Sequence analyses and plaque assays reveal E. aphidicola prophages contribute a majority of intraspecies genetic diversity and divide their bacterial hosts into antagonistic factions engaged in widespread microbial warfare, revealing the importance of prophage-mediated microdiversity. When comparing spontaneously active prophages with predicted prophages we also find insertion sequences are strongly correlated with non-active prophages. In conclusion, we discover widespread and largely unknown prophage diversity and function in phyllosphere bacteria.
Collapse
Affiliation(s)
- Peter Erdmann Dougherty
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Helen Helgå Lading
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
7
|
Molina-Quiroz RC, Silva-Valenzuela CA. Interactions of Vibrio phages and their hosts in aquatic environments. Curr Opin Microbiol 2023; 74:102308. [PMID: 37062175 DOI: 10.1016/j.mib.2023.102308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 04/18/2023]
Abstract
Bacteriophages (phages) are viruses that specifically infect bacteria. These viruses were discovered a century ago and have been used as a model system in microbial genetics and molecular biology. In order to survive, bacteria have to quickly adapt to phage challenges in their natural settings. In turn, phages continuously develop/evolve mechanisms for battling host defenses. A deeper understanding of the arms race between bacteria and phages is essential for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections. Vibrio species and their phages (vibriophages) are a suitable model to study these interactions. Phages are highly ubiquitous in aquatic environments and Vibrio are waterborne bacteria that must survive the constant attack by phages for successful transmission to their hosts. Here, we review relevant literature from the past two years to delve into the molecular interactions of Vibrio species and their phages in aquatic niches.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | | |
Collapse
|
8
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
9
|
Genomic Analysis Reveals Adaptation of Vibrio campbellii to the Hadal Ocean. Appl Environ Microbiol 2022; 88:e0057522. [PMID: 35916502 PMCID: PMC9397096 DOI: 10.1128/aem.00575-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The genus Vibrio is characterized by high metabolic flexibility and genome plasticity and is widely distributed in the ocean from euphotic layers to deep-sea environments. The relationship between genome features and environmental adaptation strategies of Vibrio has been extensively investigated in coastal environments, yet very little is known about their survival strategies in oligotrophic deep-sea. In this study, we compared genomes of five Vibrio campbellii strains isolated from the Mariana and Yap Trenches at different water depths, including two epipelagic strains and three hadopelagic strains, to identify genomic characteristics that facilitate survival in the deep sea. Genome streamlining is found in pelagic strains, such as smaller genome sizes, lower G+C contents, and higher gene densities, which might be caused by long-term residence in an oligotrophic environment. Phylogenetic results showed that these five Vibrio strains are clustered into two clades according to their collection depth. Indeed, hadopelagic isolates harbor more genes involved in amino acid metabolism and transport, cell wall/membrane/envelope biogenesis, and inorganic ion transport and metabolism through comparative genomics analysis. Specific macrolide export gene and more tellurite resistance genes present in hadopelagic strains by the annotation of antibiotic and metal resistance genes. In addition, several genes related to substrate degradation are enriched in hadopelagic strains, such as chitinase genes, neopullulanase genes, and biopolymer transporter genes. In contrast, epipelagic strains are unique in their capacity for assimilatory nitrate reduction. The genomic characteristics investigated here provide insights into how Vibrio adapts to the deep-sea environment through genomic evolution. IMPORTANCE With the development of deep-sea sampling technology, an increasing number of deep-sea Vibrio strains have been isolated, but the adaptation mechanism of these eutrophic Vibrio strains to the deep-sea environment is unclear. Here, our results show that the genome of pelagic Vibrio is streamlined to adapt to a long-term oligotrophic environment. Through a phylogenomic analysis, we find that genomic changes in marine Vibrio campbellii strains are related to water depth. Our data suggest that an increase in genes related to antibiotic resistance, degradation of macromolecular and refractory substrates, and utilization of rare ions is related to the adaptation of V. campbellii strains to adapt to hadal environments, and most of the increased genes were acquired by horizontal gene transfer. These findings may deepen our understanding of adaptation strategies of marine bacteria to the extreme environment in hadal zones.
Collapse
|
10
|
Nawel Z, Rima O, Amira B. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation. Microb Pathog 2022; 165:105490. [DOI: 10.1016/j.micpath.2022.105490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022]
|
11
|
Mutations in Ehrlichia chaffeensis Genes ECH_0660 and ECH_0665 Cause Transcriptional Changes in Response to Zinc or Iron Limitation. J Bacteriol 2021; 203:e0002721. [PMID: 33875547 PMCID: PMC8316085 DOI: 10.1128/jb.00027-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis causes human monocytic ehrlichiosis by replicating within phagosomes of monocytes/macrophages. A function disruption mutation within the pathogen's ECH_0660 gene, which encodes a phage head-to-tail connector protein, resulted in the rapid clearance of the pathogen in vivo, while aiding in induction of sufficient immunity in a host to protect against wild-type infection challenge. In this study, we describe the characterization of a cluster of seven genes spanning from ECH_0659 to ECH_0665, which contained four genes encoding bacterial phage proteins, including the ECH_0660 gene. Assessment of the promoter region upstream of the first gene of the seven genes (ECH_0659) in Escherichia coli demonstrated transcriptional enhancement under zinc and iron starvation conditions. Furthermore, transcription of the seven genes was significantly higher under zinc and iron starvation conditions for E. chaffeensis carrying a mutation in the ECH_0660 gene compared to the wild-type pathogen. In contrast, for the ECH_0665 gene mutant with the function disruption, transcription from the genes was mostly similar to that of the wild type or was moderately downregulated. Recently, we reported that this mutation caused a minimal impact on the pathogen's in vivo growth, as it persisted similarly to the wild type. The current study is the first to describe how zinc and iron contribute to E. chaffeensis biology. Specifically, we demonstrated that the functional disruption in the gene encoding the phage head-to-tail connector protein in E. chaffeensis results in the enhanced transcription of seven genes, including those encoding phage proteins, under zinc and iron limitation. IMPORTANCE Ehrlichia chaffeensis, a tick-transmitted bacterium, causes human monocytic ehrlichiosis by replicating within phagosomes of monocytes/macrophages. A function disruption mutation within the pathogen's gene encoding a phage head-to-tail connector protein resulted in the rapid clearance of the pathogen in vivo, while aiding in induction of sufficient immunity in a host to protect against wild-type infection challenge. In the current study, we investigated if the functional disruption in the phage head-to-tail connector protein gene caused transcriptional changes resulting from metal ion limitations. This is the first study describing how zinc and iron may contribute to E. chaffeensis replication.
Collapse
|
12
|
Li C, Wang Z, Zhao J, Wang L, Xie G, Huang J, Zhang Y. A Novel Vibriophage vB_VcaS_HC Containing Lysogeny-Related Gene Has Strong Lytic Ability against Pathogenic Bacteria. Virol Sin 2021; 36:281-290. [PMID: 32767211 PMCID: PMC8087747 DOI: 10.1007/s12250-020-00271-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
To avoid the negative effects of antibiotics, using phage to prevent animal disease becomes a promising method in aquaculture. Here, a lytic phage provisionally named vB_VcaS_HC that can infect the pathogen (i.e., Vibrio campbellii 18) of prawn was isolated. The phage has an isometric head and a non-contractile tail. During phage infection, the induced host mortality in 5.5 h reached ca. 96%, with a latent period of 1.5 h and a burst size of 172 PFU/cell. It has an 81,566 bp circular dsDNA genome containing 121 open reading frames (ORFs), and ca. 71% of the ORFs are functionally unknown. Comparative genomic and phylogenetic analysis revealed that it is a novel phage belonging to Delepquintavirus, Siphoviridae, Caudovirales. In the phage genome, besides the ordinary genes related to structure assembly and DNA metabolism, there are 10 auxiliary metabolic genes. For the first time, the pyruvate phosphate dikinase (PPDK) gene was found in phages whose product is a key rate-limiting enzyme involving Embden-Meyerhof-Parnas (EMP) reaction. Interestingly, although the phage has a strong bactericidal activity and contains a potential lysogeny related gene, i.e., the recombinase (RecA) gene, we did not find the phage turned into a lysogenic state. Meanwhile, the phage genome does not contain any bacterial virulence gene or antimicrobial resistance gene. This study represents the first comprehensive characterization of a lytic V. campbellii phage and indicates that it is a promising candidate for the treatment of V. campbellii infections.
Collapse
Affiliation(s)
- Chengcheng Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengmeng Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiulong Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guosi Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Nuidate T, Kuaphiriyakul A, Surachat K, Mittraparp-arthorn P. Induction and Genome Analysis of HY01, a Newly Reported Prophage from an Emerging Shrimp Pathogen Vibrio campbellii. Microorganisms 2021; 9:400. [PMID: 33671959 PMCID: PMC7919010 DOI: 10.3390/microorganisms9020400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
Vibrio campbellii is an emerging aquaculture pathogen that causes luminous vibriosis in farmed shrimp. Although prophages in various aquaculture pathogens have been widely reported, there is still limited knowledge regarding prophages in the genome of pathogenic V. campbellii. Here, we describe the full-genome sequence of a prophage named HY01, induced from the emerging shrimp pathogen V. campbellii HY01. The phage HY01 was induced by mitomycin C and was morphologically characterized as long tailed phage. V. campbellii phage HY01 is composed of 41,772 bp of dsDNA with a G+C content of 47.45%. A total of 60 open reading frames (ORFs) were identified, of which 31 could be predicted for their biological functions. Twenty seven out of 31 predicted protein coding regions were matched with several encoded proteins of various Enterobacteriaceae, Pseudomonadaceae, Vibrionaceae, and other phages of Gram-negative bacteria. Interestingly, the comparative genome analysis revealed that the phage HY01 was only distantly related to Vibrio phage Va_PF430-3_p42 of fish pathogen V. anguillarum but differed in genomic size and gene organization. The phylogenetic tree placed the phage together with Siphoviridae family. Additionally, a survey of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) spacers revealed two matching sequences between phage HY01 genome and viral spacer sequence of Vibrio spp. The spacer results combined with the synteny results suggest that the evolution of V. campbellii phage HY01 is driven by the horizontal genetic exchange between bacterial families belonging to the class of Gammaproteobacteria.
Collapse
Affiliation(s)
- Taiyeebah Nuidate
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (T.N.); (A.K.)
| | - Aphiwat Kuaphiriyakul
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (T.N.); (A.K.)
| | - Komwit Surachat
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pimonsri Mittraparp-arthorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (T.N.); (A.K.)
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
14
|
Pellizza L, López JL, Vázquez S, Sycz G, Guimarães BG, Rinaldi J, Goldbaum FA, Aran M, Mac Cormack WP, Klinke S. Structure of the putative long tail fiber receptor-binding tip of a novel temperate bacteriophage from the Antarctic bacterium Bizionia argentinensis JUB59. J Struct Biol 2020; 212:107595. [PMID: 32736071 DOI: 10.1016/j.jsb.2020.107595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/28/2022]
Abstract
Tailed bacteriophages are one of the most widespread biological entities on Earth. Their singular structures, such as spikes or fibers are of special interest given their potential use in a wide range of biotechnological applications. In particular, the long fibers present at the termini of the T4 phage tail have been studied in detail and are important for host recognition and adsorption. Although significant progress has been made in elucidating structural mechanisms of model phages, the high-resolution structural description of the vast population of marine phages is still unexplored. In this context, we present here the crystal structure of C24, a putative receptor-binding tip-like protein from Bizionia argentinensis JUB59, a psychrotolerant bacterium isolated from the marine surface waters of Potter Cove, Antarctica. The structure resembles the receptor-binding tip from the bacteriophage T4 long tail fiber yet showing marked differences in its domain organization, size, sequence identity and metal binding nature. We confirmed the viral origin of C24 by induction experiments using mitomycin C. Our results reveal the presence of a novel uncharacterized prophage in the genome of B. argentinensis JUB59, whose morphology is compatible with the order Caudovirales and that carries the nucleotide sequence of C24 in its genome. This work provides valuable information to expand our current knowledge on the viral machinery prevalent in the oceans.
Collapse
Affiliation(s)
- Leonardo Pellizza
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - José L López
- Instituto de Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAZ), Buenos Aires, Argentina
| | - Susana Vázquez
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956 (C1113AAZ), Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Beatriz G Guimarães
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48 (91192), Gif-sur-Yvette, France
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Martín Aran
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| | - Walter P Mac Cormack
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956 (C1113AAZ), Buenos Aires, Argentina; Instituto Antártico Argentino, 25 de Mayo 1143 (B1650HMK), San Martín, Provincia de Buenos Aires, Argentina.
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Garin-Fernandez A, Glöckner FO, Wichels A. Genomic characterization of filamentous phage vB_VpaI_VP-3218, an inducible prophage of Vibrio parahaemolyticus. Mar Genomics 2020; 53:100767. [PMID: 32171709 DOI: 10.1016/j.margen.2020.100767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
The seawater temperature rise can promote the growth of potentially pathogenic Vibrio species. In the North Sea, V. parahaemolyticus strains have been isolated and characterized. These strains contain prophages that may contribute to the emergence of pathogenic strains in the marine environment. Here, we present the genome structure and possible biological functions of the inducible phage vB_VpaI_VP-3218, a novel filamentous phage carried by the V. parahaemolyticus strain VN-3218. Prophages of the strain VN-3218 were induced with mitomycin C and the DNA from the phage induction was sequenced. Two incomplete prophages were identified, only one complete phage genome with length of 11,082 bp was characterized. The phage vB_VpaI_VP-3218 belongs to the Inoviridae family and shows close homology to the Saetivirus genus. This phage can integrate into the chromosomal host genome and carries host-related regions absent in similar phage genomes, suggesting that this phage might integrate in other Vibrio host genomes from the environment. Furthermore, this phage might have a role in pathogenicity due to potential zonula occludens toxin genes. Based on its genomic similarity, the genome of vB_VpaI_VP-3218 phage probably integrates into the lysogen's chromosome and replicates as episome. This study complements prophage induction and bioinformatic studies applied to non-model species of potentially pathogenic Vibrio species. The characterization of this phage provides new insights with respect to the presence of filamentous phages in environmental V. parahaemolyticus strains, which might have a role in the emergence of new pathogenic strains in the North Sea.
Collapse
Affiliation(s)
- Alexa Garin-Fernandez
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Helgoland, Germany; Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Frank Oliver Glöckner
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany; Jacobs University Bremen gGmbH, Bremen, Germany
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Helgoland, Germany
| |
Collapse
|
16
|
Garin-Fernandez A, Wichels A. Looking for the hidden: Characterization of lysogenic phages in potential pathogenic Vibrio species from the North Sea. Mar Genomics 2019; 51:100725. [PMID: 31757758 DOI: 10.1016/j.margen.2019.100725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
Abstract
The incidence of potentially pathogenic Vibrio species in the marine environment around Europe, is correlated with the increase of surface seawater temperature. Despite their importance, little is known about the trigger factors of potential outbreak-causing strains in this region. As prophages may compose a major reservoir of virulence traits in marine ecosystems, this study aims to identify and characterize the genomes of lysogenic Vibrio phages exemplarily from the North Sea. Therefore, 31 isolates from potentially pathogenic Vibrio species from the North Sea were screened for inducible prophages with mitomycin C. From them, one V. cholerae isolate and 40% V. parahaemolyticus isolates carried inducible prophages. Three lysogenic phages were selected for genomic characterization. The phage vB_VpaM_VP-3212 (unclassified Myoviridae) has a genome with a length of 36.81 Kbp and 55 CDS were identified. This lysogenic phage of V. parahaemolyticus contains genes related to replicative transposition mechanism, such as transposase and mobile elements similar to Mu-like viruses. The phage vB_VpaP_VP-3220 (Podoviridae, unclassified Nona33virus) has a genome length of 58,14 Kbp and contains 63 CDS. This V. parahaemolyticus phage probably uses a headful (pac) packaging replication mechanism. The phage vB_VchM_VP-3213 (unclassified Myoviridae) has a genome with a length of 41 Kbp and 63 CDS were identified, including integrase and Xer system for lysogenic recombination. This lysogenic phage of V. cholerae has similar genomic features as lambdoid phages. Although no pathogenicity genes were identified, their similarity among other phage genomes indicates that these phages can affect the development of pathogenic Vibrio strains in marine environments.
Collapse
Affiliation(s)
- Alexa Garin-Fernandez
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, Helgoland, Germany; Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, Helgoland, Germany
| |
Collapse
|
17
|
Langlete P, Krabberød AK, Winther-Larsen HC. Vesicles From Vibrio cholerae Contain AT-Rich DNA and Shorter mRNAs That Do Not Correlate With Their Protein Products. Front Microbiol 2019; 10:2708. [PMID: 31824470 PMCID: PMC6883915 DOI: 10.3389/fmicb.2019.02708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles secreted by Gram-negative bacteria have proven to be important in bacterial defense, communication and host–pathogen relationships. They resemble smaller versions of the bacterial mother cell, with similar contents of proteins, LPS, DNA, and RNA. Vesicles can elicit a protective immune response in a range of hosts, and as vaccine candidates, it is of interest to properly characterize their cargo. Genetic sequencing data is already available for vesicles from several bacterial strains, but it is not yet clear how the genetic makeup of vesicles differ from that of their parent cells, and which properties may characterize enriched genetic material. The present study provides evidence for DNA inside vesicles from Vibrio cholerae O395, and key characteristics of their genetic and proteomic content are compared to that of whole cells. DNA analysis reveals enrichment of fragments containing ToxR binding sites, as well as a positive correlation between AT-content and enrichment. Some mRNAs were highly enriched in the vesicle fraction, such as membrane protein genes ompV, ompK, and ompU, DNA-binding protein genes hupA, hupB, ihfB, fis, and ssb, and a negative correlation was found between mRNA enrichment and transcript length, suggesting mRNA inclusion in vesicles may be a size-dependent process. Certain non-coding and functional RNAs were found to be enriched, such as VrrA, GcvB, tmRNA, RNase P, CsrB2, and CsrB3. Mass spectrometry revealed enrichment of outer membrane proteins, known virulence factors, phage components, flagella and extracellular proteins in the vesicle fraction, and a low, negative correlation was found between transcript-, and protein enrichment. This result opposes the hypothesis that a significant degree of protein translation occurs in vesicles after budding. The abundance of viral-, and flagellar proteins in the vesicle fraction underlines the importance of purification during vesicle isolation.
Collapse
Affiliation(s)
- Petter Langlete
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anders Kristian Krabberød
- Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway.,Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hanne Cecilie Winther-Larsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Large Phenotypic and Genetic Diversity of Prophages Induced from the Fish Pathogen Vibrio anguillarum. Viruses 2019; 11:v11110983. [PMID: 31653117 PMCID: PMC6893619 DOI: 10.3390/v11110983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023] Open
Abstract
Vibrio anguillarum is a marine pathogenic bacterium that causes vibriosis in fish and shellfish. Although prophage-like sequences have been predicted in V. anguillarum strains, many are not characterized, and it is not known if they retain the functional capacity to form infectious particles that can infect and lysogenize other bacterial hosts. In this study, the genome sequences of 28 V. anguillarum strains revealed 55 different prophage-related elements. Chemical and spontaneous induction allowed a collection of 42 phage isolates, which were classified in seven different groups according to a multiplex PCR assay. One shared prophage sequence, p41 (group III), was present in 17 V. anguillarum strains, suggesting that this specific element is very dynamically exchanged among V. anguillarum populations. Interestingly, the host range of genetically identical phages was highly dependent on the strains used for proliferation, indicating that phenotypic properties of phages were partly regulated by the host. Finally, experimental evidence displayed that the induced phage ɸVa_90-11-287_p41 was able to lysogenize V. anguillarum strain Ba35, and subsequently spontaneously become released from the lysogenized cells, demonstrating an efficient transfer of the phage among V. anguillarum strains. Altogether, the results showed large genetic and functional diversity and broad distribution of prophages in V. anguillarum, and demonstrated the potential of prophages as drivers of evolution in V. anguillarum strains.
Collapse
|
19
|
Crispim JS, Dias RS, Vidigal PMP, de Sousa MP, da Silva CC, Santana MF, de Paula SO. Screening and characterization of prophages in Desulfovibrio genomes. Sci Rep 2018; 8:9273. [PMID: 29915307 PMCID: PMC6006170 DOI: 10.1038/s41598-018-27423-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/01/2018] [Indexed: 02/03/2023] Open
Abstract
Bacteria of the genus Desulfovibrio belong to the group of Sulphate Reducing Bacteria (SRB). SRB generate significant liabilities in the petroleum industry, mainly due to their ability to microbiologically induce corrosion, biofilm formation and H2S production. Bacteriophages are an alternative control method for SRB, whose information for this group of bacteria however, is scarce. The present study developed a workflow for the identification of complete prophages in Desulfovibrio. Poly-lysogenesis was shown to be common in Desulfovibrio. In the 47 genomes analyzed 53 complete prophages were identified. These were classified within the order Caudovirales, with 69.82% belonging to the Myoviridade family. More than half the prophages identified have genes coding for lysozyme or holin. Four of the analyzed bacterial genomes present prophages with identity above 50% in the same strain, whose comparative analysis demonstrated the existence of colinearity between the sequences. Of the 17 closed bacterial genomes analyzed, 6 have the CRISPR-Cas system classified as inactive. The identification of bacterial poly-lysogeny, the proximity between the complete prophages and the possible inactivity of the CRISPR-Cas in closed bacterial genomes analyzed allowed the choice of poly-lysogenic strains with prophages belonging to the Myoviridae family for the isolation of prophages and testing of related strains for subsequent studies.
Collapse
Affiliation(s)
| | - Roberto Sousa Dias
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | | | - Maíra Paula de Sousa
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello, CENPES, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
20
|
Lorenz N, Shin JY, Jung K. Activity, Abundance, and Localization of Quorum Sensing Receptors in Vibrio harveyi. Front Microbiol 2017; 8:634. [PMID: 28458660 PMCID: PMC5394107 DOI: 10.3389/fmicb.2017.00634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Quorum sensing (QS) is a process enabling a bacterial population to communicate via small molecules called autoinducers (AIs). This intercellular communication process allows single cells to synchronize their behavior within a population. The marine bacterium Vibrio harveyi ATCC BAA-1116 channels the information of three AI signals into one QS cascade. Three receptors perceive these AIs, the hybrid histidine kinases LuxN, Lux(P)Q and CqsS, to transduce the information to the histidine phosphotransfer (HPt) protein LuxU via phosphorelay, and finally to the response regulator LuxO. Hence, the level of phosphorylated LuxO depends on the AI concentrations. The phosphorylated LuxO (P-LuxO) controls the expression of small regulatory RNAs (sRNAs), which together with the RNA chaperon Hfq, destabilize the transcript of the master regulator luxR. LuxR is responsible for the induction and repression of several genes (e.g., for bioluminescence, exoprotease and siderophore production). In vivo studies with various mutants have demonstrated that the ratio between kinase and phosphatase activities of the individual QS receptors and therefore the P-LuxO/LuxO ratio is crucial not only for the output strength but also for the degree of noise. This study was undertaken to better understand the inherent design principles of this complex signaling cascade, which allows sensing and integration of different signals, but also the differentiated output in individual cells. Therefore, we quantitatively analyzed not only the enzymatic activities, but also the abundance and localization of the three QS receptors. We found that LuxN presents the highest capacity to phosphorylate LuxU, while the phosphatase activity was comparable to LuxQ and CqsS in vitro. In whole cells the copy number of LuxN was higher than that of LuxQ and CqsS, and further increased in the late exponential growth phase. Microscopy experiments indicate that LuxN and LuxQ form independent clusters. Altogether, these results suggest, that the three QS receptors act in parallel, and V. harveyi has developed with LuxN the most dynamic sensing range for HAI-1, the species-specific AI.
Collapse
Affiliation(s)
- Nicola Lorenz
- Microbiology, Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Ludwig-Maximilians-Universität MünchenMartinsried, Germany
| | - Jae Yen Shin
- Microbiology, Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Ludwig-Maximilians-Universität MünchenMartinsried, Germany
| | - Kirsten Jung
- Microbiology, Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Ludwig-Maximilians-Universität MünchenMartinsried, Germany
| |
Collapse
|